Sakarya University Journal of Science, 22 (6), 1853-1856, 2018.

A Sequence Bounded Above by the Lucas Numbers

Engin Özkan¹ Ali Aydoğdu^{*2} Aykut Göçer¹

Abstract

In this work, we consider the sequence whose nth term is the number of h-vectors of length n. The set of integer vectors $E(n)$ is introduced. For $n \ge 2$, the cardinality of $E(n)$ is the n^{th} Lucas number L_n is showed. The relation between the set of h-vectors $L(n)$ and the set of integer vectors $E(n)$ is given.

Keywords: Cardinality, ℎ-vectors, Hilbert function, Lucas numbers

1. Introduction

Firstly, we give the well-known definitions of the Fibonacci and Lucas numbers. The Fibonacci numbers F_n are the terms of the sequence 1,1,2,3,5,8,13,21,34,55,89,… . Every Fibonacci number, except the first two, is the sum of the two previous Fibonacci numbers. The numbers F_n satisfy the second order linear recurrence relation.

$$
F_n = F_{n-1} + F_{n-2}, \ n = 2,3,4,\tag{1}
$$

with initial values $F_0 = 0$, $F_1 = 1$.

The Lucas numbers L_n are defined

$$
L_n = L_{n-1} + L_{n-2}, \ n = 2,3,4, \dots \tag{2}
$$

with initial conditions $L_0 = 2$, $L_1 = 1$. The first a few Lucas numbers are 2,1,3,4,7,11,18,29,47,76,… .

Hilbert functions of graded rings are more convenient for many applications and are known to relate to many different subjects such as dimensions, multiplicity and Betti numbers (see: Bruns and Herzog, [1]). In [2], Enkoskoy and Stone introduced recursion formulas related to Hilbert functions. They showed the n^{th} term of sequence, whose nth term is the number of hvectors of length n, is bounded above by the n^{th} Fibonacci number. Ozkan et al. [4] introduced the cardinality of the M -sequence of length n is bounded above by the n^{th} Lucas number.

The aim of this paper is to show the sequence defined by the number of h -vectors of length n is bounded above by the sequence of Lucas numbers. This paper is organized as follows. In Section 2 we give some concepts of ℎ-vectors. Section 3 presents main results of this paper.

2. Materials and Methods

We first give some necessary background on Hilbert functions and h –vectors.

Let $R = k[x_1, x_2, ... x_n]$ be a polynomial ring over a field k with the standard grading. In particular, $deg x_i = 1$ for $1 \le i \le n$. If *I* is a graded ideal, the quotient ring $\frac{R}{I}$ is also graded and we denote by $(R/I)_t$ the *k* vector space of all degree *t* homogeneous elements of R/I . The Hilbert function $H_{R_{/i}}: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ is defined to be the k vector space dimension of each graded

¹ Erzincan Binali Yıldırım University, Faculty of Arts and Sciences, Department of Mathematics, Erzincan, Turkey.

^{*} Corresponding Author

² Beykent University, Faculty of Arts and Sciences, Department of Mathematics, İstanbul, Turkey.

component, i.e. $H_{R/I}(t) := dim_k(R/I)_{t}$. If the Krull dimension of the graded quotient ring is zero, there exists an $s \ge 0$ such that $H_{R/2}(s) \ne 0$ but $H_{R/I}(t) = 0$ for all $t > s$. In this case the *h*-vector of R/I is defined as

$$
h\left(\frac{R}{I}\right) = \left(H_{R/I}(0), H_{R/I}(1), H_{R/I}(2), ..., H_{R/I}(s)\right)
$$
 (3)

Thus the *h*-vector of R/I has finitely many nonzero entries. The length of R/I is the k vector space dimension of R/I , denoted $\lambda(R/I)$. In particular $\lambda \left(\frac{R}{I} \right) = \sum_{i=0}^{S} H_{R/I}(s)$. Throughout this paper we will refer to $\lambda \binom{R}{I}$ as the length of $h(R /_{I}).$

The sequence $\{l(n)\}_{n\geq 1}$ is defined by the number of *h*-vectors of length *n*. In particular, for $n \ge 1$ we define

$$
L(n) = \{h = (h_0, h_1, ...)\mid h \text{ is an } h -
$$

vector and $\sum_i h_i = n\}$ (4)

and set $l(n) = |L(n)|$.

Using Macaulay's Theorem, the authors of [2] constructed the ℎ-vectors of length at most 7. The ℎ-vectors of length at most 6 is given in Table 1. We write $t_0 t_1 ... t_s$ for the *h*-vector $(t_0, t_1, ..., t_s)$.

Definition 2.1. [3] For $n \geq 1$, the set of integer vectors $B(n)$ is defined recursively as follows:

$$
1. \, B(1) = \{(1)\},
$$

2.
$$
B(2) = \{(1,1)\},\
$$

3. For $n \ge 3$ define $B(n) := C(n) \cup D(n)$ where

$$
C(n) := \{ (1, t_1, ..., t_s, 1) | (1, t_1, ..., t_s) \n\in B(n - 1) \}
$$

\n
$$
D(n) := \{ (1, t_1, ..., t_s + 1) | (1, t_1, ..., t_s) \n\in B(n - 1), with \n t_s - 1 > 1 \text{ or } s = 1 \}.
$$

Theorem 2.2. [3] The cardinality of $B(n)$ is the n^{th} Fibonacci number F_n .

Theorem 2.3. [2] For all $n \ge 1$, $L(n) \subseteq$ $B(n)$. In particular the sequence of the cardinality of $L(n)$ is bounded above by the Fibonacci sequence.

Definition 2.4. For $n \geq 1$, the set of integer vectors $E(n)$ is defined recursively as follows:

- 1. $E(1) = \{(1)\},\$
- 2. $E(2) = \{(1,1,1), (1), (1,2)\},\$
- 3. For $n \ge 3$ define $E(n) := R(n) \cup S(n)$ where $D(n) := ((1 + 1) (1 + 1))$

$$
R(n) := \{(1, t_1, \dots, t_s, 1) | (1, t_1, \dots, t_s) \in E(n-1)\},
$$

\n
$$
S(n) := \{(1, t_1, \dots, t_s + 1) | (1, t_1, \dots, t_s) \in E(n-1), \text{with } t_{s-1} \ge 1 \text{ or } s = 1\}.
$$

We set $e(n) = |E(n)|$.

Remark 2.5. It is worth noticing that the sets $R(n)$ and $S(n)$ of Definition 2.4 form a set partition of $E(n)$.

The first few sets $E(n)$ are

 $E(1) = \{(1)\},\$

$$
E(2) = \{ (1,1,1), (1), (1,2) \},
$$

 $E(3) = \{(1,1,1,1), (1,1), (1,2,1), (1,3)\},\$

$$
E(4) = \{ (1,1,1,1,1), (1,1,1), (1,2,1,1), (1,2,2), (1,3,1), (1,2), (1,4) \},
$$

$$
E(5) = \{ (1,1,1,1,1,1), (1,1,1,1), (1,2,1,1,1), (1,2,2,1), (1,3,1,1), (1,2,1), (1,4,1) \}
$$

$$
(1,2,3), (1,3,2), (1,3), (1,5) \}.
$$

In Table 2, the integer vectors of length at most 6 and cardinality of integer sets is given. We write $t_0 t_1 ... t_s$ for the *h*-vector $(t_0, t_1, ..., t_s)$.

3. Main Results

Theorem 3.1. The $e(n)$ is the n^{th} Lucas number L_n , for $n \geq 2$.

Proof. We shall prove by induction that, for all $n \geq 1$. When $n = 1$, the claim is true, since $e(1) = L_1 = 1$. Since $e(2) = L_2 = 3$, the claim is true for $n = 2$.

Suppose the claim is true for all $n = s$, that is $e(s) = L_s$. Then

 $e(s) + e(s-1) = L_s + L_{s-1} = L_{s+1}.$ (5)

Thus the claim holds for $n = s + 1$, that is $e(s + 1) = |E(s + 1)| = L_{s+1}.$

Theorem 3.2. For all $n \geq 2$, $L(n+1) \subseteq E(n)$. In particular, the sequence $l(n + 1)$ is bounded from above by the Lucas sequence.

Proof. Note that $L(n)$ is the set of all integer vectors $(1, t_1, ..., t_s)$ with $1 + t_1 + t_2 + ... + t_s =$

 $n + 1$ and the property that if $t_i = 1$ then $t_i = 1$ for all $j \geq i$. We will prove this by induction for all $n \ge 2$. For $n = 2$, the claim is true, since $L(3) \subseteq E(2)$:

$$
L(3) = \{(1,1,1), (1,2)\} \qquad \text{and} \qquad E(2) = \{(1,1,1), (1), (1,2)\}.
$$

When $n = 3$, the claim is true, since $L(4) \subseteq E(3)$:

 $L(4) = \{(1,1,1,1), (1,2,1), (1,3)\}$ and $E(3) =$ $\{(1,1,1,1), (1,1), (1,2,1), (1,3)\}.$

Suppose $L(k + 1) \subseteq E(k)$, for $n = k$. We have to show that the claim is true for $n = k + 1$, that is, $L(k + 2) \subseteq E(k + 1).$

Denote the number of element of a set A by $s(A)$. Then

$$
L(k) \subseteq E(k-1) \Rightarrow s(L(k)) \le s(E(k-1)),
$$

\n
$$
L(k+1) \subseteq E(k) \Rightarrow s(L(k+1)) \le s(E(k)),
$$

\nSince $L(k) \cap L(k+1) = \emptyset$, this also gives
\n
$$
s(L(k) \cup L(k+1)) = s(L(k)) + s(L(k+1)).
$$

\nSince $L(k) \subseteq E(k-1)$ and $L(k+1) \subseteq E(k)$, we
\nset

$$
L(k) \cup L(k+1) \subseteq E(k-1) \cup E(k). \tag{7}
$$

Similarly, since $E(k - 1) \cap E(k) = \emptyset$, we get $s(E(k-1) \cup E(k)) = s(E(k-1)) + s(E(k)).$ We then get from (7) $s(L(k)) + s(L(k + 1)) \leq s(E(k - 1)) +$

$$
s(E(k)).\tag{8}
$$

Hence

$$
s(L(k)) + s(L(k+1)) = s(L(k+2)),
$$

\n
$$
s(E(k-1)) + s(E(k)) = s(E(k+1)).
$$

\nWe know
$$
s(L(k+2)) \le s(E(k+1)).
$$
 Hence
\n
$$
L(k+2) \subseteq E(k+1).
$$

Theorem 3.3. For all $n \ge 2$, we have the relation

$$
E(n)\setminus L(n+1)=L(n-1).
$$

Proof. We will prove this by induction for all $n \geq$ 2. When $n = 2$, the claim is true, since $E(2) \setminus$ $L(3) = L(1)$. For $n = 3$, the claim is true, since $E(3) \setminus L(4) = L(2)$. Suppose that the claim is true for $n = s$, that is $E(s) \setminus L(s + 1) = L(s -$ 1).

We have to show that the claim is true for $n = s +$ 1, that is, $E(s + 1) \setminus L(s + 2) = L(s)$.

The identity $E(s) \setminus L(s + 1) = L(s - 1)$ implies $E(s) = L(s - 1) \cup L(s + 1)$. From the last equality, it can be easily seen that

 $E(s + 1) \setminus L(s + 2) = L(s).$ (9)

Example 3.4.

 $E(4)\backslash L(5) = \{(1,1,1,1,1), (1,1,1), (1,2,1,1),$ $(1,2,2), (1,3,1), (1,2), (1,4)\}\{(1,1,1,1,1),$ $(1,2,1,1), (1,2,2), (1,3,1), (1,4)$ $= \{(1,1,1), (1,2)\} = L(3)$

Corollary 3.5. For all $n \ge 2$, we have $|E(n)|$ – $|B(n + 1)| = |B(n - 1)|$.

References

- [1] W. Bruns and J. Herzog, "Cohen-Macaulay Rings, in: Cambridge Studies in Advanced Mathematics, vol 39," Cambridge University Press, Cambridge, 1993.
- [2] T. Enkosky and B. Stone, "Sequence defined by h-vectors," Eprint arXiv:1308.4945.
- [3] T. Enkosky, B. Stone, "A sequence defined by M-sequences," *Discrete Mathematics*, vol. 333, pp. 35-38, 2014.
- [4] E. Ozkan, A. Geçer and İ. Altun, "A new sequence realizing Lucas numbers and the Lucas Bound," *Electronic Journal of Mathematical Analysis and Applications*, vol. 5, no. 1, 148-154, 2017.