

Pomological and Biochemical Characterization of Eight Apricot (*Prunus armeniaca* L.) Cultivars Grown under Elbistan Ecological Conditions

Asiye Bulut Karabeyin¹ Cenap Yılmaz^{1*} ¹ Department of Horticulture, Faculty of Agriculture, Eskisehir Osmangazi University, Eskisehir, Türkiye***Correspondence:** cylmaz@ogu.edu.tr**Citation**

Karabeyin Bulut A., Yılmaz, C. (2025). Pomological and Biochemical Characterization of Eight Apricot (*Prunus armeniaca* L.) Cultivars Grown under Elbistan Ecological Conditions. *Int J Agric For Life Sci* (2025) 9(2):116-121

Received

:9 December 2025

Accepted

:22 December 2025

Published Online

:23 December 2025

Year:

:2025

Volume

:9

Issue

:2 (December)

Pages

:116-121

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC) license

<https://creativecommons.org/licenses/by-nc/4.0/>

International Journal of Agriculture, Forestry and Life Sciences; Edit Publishing, Eskisehir, Türkiye.

Copyright © 2025**Available online** <https://dergipark.org.tr/ijafs>**Abstract**

This study aimed to evaluate the pomological and biochemical characteristics of eight apricot (*Prunus armeniaca* L.) cultivars grown under the ecological conditions of Elbistan, Türkiye. Significant differences ($P < 0.05$) were observed among cultivars for all investigated traits. Fruit weight varied markedly, ranging from 20.20 g to 46.62 g, while flesh thickness ranged between 7.25 mm and 11.75 mm, indicating substantial diversity in fruit size and structure. Peel color parameters (L^* , a^* , b^* , hue, and chroma) also exhibited wide variation, reflecting genotype-dependent pigmentation differences. Total soluble solids (TSS) content ranged from 20.00% to 29.23%, with Soğanoğlu showing the highest value, whereas titratable acidity varied between 0.79% and 1.89%. Antioxidant capacity, total phenolic content, and total flavonoid content differed significantly among cultivars, with total phenolic content reaching up to 328.45 mg GAE/kg fresh weight. Multivariate analysis using Principal Component Analysis (PCA) effectively discriminated cultivars based on combined pomological and biochemical traits, revealing distinct varietal groupings. Overall, the results demonstrate considerable phenotypic and biochemical diversity among apricot cultivars under Elbistan ecological conditions and provide valuable information for cultivar selection, breeding programs, and the development of apricots with improved fruit quality and nutritional value.

Key words*Apricot, Prunus armeniaca, Biochemical compounds, PCA, Genotypes.***Introduction**

Apricot (*Prunus armeniaca* L.) is one of the most economically and nutritionally important fruit species within the genus *Prunus*, cultivated widely across temperate regions of the world. Türkiye is recognized as one of the major centers of origin and genetic diversity for apricot, hosting numerous local cultivars and landraces adapted to diverse microclimates (Asma and Öztürk, 2005; Ercisli, 2009). The country also leads global apricot production, particularly in the Eastern Anatolia region, which supports both fresh-market and dried-apricot industries. This genetic richness provides an essential foundation for breeding programs targeting improved fruit quality, stress tolerance, and biochemical attributes.

Fruit quality in apricot is determined by a combination of pomological characteristics such as fruit weight, flesh thickness, firmness, peel color, soluble solids, and acidity, as well as biochemical properties including antioxidant activity, phenolic content, and flavonoid levels. These parameters strongly influence consumer acceptance, postharvest performance, industrial suitability, and nutritional value (Ruiz et al., 2005; Leccese et al., 2012). Numerous studies have highlighted wide variability among apricot cultivars for these traits, largely driven by genotype but also shaped by ecological conditions such as temperature, altitude, soil structure, and solar radiation (Dragovic-Uzelac et al., 2005).

Elbistan, located in the Eastern Mediterranean transition zone of Türkiye, presents a distinctive continental climate characterized by cold winters, hot summers, and significant diurnal temperature differences. These climatic characteristics are known to influence sugar accumulation, color development, and phenolic metabolism in stone fruits. Despite the presence of locally adapted apricot types and the region's expanding fruit production potential, comprehensive studies examining the pomological and biochemical performance of cultivars under Elbistan ecological conditions remain limited.

Understanding varietal performance in this region is essential for identifying cultivars with superior fresh-market qualities, industrial suitability, and enriched phytochemical composition. Moreover, such evaluations contribute to the conservation and utilization of Türkiye's apricot genetic resources. Therefore, this study aimed to investigate the pomological and biochemical characteristics of eight apricot varieties grown under Elbistan ecological conditions, and to assess their potential suitability for commercial production, processing, and nutritional use. The findings are expected to provide valuable insights for growers, breeders, and the apricot industry, while contributing to the scientific literature on genotype–environment interactions in apricot cultivation.

Materials and Methods

Plant material and study area

This study was conducted using eight apricot (*Prunus armeniaca* L.) cultivars grown under the ecological conditions of Elbistan, Kahramanmaraş, Türkiye. The evaluated cultivars were Acıkayışı, Akerik, Çataloğlu, Hacıhaliloğlu, Hacıkız, Hasanbey, Kabaası, and Soğanoğlu. All trees were mature, grafted on standard rootstocks, and cultivated under uniform orchard management practices. The region is characterized by a continental climate with cold winters, hot summers, and notable diurnal temperature differences, which are known to influence fruit quality parameters.

Fruit sampling

For each cultivar, fruit samples were collected at commercial maturity based on skin color development and soluble solid accumulation. A minimum of 60 fruits per cultivar were randomly harvested from all sides of the tree canopy to ensure representative sampling. Samples were immediately transported to the laboratory and analyzed on the same day to prevent biochemical degradation.

Pomological measurements

Fruit Dimensions and Weight

Fruit weight (g) was determined using a precision digital scale (± 0.01 g). Fruit diameter, fruit length, and flesh thickness (mm) were measured using a digital calliper with a sensitivity of ± 0.01 mm.

Fruit Firmness

Fruit firmness (kg/cm^2) was measured using a hand-held penetrometer fitted with an 8-mm plunger tip. Two opposite sides of each fruit were peeled and measured, and mean values were recorded.

Stone Characteristics

Stone weight (g), stone diameter (mm), and stone length (mm) were measured after manually removing and cleaning the stones from fresh fruits. Measurements were performed using a digital calliper and digital scale.

Color Measurements

Peel color was evaluated using CR 400 Minolta Colorimeter, providing L^* (lightness), a^* (red–green axis), and b^* (yellow–blue axis) values. Color intensity (chroma) and hue angle were calculated using standard formulas:

- Chroma (C) = $\sqrt{(a^2 + b^2)^{**}}$
- Hue angle ($^\circ$) = $\arctan(b/a)^{**}$

Three readings were taken per fruit from sun-exposed peel areas.

Chemical analyses

Total Soluble Solids (TSS)

TSS (%) was determined using a digital refractometer at 20°C. Fruit juice was extracted manually and filtered prior to measurement.

Titratable Acidity (TA) and pH

Titratable acidity (%) was measured by titrating fruit juice with 0.1 N NaOH using phenolphthalein as an indicator and expressed as % malic acid.

pH was measured using a calibrated digital pH meter.

Antioxidant Capacity

Antioxidant capacity (mM Trolox/ml) was determined using the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Absorbance readings were taken with a UV–Vis spectrophotometer and compared with Trolox standards.

Total Phenolic Content

Total phenolics were quantified using the Folin–Ciocalteu method and expressed as mg gallic acid equivalents (GAE) per kg of fresh weight. Absorbance was measured at 765 nm.

Total Flavonoid Content

Flavonoid content was determined using the aluminum chloride colorimetric method and expressed as mg catechin equivalents (CE) per kg. Absorbance was recorded at 510 nm.

Statistical analysis

All data were analyzed using ANOVA (Analysis of Variance) to determine the significance of differences among cultivars. Mean comparisons were performed using Tukey's HSD test at $P < 0.05$. Correlation coefficients among traits were calculated using Pearson correlation analysis. Principal Component Analysis (PCA) and biplot graphs were generated to evaluate multivariate relationships and cultivar clustering using OriginLab (OriginPro 2024).

Results and Discussion

Fruit Morphology

Apricot varieties exhibited significant variation in fruit weight, diameter, length, and flesh thickness under Elbistan ecological conditions. Larger-fruited cultivars such as Hasanbey (46,62 g), Kabaaşı (45,01 g), and Acı kayısı (39,01 g) consistently produced superior fruit mass and flesh thickness, whereas Akerik (20,20 g) and Hacıkız (20,60 g) represented the lower end of the size spectrum. Such variability is frequently attributed to the combined effects of genotype and environmental factors, particularly temperature regime and soil fertility (Table 1).

Table 1. Fruit weight, fruit diameter, fruit length and flesh thickness values of apricot varieties examined in the experiment

Varieties	Fruit weight (g)	Fruit diameter (mm)	Fruit length (mm)	Flesh thickness (mm)
Acı kayısı	39,01±1,64a	41,21±0,66a	44,16±0,52b	10,63±0,34a
Akerik	20,20±0,39c	33,07±0,46c	38,74±0,31c	7,38±0,72b
Cataloğlu	27,19±1,65bc	36,02±0,80b	33,72±0,37d	8,79±0,71b
Hacıhaliloglu	22,19±0,69bc	33,45±0,24c	35,19±0,30d	7,25±0,05b
Hacıkız	20,60±1,12c	32,65±0,93c	30,78±0,46e	7,69±0,63b
Hasanbey	46,62±4,20a	41,90±1,13a	48,93±1,43a	10,67±0,35a
Kabaaşı	45,01±3,54a	42,31±0,76a	44,75±0,41b	11,75±1,40a
Soğanoğlu	29,57±5,51b	36,52±0,41b	38,49±0,58c	8,77±0,52b
P _{0.05}	P<0,0001	P<0,0001	P<0,0001	P<0,0001

Similar findings were reported by Asma and Öztürk (2005), who observed strong genotype-dependent variability in Turkish apricot germplasm. The larger fruit size of Kabaaşı and Hasanbey also aligns with earlier observations by Asma et al. (1999), who categorized these cultivars among the high-yield commercial types.

Fruit Peel Color

Color parameters (L^* , a^* , b^* , hue, chroma) differed markedly among the varieties. Akerik exhibited the highest lightness (L^*), while Soğanoğlu showed intense red coloration (a^*) and high chroma, suggesting visually appealing pigmentation. Peel coloration is largely governed by carotenoid and anthocyanin accumulation, which are influenced by genetic structure and climatic factors such as sunlight intensity (Table 2).

Table 2. Fruit peel color values of apricot varieties examined in the experiment

Varieties	Skin L* value	Skin a* value	Skin b* value	Skin hue value	Skin chroma value
Acı kayısı	58,58±4,70de	10,21±1,83abc	37,40±3,14bcd	74,85±1,34cd	38,78±3,51bc
Akerik	75,71±1,42a	0,95±1,10d	45,01±2,56ab	88,87±1,3a3	45,03±2,58ab
Cataloğlu	60,48±0,88cde	3,80±0,86cd	34,43±1,20cd	83,71±1,62abc	34,65±1,10bc
Hacıhaliloglu	70,20±0,99ab	2,94±2,88cd	42,66±3,03abc	86,08±3,94ab	42,83±2,98bc
Hacıkız	59,39±2,19cde	9,69±4,66abc	36,61±2,04bcd	75,32±6,81cd	38,05±2,27bc
Hasanbey	66,05±0,55bcd	12,36±0,19ab	42,99±0,99abc	73,99±0,57cd	44,74±0,90ab
Kabaaşı	53,47±7,35e	7,99±6,26bcd	32,02±6,45d	76,72±8,10bcd	33,25±7,49c
Soğanoğlu	68,79±0,79abc	17,05±0,59a	50,53±0,83a	71,39±0,89d	53,33±0,60a
P _{0.05}	P<0,0001	P<0,0001	P=0,0001	P=0,0003	P=0,0002

These results parallel the work of Ruiz and Egea (2008), who reported significant genotype-driven differences in apricot peel color, who emphasized the role of altitude and radiation exposure in enhancing redness (a^*) in apricots. The strong coloration of Soğanoğlu may therefore be partly attributed to Elbistan's high solar radiation and large diurnal temperature fluctuations.

Fruit Firmness and Stone Characteristics

Fruit firmness ranged widely among cultivars, with Hacıhaliloglu (8,14 kg/cm²) exhibiting the highest firmness and Hasanbey (4,17 kg/cm²) the lowest. Firmness is a key determinant of postharvest behavior, and firmer cultivars such as Hacıhaliloglu may tolerate long-distance transport and extended storage. Similar behavior was recorded by Gülgürüz et al. (1999), who noted that firmness varies significantly among Turkish apricot cultivars and is a critical trait for marketability (Table 3).

Stone characteristics also varied substantially. Acı kayısı (2,96 g) and Kabaaşı (2,80 g) had heavier stones, whereas Hacıkız (1,60 g) had the smallest. Variability in stone size is often associated with the fruit-to-stone ratio, an important quality parameter. Studies by Asma et al. (2007) similarly documented strong genetic effects on stone morphology, supporting the current findings.

Table 3. Fruit firmness, stone weight, stone diameter and stone length values of the apricot varieties examined in the experiment

Varieties	Fruit firmness (kg/cm ²)	Stone weight (g)	Stone diameter (mm)	Stone length (mm)
Acıkayısı	4,68±0,80cd	2,96±0,18a	21,13±0,21a	30,83±0,56b
Akerik	5,93±0,81bcd	1,80±0,02b	17,90±0,34bc	24,89±0,37c
Çataloğlu	5,71±0,81cd	1,84±0,10b	16,97±0,17bcd	21,57±0,23d
Hacıhaliloglu	8,14±0,78a	1,81±0,01b	16,35±0,11cd	25,51±0,19c
Hacıkız	5,19±0,42cd	1,60±0,05b	16,43±0,21cd	20,64±0,20d
Hasanbey	4,17±0,22d	2,81±0,25a	18,64±1,85b	34,14±1,10a
Kabaası	7,82±0,50ab	2,80±0,14a	18,86±0,27b	29,74±0,38b
Soğanoğlu	6,11±0,45bc	1,61±0,06b	15,77±0,18d	24,98±0,25c
P _{0.05}	P<0,0001	P<0,0001	P<0,0001	P<0,0001

Stone characteristics also varied substantially. Acıkayısı (2,96 g) and Kabaası (2,80 g) had heavier stones, whereas Hacıkız (1,60 g) had the smallest. Variability in stone size is often associated with the fruit-to-stone ratio, an important quality parameter. Studies by Asma et al. (2007) similarly documented strong genetic effects on stone morphology, supporting the current findings.

TSS, Titratable Acidity, and pH

Among biochemical traits, TSS exhibited remarkable variation, with Soğanoğlu presenting exceptionally high levels (29.23%), indicating superior sweetness and potential suitability for drying. High TSS is commonly favored in drying apricots because it enhances flavor and reduces drying time. Previous studies, including Asma and Öztürk (2005) and Ercisli (2009), reported similar TSS ranges and emphasized genotype as the major determinant (Table 4).

Table 4. TSS, titratable acidity and pH values of apricot genotypes examined in the experiment

Varieties	TSS (%)	Titratable acidity (%)	pH
Acıkayısı	20,00±1,00b	1,41±0,12b	4,29±0,05d
Akerik	22,00±1,20b	1,89±0,07a	4,35±0,06d
Çataloğlu	21,20±1,00b	0,96±0,04d	4,86±0,05c
Hacıhaliloglu	22,13±0,81b	1,53±0,03b	5,16±0,04b
Hacıkız	22,33±1,53b	0,84±0,01de	4,85±0,05c
Hasanbey	21,93±1,10b	0,86±0,02de	5,45±0,05a
Kabaası	20,93±1,10b	1,17±0,04c	5,08±0,08b
Soğanoğlu	29,23±0,75a	0,79±0,03e	5,35±0,05a
P _{0.05}	P<0,0001	P<0,0001	P<0,0001

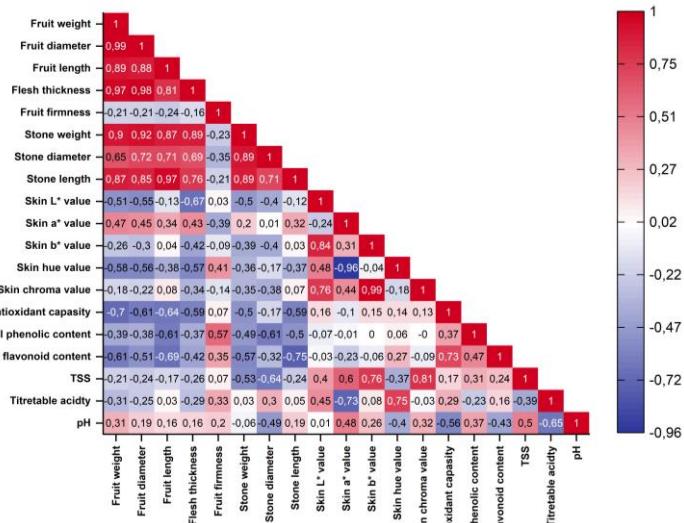
Acidity values were highest in Akerik(1,89%), while pH was greatest in Hasanbey (0,86%) and Soğanoğlu (0,79%). The inverse relationship between acidity and pH observed here is consistent with organic acid behavior described by Ruiz et al. (2005). The combination of high TSS and moderate acidity in Soğanoğlu suggests a well-balanced flavor profile, making it attractive for both fresh consumption and industrial uses.

Antioxidant Capacity, Total Phenolics, and Flavonoids

Remarkable differences were observed across cultivars for antioxidant capacity, total phenolic content, and flavonoid levels. Hacıhaliloglu, Çataloğlu, and Soğanoğlu exhibited particularly high phenolic content, while Acıkayısı had the highest antioxidant capacity.

These findings are consistent with published reports demonstrating that apricots possess variable but generally high phenolic concentrations. Dragovic-Uzelac et al. (2005) and Ruiz et al. (2005) found that phenolic profiles are strongly genotype-dependent and influenced by environmental stress. Additionally, Gündoğdu et al. (2017) confirmed that apricots from high-altitude or continental climates often accumulate more phenolics due to oxidative stress, supporting the strong biochemical values observed under Elbistan conditions (Table 5).

Table 5. Antioxidative capacity, total phenolic substance and total flavonoid content values of apricot varieties examined in the experiment

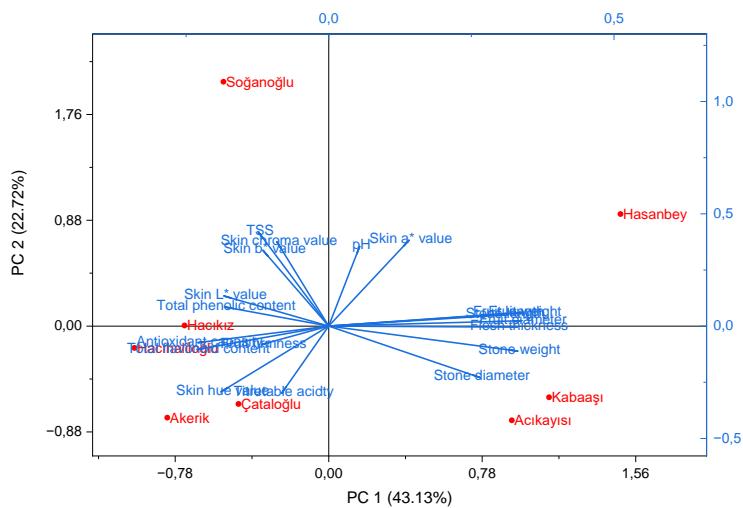

Variety	Antioxidant capacity (mMtroloks/ml)	Total phenolic content (mg GAE/kg)	Total flavonoid content (mg Catechin/kg)
Acıkayısı	3,37±0,01a	237,63±0,85de	85,55±3,29abc
Akerik	2,96±0,07ab	199,92±4,40f	86,96±2,60abc
Çataloğlu	2,60±0,10bc	285,93±7,00b	94,79±3,00a
Hacıhaliloglu	3,08±0,26ab	328,45±10,82a	83,20±7,53bc
Hacıkız	3,32±0,10a	268,77±21,40bc	85,55±1,41abc
Hasanbey	1,59±0,03d	210,37±13,17ef	53,41±1,13d
Kabaası	2,10±0,47cd	250,34±2,97cd	81,47±3,61c
Soğanoğlu	3,06±0,16ab	289,32±2,12b	92,76±2,04ab
P _{0.05}	P<0,0001	P<0,0001	P<0,0001

The high flavonoid content in Çataloğlu and Soğanoğlu also aligns with results presented by Leccece et al. (2012),

who reported that cultivars with intense peel pigmentation often exhibit high flavonoid concentrations.

Correlation and Biplot Interpretation

Correlation analysis revealed positive associations among fruit size parameters, consistent with the expected biological relationship where larger fruit weight corresponds to increased diameter, length, and flesh thickness (Figure 1). Similar correlations have been documented in works by Asma et al. (2007) and Güleryüz et al. (1999).


Figure 1. Correlation values between fruit characteristics of apricot varieties

Biplot analysis showed clear clustering of the eight apricot varieties based on both pomological and biochemical variables (Figure 2). Varieties such as Soğanoğlu (high TSS and flavonoids) and Hasanbey (large fruit size) formed distinct clusters, indicating specialized trait profiles. Principal component-based varietal separation has been widely reported in apricot studies, including the work of Asma and Öztürk (2005) and Baccichet et al. (2022), confirming its reliability for cultivar classification and breeding decisions.

Conclusion

This study clearly demonstrates substantial pomological and biochemical diversity among apricot varieties cultivated under Elbistan ecological conditions. Key findings include major differences in fruit size, peel color, firmness, TSS, acidity, phenolic composition, and antioxidant activity. Varieties such as Kabaaşı and Hasanbey stand out for fruit size characteristics, whereas Soğanoğlu is notable for its exceptionally high TSS. Hacıhaliloglu and Çataloğlu exhibit superior phenolic content, suggesting enhanced nutritional value.

These results provide valuable information for breeders, growers, and the food industry, supporting the selection of varieties tailored to fresh consumption, processing, storage, or nutraceutical uses. The diversity observed highlights both the genetic richness of apricot germplasm and the potential for further improvement under the ecological conditions of Elbistan.

Figure 2. Biplot analysis of eight apricot varieties

Acknowledgements

This study is a part of the master thesis of the AsİYE Bulut which was supervised by Cenap Yılmaz.

Author's Contributions

The authors contributed equally to this manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

Asma, B., Ozturk, K. (2005). Analysis of morphological, pomological and yield characteristics of some apricot germplasm in Turkey. *Genetic Resources and Crop Evolution*, 52:305–313.

Asma, B.M., Kan, T., Birhanlı, O. (2007). Characterization of promising apricot (*Prunus armeniaca* L.) genetic resources in Malatya, Turkey. *Genetic Resources and Crop Evolution* 54:205–212.

Akça, Y., Özkan, Y. and Asma, B.M. (1999). A study on determination of yield and fruit characteristics of certain Turkish dried apricot cultivars and types. *Acta Horticulturae*, 488, 129-134.

Baccichet, I., Chiozzotto, R., Spinardi, A., Gardana, C., Bassi, D., Cirilli, M. (2022). Evaluation of a large apricot germplasm collection for fruit skin and flesh acidity and organic acids composition. *Scientia Horticulturae*, 294: 110780.

Dragovic-Uzelac, V., Pospišil, J., Levaj, B., Delonga, K. (2005). The study of phenolic profiles of raw apricots and apples and their purees by HPLC for the evaluation of apricot nectars and jams authenticity. *Food Chemistry*, 91(2):373-383.

Ercisli, S. (2009). Apricot culture in Turkey. *Scientific Research and Essays*, 4(8), 715–719.

Gundogdu M., Ercișli, S., Berk S., Kan T., Canan I., Gecer M. K. (2017). Diversity on color and phenolic compounds in apricot fruits. *Journal of Food Measurement and Characterization*, 11(4): 2087-2093.

Güleyüz, M., Ercișli, S., Eşitken, A. (1999). A study on characteristic features of apricot grown in Erzincan, Malatya and İğdır provinces. *Acta Horticulturae*, 488:165-169.

Leccese, A., Bartolini, S., Viti, R. (2012). Total antioxidant capacity and phenolics content in apricot fruits. *Acta Alimentaria*, 37(1), 65–76.

Ruiz, D., Egea, J., Gil, M.I., & Tomás-Barberán, F.A. (2005). Characterization and quantitation of phenolic compounds in apricot fruits. *Journal of Agricultural and Food Chemistry*, 53(24), 9544–9552.

Ruiz, D., Egea, J. (2008). Phenotypic diversity and relationships of fruit quality traits in apricot (*Prunus armeniaca* L.) germplasm. *Euphytica* 163:143–158.