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The dynamic behavior of a structure is influenced by the environment in which 

it is located it among the community seeking more structure, we have the 

thermal loading, this work investigates a plate sandwich subjected to thermal 

stress, the modeling of the plate is made by a third order model developed by 

Reddy TSDT (Third Order Shear Deformation Theory), while the TLT theory 

(Theory Thermal Layers) is used to transform the three-dimensional problem 

to a two-dimensional thermal problem. Next, a rectangular-p element with 

four nodes at the vertices and four sides is used to model the structure, and 

the thermal conduction. In the structure part, the forms used functions are 

trigonometric family C0 type for membrane displacements and rotations and 

type C1 for inflected movements, the thermal portion is modeled by C0 types 

of shape functions where the degrees of freedom to the nodes are the 

temperature, the temperature gradient and the temperature curve, the 

thermoelastic study to determine the displacements of the submerged plate by 

the method of integration time PTIM (Precis Time Integration Method). 

Finally, a study of convergence of the developed numerical code is made, the 

found results are validated with those found in the literature, and different 

parametric studies are made for the sandwich plates in different situations, 

structure, and thermo- elastic. 

 

Key words: Free vibration, thick composites plates, sandwich plate, 

hierarchical finite element method, C1 HSDT, heat conduction, thermo-elastic 

analysis. 
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I. Introduction 

The theory of thermoelasticity represents a generalization of both the theory of elasticity and the 

theory of heat conduction in solids. It is a branch of applied mechanics that is concerned with the effects 

of heat on the deformation and stresses of solid bodies, which are considered to be elastic. 

     The simplifyng assumptions made in CPT and FSDT are reflected by the high percentage 

errors in the results of thick plates analysis. For these plates, higher-order shear deformation theories 

(HSDT) are required. The HSDT ensure a zero shear-stress condition on the top and bottom surfaces of 

the plate, and do not require a shear correction factor, which is a major fearture of these theories. 

Nelson and Lorch [1], Lo et al. [2] presented a HSDT for laminated plates however the 

displacement field does satisfy the shear-stress free condition on the topand bottom surfaces of the plate. 

Nayak et al. [3,4] investigate the free vibration and transient response of composite sandwich plates by 

using two C1  assumed strain finite element based on Reddy’s third-order theory. Batra et al. [5] used a 

HSDT and the finite element method to analyse free vibrations and stress distribution in thick isotropic 

plate. Ambartsumian [6] proposed a higher-order transverse shear stress function to explain plate 

deformation. Soldatos and Timarci [7] suggested a similar approach for dynamic analysis of laminated 

plates. Various different functions were proposed by Reddy [8]. 

The problem of heat conduction is studied by solving the Fourier heat conduction equation. For 

temperature variations in composites, this has been the subject of several studies. Padovan [9] proposed 

a discretization with three-dimensional elements. The effort can be reduced by modeling a couple of 

layers with only a three-dimensional element Tamma et Yurko [10]. Where also to use a two-

dimensional element with hierarchical form functions (version-p) Bose and Surana [11]. Rolfes [12] 

used the finite element method to solve the problem of temperature distribution in stratified plates, some 

studies have considered sandwich and multilayer plates with different materials, such as Heemskerk 

[13], where he studied the conductivity of sandwich plates for structures used in space, or also Novack 

[14] who used a new method for hybrid plates, the solution is given for the case of hulls as it is proposed 

by Brischetto [15], the geometry of the plate can be considered as a special case of the geometry of the 

shell when the radii of curvature are infinite. Brischetto and carrera (Brischetto et Carrera, 2011) have 

proposed to solve the Fourier heat conduction equation in the case of orthotropic multilayer structures 

in order to obtain a temperature profile calculated in the direction of the thickness. The temperature 

profile is calculated for the thickness of two types of geometries, plates and shells. 

The theory of thermoelasticity is considered an extension of the classical theory of isothermal 

elasticity, to those processes in which deformations and stresses are produced not only by mechanical 

forces, but also by temperature variations. Bending of composite and laminate laminates or sandwich 

shell was evaluated by means of a linear temperature profile across the thickness direction by Khare et 

al [17]. Khdeir [18] solved thermoelastic governing equations by assuming a linear or constant 

temperature profile across the thickness. An interesting process to analyze the thermal stresses in hulls, 

as there is Birsan [19] for two given temperature fields. Other computer models have used a calculated 

temperature profile, because in the case of multilayer anisotropic structures, because in the case of 

multilayer anisotropic structures, the temperature profile is never linear, even when the plate or shell is 

thin, an incorrect temperature profile gives an erroneous thermal load which leads to larger errors, even 

if the model is structurally accurate Carrera [20, 21]. A finished shell element was developed by Rolfes 

et al [22]. they analyzed composite structures simultaneously loaded by mechanical and thermal loads, 

the temperature profile was assumed linear or quadratic in the direction of the thickness, then introduced 
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into the conduction equation of the Fourier heat. The conduction equation of the Fourier heat has been 

solved by the authors for multilayer composite hulls and plates made of functionally graduated material, 

Brischetto [23] et Brischetto et al. [24], respectively. The calculated temperature profile gives an 

appropriate thermal load to properly study the thermal bending of these structures. In the works of the 

previous authors, the Fourier heat conduction equation was solved according to the technique presented 

by Tungikar et Rao [25]. 

 

II. Plate Formulation  

A) Energy formulation 

     Consider a laminate composite thick plate of uniform thickness h, length a and width b, as shown on 
Fig. 1. The displacement of the plate are decomposed into three orthogonal components, u,v and w are 

the displacement components of middle plate in the x, y, and z directions, respectively. 

In accordance with the higher-order shear deformable theory [26], the displacements can be expressed as 
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Figure 1..Laminate geometry with positive set of laminate reference axes, displacements and  fiber 

orientation. 
 

     Where u0,v0, and w0  are the displacements of the middle surface of the plate, θx  and θy  are rotations 

of transverse normal about y-axis and x-axis of the plate respectively. 
 

The linear strain-displacement relationships is given by 
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     The constitutive equations for a kth layer, in the orthotropic local coordinate derived from Hook’s 
law for plane stress is given by 

 

      (4)k k k
C   

      

     In the case of plane stress the stress vector can be written as 
 

    (5)
kk

xx yy yz xz xy     

 

 

     The constitutive equations for a kth layer, in the orthotropic local coordinate derived from Hook’s 
law for plane stress are given by 
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     Where the well-known engineering constants Cij are given by 
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     In which Ei, νij and Gij are the Young’s modulus, Poisson’s ratio and shear modulus of the lamina.  

Where, 1 and 2 represent the directions parallel and perpendicular to the fibers direction. By 
performing a proper coordinate transformation, the stress-strain relationships of a single lamina in the 

oxyz co-ordinate system can be obtained. 

 
     The stress-strain relations in the global (x, y, z) coordinate system can be written as 
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     The kinetic energy of a vibrating composite thick plate is given by 
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     Where ρ is the mass density per unit volume. 

 
The strain energy of a thick plate is expressed as 
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                            εT represents the deformations due to the temperature gradient 
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With αxx, αyy et αxy are the coefficients of thermal expansion.

 

 
 

B) Hierarchical finite element formulation 

 

     A four node rectangular hierarchical finite element with eight degrees of freedom per node (u0,v0, w0, 

∂w0/∂x, ∂w0/∂y, ∂2w0/∂xy, θx, θy) is developed on the basis of a third-order plate theory (See Fig. 
2).Trigonometric hierarchical functions are used as shape functions. The model requires C0 continuity 

for u0, v0, θx  and θy and C1 continuity for w0. 

The displacements and rotations of the rectangular plate p-element are expressed as 
 

       0

1 1

, ,

u u

m n

P P

u m n

m n

u t q t f f   

 

  

       0

1 1

, ,

u u

m n

P P

v m n

m n

v t q t f f   

 

  

       0

1 1

, ,

w w

m n

P P

w m n

m n

w t q t g g   

 

                                            (11) 

       
1 1

, ,
m n

P P

x x m n

m n

t q t f f

 

    

 

  

                                                        
1 1

, ,
m n

P P

y y m n

m n

t q t f f

 

    

 

  

     Where Pu, PW and Pθ are the number of shape functions used in the model. 
 

                                                           

 
Figure 2. Plate element coordinates and dimensions 

 

 

(12) 
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     The first shape functions f1, f2 and g1 to g4, are commonly used in the finite element method. The 
functions (fn+2 and gn+4) are the trigonometric shape functions and lead to zero transverse displacement, 

and zero slope at each node. This feature is highly significant since these functions give additional 

freedom to the edges and the interior of the element. 
     The expressions of the trigonometric hierarchical shape functions fi(ξ) for C0 continuity and gi(ξ) for 

C1 are given by [27] 
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 Where 𝜉(= 𝑥/𝑎) et 𝜂(= 𝑦/𝑏)      
 

 
The displacements and rotations can be expressed in matrix form as 
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     [N] is the matrix of shape functions, given by 
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     In which qu, qv, qw, qθx, and qθy are the generalized displacements. 
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     The matrices of shape functions are given by 
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     The equations of motion in the case of forced vibration of composite plates can be expressed as 
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     and [M] is called the mass matrix of the p-element, given by the following relation 
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C) Thermal  formulation 

 
Thermal analysis of stratified composite plate is modeled by a hierarchical finite element with four nodes 

and four sides (Fig. 2). this element has three degrees of freedom per node (T0, T0,z, T0,zz), respectively, 

temperature, gradient and curvature. 
 

The temperatures in the (x, y) plane, is expressed using shape functions are given by the relations (12)  

The expression of the temperature in the (x, y) plane by the shape functions is given by the following 
relation: 

 

          NyfxfT ji

M

i

N

j

ji 








2

1

2

1

,00 ,                                            (22) 

Where  

 

                         
  

 
2222221111 ,......,,


NMNMmji ffffffffN         (23) 

 

In the case of a stationary regime, the thermal study is governed by the following differential equation 
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  ChTAATC  21


                                                       (24) 

Where the conduction matrix is given by 

 

     
1

0

1

0
1  ddBKBA

T                                                      (25) 

And convection matrix given by  

 

         ddBRRBhcA
TT

 
1

0

1

0
2

                                           (26) 

 

The capacitance matrix are obtained by 
 

      ddBRBC
T

 
1

0

1

0

                                                              (27) 

 

The convection vector represents the external thermal loads in the form of convection 

 

     
 NhhzS

TT

c dsTRBhcQ
,1

                                                       (28) 

With 

T
 : Surface temperature. 

hc : convection imposed on the surface. 

 
Vector external heat source are obtained by  

 

     
 NhhzS

TT

q dsqRBhcQ
,1

                                                     (29) 

The temperature on the walls is given by the following relation 
 

     
 Nhhz

B TAQ
,1

1


                                                            (30) 

 

III. Numerical results and discussion 

A) Dynamic study  

In this section, solution accuracy and convergence studies of the present formulation are carried out. 

The convergence study is performed on [45/-45] angle-ply square plate with totally clamped (CCCC) 

edges and combined boundary condition. Figures 3 and 4 show that good convergence and accuracy of 

the first five frequency parameters are obtained by increasing the number of shape functions. The plate 

is considered as one element and the number of hierarchical terms is increased to 14 trigonometric 

functions in the case of EFFF plate, and 14 trigonometric functions for CCCC plate. 
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Figure 3. Convergence of frequency parameters  Ω = 𝜔𝑏2/ℎ √𝜌/𝐸2p for totaly clamped CCCC 

composite square plate (a/h=2). 
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Figure 4. Convergence of frequency parameters  Ω = 𝜔𝑏2/ℎ √𝜌/𝐸2p for CFFF composite square 

plate (a/h=2). 

 

The effect of side-to-thickness ratio (a/h) on the vibration behavior of an antisymmetric [0/90/core/0/90] 

sandwich square plate with simply supported edges are studied here. The material properties used in the 

present analysis are: 

Facet sheets (Graphite-Epoxy T300/934) 

 

E1= 131 Gpa,  E2 = 10.34Gpa, G12 =6.895 Gpa, G l 3 = 6.205 Gpa, G23 =6.895 Gpa, ν12 = 0.22, ν13 = 0.22,  

ν12 = 0.49, ρ = 1627 kg/m3 

Core properties (isotropic) 
 

E1=  E2 = 6.89×10-3Gpa, G12 = Gl3=G23 = 3.45×10-3Gpa, ν12 = ν13 = ν23=0, ρ = 97 kg/m3 

The results obtained for the fundamental frequency parameters as function of different side-to-thickness 

ratio (a/h) are given in Table 1. The results clearly show that the frequency values predicted by the 

present study are in good agreement with those of Reddy [28], Senthilnathan et al. [29], and those of 

Kant and Swaminathan [30] in which the displacements are expanded as cubic functions of the thickness 

coordinate. It is clear that the values given by FSDT [31] are higher than those predicted by HSDT 

models. 
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Table 1. Comparison of fundamental frequency parameters Ω = 𝜔(𝑎2/ℎ )(√𝜌𝑐/𝐸2𝑐  ) for SSSS of an 

antisymmetric [0/90/core/0/90], sandwich plate with 𝑎/𝑏 =  1and ℎ𝑐/ℎ𝑓 =  10. 

 

a/h Present HSDT [28] HSDT [29] HSDTa [30] HSDTb [30] FSDT[31] 

   

2 1.6260 1.6252 1.6252 1.1941 1.1734 5.2017 

4 3.1039 3.1013 3.1013 2.1036 2.0913 9.0312 
10 7.0529 7.0473 7.0473 4.8594 4.8519 13.8694 

20 11.2725 11.2664 11.2664 8.5955 8.5838 15.5295 

30 13.3723 13.6640 13.6640 11.0981 11.0788 15.9155 
40 14.4440 14.4390 14.4390 12.6821 12.6555 16.0577 

50 15.0366 15.0323 15.0323 13.6899 13.6577 16.1264 

60 15.3911 15.3868 15.3868 14.3497 14.3133 16.1612 
70 15.6174 15.6134 15.6134 14.7977 14.7583 16.1845 

80 15.7699 15.7660 15.7660 15.1119 15.0702 16.1991 

90 15.8770 15.8724 15.8724 15.3380 15.2946 16.2077 
100 15.9551 15.9522 15.9522 15.5093 15.4647 16.2175 

a: Model with 12 dofs, b: Model with 9 dofs 

B) Thermal study  

We consider the case of a square sandwich plate, consisting of five layers The skin is made of aluminum 

and plastic reinforced with CFRP carbon fibers. The soul is also made of aluminum. The properties and 

thicknesses of the different layers are given in Table 2. Temperature flow on the upper part of the plate 

and a convection on the lower part. Figure 5 shows the points of the temperatures taken for a comparison. 

between the developed program and the FEM software following the z direction. 

Table 2 : Thermal conduction and layer thickness of the sandwich plate. 

Layer 
Thickness 

[m] 
Materials 

Kxx  

[W/m k] 

Kyy 

[W/m k] 

Kzz 

[W/m k] 

1 0.03 Aluminium 235.0 235.0 235.0 

2 0.05 CFRP [0°,90°]s 26.208 0.96 0.96 

3 0.15 Aluminium 235.0 235.0 235.0 

4 0.05 CFRP [0°,90°]s 26.208 0.96 0.96 

5 0.03 Aluminium 235.0 235.0 235.0 

      

       

 

 

 

 

 

 

Figure 5. Temperatures used for comparison in the vertical direction of the Laminate layer (k+1=NC) 

 

T1 : temperature on the upper surface 

T2 : temperature between layers 1 and 2 

T3 : temperature between layers 2 and k 

 

Tk+1 : temperature on the bottom 

Tk : temperature between layers 2 and k and k+1 

1 

2 

k+1 

k 
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Table 3 shows the comparison of the results obtained by the present method with the results obtained 

by the FEM software, where it uses a cubic element with eight degrees of freedom. Note that the results 

obtained are identical with those of the FEM software. 

In this part we made a comparison between two methods used to solve transient thermal problems. The 

present method PTIM (precise time integration method), the second the method of (finite differences) 

and the ANSYS software in order to validate the program. The thermal properties and geometric 

dimensions of the square plate used in this example are shown in Table 4. 

Table 3. variation of the temperature in a five-layer sandwich plate with with 2

1 800 /q W m K et une 

2

2 40 /hc W m K  and 2 5T C   . 

 

Temperature 
present 
MEF P 

FEM software 

T1 109.05 109.05 

T2 108.95 108.95 

T3 67.28 67.28 

T4 66.77 66.77 

T4 25.1 25.1 

T5 25 25 

 Table 4. Thermal conduction and thickness of the layers of the sandwich plate in the case of a 

transient thermal. 
 

Layer Thickness [m] Materials 

1 0.03 Aluminium 

2 0.05 T300/934 

3 0.15 Aluminium 

4 0.05 T300/934 

5 0.03 Aluminium 

      

Materials Kxx  [W/m k] Kyy[W/m k] Kzz [W/m k] ρ [kg/m3] C [J /kg K] 

T300/934 5.73 5.73 5.73 1460 1300 

Aluminium 6061 167.0 167.0 167.0 2700 896 

 

Figure 6 shows that the plotted curves are totally confounded, which shows the accuracy of the results 

obtained using the PTIM method. 

C) Thermoelastic analysis 

In this example we study the case of a sandwich plate consisting of five symmetrical layers 

[0/90/core/90/0]. The core is aluminum 5052 in the form of honeycomb and CFRP skin (Figure 7). The 

properties of both materials are shown in Table 5. The plate is subjected to a variable thermal flow on 

the upper part, given in table 8.28 and a convection on the lower part. the influence of thermal loading 

on the displacements of the plate are studied. 
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Figure 6. Variation of the temperature as a function of time in a sandwich plate. 

 

 

Figure 7: Sandwich plate, CFRP/Aluminum 5056. 

Table 5. Properties of different materials of the sandwich plate 

Materials 

Mechanical and thermo-mechanical properties 

kxx/kyy/kzz 
(W/m² K)  

ρ(kg/m²)  
C (J/kg 

C°) 

E11/ E22 

(GPa)
 

G12/G13/G23 

(GPa) 
ν 

α (C-1) 

10-6 

Aluminium  

5052 
2.1 48 921 0.41/0.24 0.15 0.3 23.76  

CFRP 
26.21/0.96/

0.96 
1600 1300 105/8.74  4.56 0.327 2.15 

 

Size of the plate        a=1m,     b=1m   

boundary condition  q1 varie de 0 à 2700 W/m² K
 
;     β2 = 600 W/m² K ;       T∞2=15°C  

Initial temperature   Tinit=10°C   

Table 6 shows the variation of heat flux applied to the plate 
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      Figure 8 shows the variation of temperature T1 and T6 of the sandwich plate and Figure 9 shows 

the variation of the temperature gradient. 

Table 6.   heat flux variation as a function of time 

q (W/m² 

K) 
0 337.5 675 1012.5 1350 1687.5 2025 2362.5 2700 

Time [s] 0 0.5 1 1.5 2 2.5 3 3.5 4 à 800 
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Figure 8. Variation of temperatures  T1 and T6  as a function of time.  
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Figure 9. Variation of temperature gradient  ΔT as a function of time.  



 
         Vol 8, Number 1, 2018   
         European Journal of Technic    
EJT 

 

96 

 

0 100 200 300 400 500 600 700 800

-0,008

-0,007

-0,006

-0,005

-0,004

-0,003

-0,002

-0,001

0,000

0,001

0,002

0,003

0,004

d
is

p
la

c
e
m

e
n
t 

 [
m

]

time [s] 

 

Figure 10. Representation of displacements under the effect of thermal loading as a function of time in 

the case of an E-L-L-L sandwich plate (ξ = 1, η = 0.5). 

Figure 10 shows the variation in plate displacement as a function of time with varying heat flux 

loading from 0 to 2700 (W / m² K) in 4 seconds (Table 6). The influence of the temperature gradient is 

noted where the displacements follow the course of the temperature gradient, where the displacements 

decrease and stabilize in the stationary part. 

IV. Conclusion 

A new C1 HSDT p-element with eight degrees of freedom per node has been developed and used 

to find natural frequencies of laminated composite and sandwich thick plates in conjunction with 

Reddy’s HSDT. It is well known that the plate theory is quite attractive but it could not be exploited as 

expected in finite element. This is due to the difficulties associated with C1 inter-element continuity 

discretized into one element and the number of trigonometric shape functions is varied. The p-element 

has been implemented with a very simple and understandable mathematical framework and is easily 

programmed. Monotonic and uniform convergence is found to occur as the number of trigonometric 

shape functions is increased. High accuracy, stable numerical computation, and rapid convergence have 

been observed in the analysis. The solutions of this model are found to be in excellent agreement with 

3D elasticity solutions, analytical HSDT solutions, and the solutions from finite element models based 

on refined theories and Reddy’s HSDT. Based on these observations, the element can be recommended 

for free vibration analysis of composite plate structures with sufficient accuracy. 

Thermal conduction is modeled by the TLT theory, three degrees of freedom per node are 

considered with functions of type C1 and hierarchical trigonometric forms. Thermoelastic analysis is 

solved by the Newmark method. The results obtained using our developed calculation code are validated 

with FEM calculation code, a very good agreement is observed. The influence of thermal loading on 

displacements is studied. 
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