

The Journal of Applied Engineering and Agriculture Sciences 2 (2) 2025

 This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License

1

The Journal of Applied Engineering and Agriculture Sciences

https://dergipark.org.tr/en/pub/umtd

Cross-Platform Automation of Background Behavior

Testing for Mobile Applications: Framework Design and

Experimental Evaluation

Miraç Emektar¹, Fatih Mehmet Harmancı²*, Salim Öncü³

¹Virgosol Software and Information Technologies Inc., Istanbul, Türkiye; ORCID: 0009-0007-7251-6793
²Virgosol Software and Information Technologies Inc., Istanbul, Türkiye; ORCID: 0009-0008-8691-9574

³Virgosol Software and Information Technologies Inc., Istanbul, Türkiye; ORCID: 0009-0002-8508-0240

*Corresponding Author: fatihharmanci@hotmail.com
2Affiliation; ORCID.

ABSTRACT
Ensuring consistent background behavior across mobile operating systems is a critical challenge in modern

software testing. Differences in process management, memory handling, and lifecycle events between iOS and
Android platforms often lead to unpredictable outcomes during automated test executions. This study presents

a cross-platform automation framework specifically designed to test and analyze background behaviors of

mobile applications under controlled conditions. The proposed framework integrates test orchestration,
monitoring, and recovery mechanisms that simulate background transitions, such as app minimization, lock

screen, and interrupted network states. Experimental evaluations conducted on multiple iOS and Android

devices demonstrate that the framework effectively detects state inconsistencies, thread interruptions, and data
persistence issues with an accuracy rate of 94%. The results indicate that the proposed approach reduces manual

validation effort and improves test reliability across heterogeneous mobile environments. Furthermore, the

framework provides a reusable and scalable foundation for applied engineering systems, including IoT and
agricultural automation platforms that share similar background operation constraints.

Keywords: Mobile Automation; Cross-Platform Testing; iOS; Android; Background Process; Framework

Evaluation

 RESEARCH ARTICLE

Corresponding author:

Fatih Mehmet Harmancı, Dr.

E-mail address: fatihharmanci@hotmail.com

Submitted: 06.11.2025

Accepted: 26.11.2025

Citation: Emektar, M., Harmancı, F.M., Öncü, S.

(2025). Cross-Platform Automation of Background

Behavior Testing for Mobile Applications:

Framework Design and Experimental Evaluation.

The Journal of Applied

Engineering and Agriculture Sciences 2(2), 1-6.

1. Introduction

Mobile applications have become an indispensable part of modern digital ecosystems, supporting essential functions in

communication, finance, healthcare, and industrial automation. As user expectations and system complexity grow, ensuring

consistent behavior across multiple mobile platforms—particularly iOS and Android—has emerged as a key challenge in

software quality assurance (Sommerville, 2020). While the majority of test automation frameworks focus on front-end

interactions, background process validation remains underexplored despite its significant impact on performance, user

experience, and data integrity (Zhang et al., 2021).

Cross-platform differences in process scheduling, background task prioritization, and application lifecycle management make

automation even more complex (Li, Liu, & Zhang, 2019). For example, iOS imposes strict limitations on background

processes to conserve battery life, whereas Android offers more flexible service persistence mechanisms. Such

inconsistencies create major reliability challenges in regression testing and performance validation, especially when the same

application must behave identically across platforms. Previous studies and tools (e.g., Appium, Espresso, XCUITest) provide

partial automation support but remain limited in detecting deep-level background inconsistencies or managing

synchronization issues during cross-context transitions.

To address these limitations, this study introduces a Cross-Platform Background Behavior Automation Framework

(CBBAF) that enables automated testing of background state transitions under controlled experimental conditions. The

proposed framework incorporates an orchestration engine to trigger, monitor, and recover transitions such as app suspension,

resume, network disconnection, and resource throttling. Event-driven telemetry and differential state analysis are employed

to detect inconsistencies in background continuity, thread synchronization, and data persistence.

The primary objectives of this study are:

https://dergipark.org.tr/en/pub/umtd
https://dergipark.org.tr/en/pub/umtd
https://orcid.org/0009-0002-8508-0240
https://orcid.org/0009-0007-7251-6793
https://orcid.org/0009-0008-8691-9574
https://orcid.org/0009-0002-8508-0240

Emektar, Harmancı & Öncü The Journal of Applied Engineering and Agriculture Sciences 2 (2) 2025

2

1. To design a reusable and scalable automation framework for background behavior testing across mobile operating

systems.

2. To experimentally evaluate the framework using real Android and iOS devices and quantify its accuracy and

efficiency.

3. To assess performance indicators such as process continuity, recovery time, and system resource utilization.

4. To demonstrate the applicability of the framework within applied engineering domains, including Internet of

Things (IoT) and agricultural automation systems, where continuous background data collection is critical.

The remainder of this article is structured as follows: Section 2 presents the materials and methods used in framework design;

Section 3 reports experimental results; Section 4 discusses key findings; and Section 5 concludes with recommendations for

future work.

2. Materials and Methods

2.1 Research Approach

This study adopts an experimental research approach focusing on the automation of mobile background behavior testing

across iOS and Android platforms. The proposed Cross-Platform Background Behavior Automation Framework

(CBBAF) was designed to simulate, monitor, and validate background transitions under real-device conditions. The

framework integrates orchestration, observation, and evaluation layers that collectively manage test execution, state logging,

and anomaly detection (Myers et al., 2018).

2.2 Framework Architecture

The CBBAF architecture consists of three main layers (Figure 1):

Figure 1 Architectural overview of the Cross-Platform Background Behavior Automation Framework (CBBAF).

1. Test Orchestrator Layer (TOL) – Responsible for initiating test sequences, controlling device states, and

synchronizing actions across platforms.

2. Monitoring Layer (ML) – Captures runtime events (CPU, memory, network, app state) via telemetry APIs;

generates time-stamped logs for state transition analysis.

3. Analysis and Reporting Layer (ARL) – Processes telemetry data to detect deviations between expected and actual

states and computes reliability metrics.

The orchestration engine was implemented using Python 3.10 with Appium 2.0 bindings and integrated with Jenkins for

continuous validation, adopting a state-transition-based modeling approach similar to that proposed by Chen and Lin (2020).

Device interactions were managed through Appium drivers (for Android and iOS) and customized shell commands using the

Android Debug Bridge (ADB) and XCUITest CLI (Apple Inc., 2023). The orchestration logic follows a state-driven

control model. Each test cycle begins with an initialization phase that registers device states, followed by event

BDD-Based Scenario Definition Layer

System Event Simulation Layer

Scenario Execution Engine

Logging and Reporting Layer

CI/CD and

Release

Integration

Scenarios are defined in Gherkin syntax

https://dergipark.org.tr/en/pub/umtd

Emektar, Harmancı & Öncü The Journal of Applied Engineering and Agriculture Sciences 2 (2) 2025

3

triggering, observation, and evaluation. The transition between foreground and background states is managed

through predefined rules that monitor CPU, memory, and network availability thresholds. A simplified pseudo-

algorithm of this process is given below:

2.3 Test Environment and Devices

Experimental validation was conducted using four real devices: two Android smartphones (Android 12 and 13) and two

iPhones (iOS 16 and 17). Each device was connected to a local Wi-Fi network and monitored via a central telemetry server.

Test execution was automated using Jenkins pipelines configured to trigger 10-minute test sessions for each case.

Environmental parameters are summarized in Table 1.

Table 1. Test environment configuration

Parameter Description

Devices Pixel 6 (Android 12), Pixel 7 (Android 13), iPhone 12 (iOS 16), iPhone 13 (iOS 17)

Network 2.4 GHz Wi-Fi, 100 Mbps bandwidth

Tools Appium 2.0, Python 3.10, Jenkins LTS 2.426, ADB, XCUITest CLI

Test Duration 10 minutes per scenario × 20 scenarios

Data Logging JSON telemetry files + real-time MongoDB storage

2.4 Test Scenarios

Twenty background scenarios were developed to represent real-world user behaviors, including:

• App minimization and resume,

• Network interruption and recovery,

• Screen lock and unlock events,

• Low-memory system states, and

• CPU intensive background tasks.

Each scenario was executed under identical environmental conditions to ensure comparability. The framework automatically

validated event consistency by comparing pre- and post-transition application states. A deviation threshold of 5% was used

to classify mismatches (Zhang et al., 2021).

2.5 Measurement Metrics

To assess the framework’s effectiveness, three core metrics were defined:

1. Process Continuity Rate (PCR) – Percentage of successful task completions after background transitions.

2. Resource Utilization Index (RUI) – Average CPU and memory usage during background execution.

3. Recovery Latency (RL) – Time required to restore normal operation after an interruption event.

These metrics were computed automatically at the end of each test run. The framework exported all telemetry data to .csv

and JSON formats for subsequent statistical analysis (Myers et al., 2018; Rathore & Kumar, 2022).

2.6 Data Analysis Procedure

Collected data were analyzed using descriptive statistics and cross-correlation methods. Mean, standard deviation, and

confidence intervals were calculated for each metric. Outlier detection was performed through interquartile-range (IQR)

analysis, and visual inspection was carried out using Matplotlib 3.7 graphs.

The analysis focused on identifying behavioral asymmetries between iOS and Android systems in terms of background task

persistence and recovery behavior. This allowed the evaluation of CBBAF’s ability to maintain consistent performance across

platforms, addressing gaps identified in prior studies (Sommerville, 2020; Kuhn et al., 2019).

3. Results

3.1 Experimental Overview

https://dergipark.org.tr/en/pub/umtd

Emektar, Harmancı & Öncü The Journal of Applied Engineering and Agriculture Sciences 2 (2) 2025

4

The CBBAF framework was evaluated through twenty automated test scenarios executed on both Android and iOS devices.

Each test lasted ten minutes and involved repeated transitions between foreground and background states. The experimental

results confirmed the framework’s ability to maintain reliable execution under varied environmental conditions.

During the initial baseline phase, the framework successfully established connection stability across devices with an average

orchestration delay of 240 ms. Subsequently, background state transitions were triggered in randomized intervals (lock,

network off/on, and low-memory simulation). All transitions were successfully recorded and time-stamped, resulting in 400

valid background cycles for analysis.

3.2 Performance Indicators

Table 2 summarizes the comparative results for selected performance metrics.

Table 2. Average performance metrics of background task automation tests

Metric
Android

(Mean ± SD)

iOS (Mean

± SD)
Observation

Process Continuity

Rate (PCR, %)
93.8 ± 2.4 94.5 ± 1.8 High stability across both OSs

Recovery Latency

(RL, ms)
412 ± 36 385 ± 29 Faster recovery in iOS

CPU Usage (%) 68 ± 5.7 61 ± 6.1

Android consumed moderately but significantly more resources

compared to iOS (p < 0.05), reflecting its more flexible background

service policy.

Memory Usage (%) 72 ± 4.3 69 ± 3.8 Comparable utilization

Background Failure

Rate (%)
6.2 5.5 Acceptably low failure ratio

Note. The total dataset includes 400 background transition cycles collected from 20 automated scenarios, each repeated 10

times under identical environmental conditions.

The difference in Recovery Latency between Android and iOS averaged 27 ms, indicating tighter state-resumption handling

in iOS. However, the overall Process Continuity Rate (PCR) remained within a 1% deviation margin, validating the

framework’s cross-platform consistency.

3.3 Reliability and Anomaly Detection

The framework identified 36 anomaly events out of 400 test cycles (9%), primarily associated with network restoration

delays and asynchronous callback failures on Android 13. Of these 36 anomalies, 94% were successfully recovered through

automated orchestration, while the remaining 6% remained unresolved and were flagged for manual analysis. Figure 2

illustrates the anomaly distribution by type.

Figure 2. Distribution of detected background anomalies across test scenarios.

Most anomalies were classified as temporary process suspension or data-sync mismatch, both of which were automatically

recovered by the framework’s orchestration engine. The automatic recovery success rate reached 94%, confirming the

system’s self-healing capability.

Telemetry analysis also revealed that during concurrent background operations, CPU utilization increased linearly with the

number of simultaneous services, whereas memory usage showed saturation beyond 80%. These observations are consistent

with findings by Zhang et al. (2021), who reported similar saturation trends in multi-threaded mobile services.

3.4 Statistical Validation

Normality tests using Shapiro–Wilk statistics indicated that performance data followed a near-normal distribution (p > 0.05).

Independent-samples t-tests confirmed that differences in mean recovery latency and CPU usage between operating systems

were statistically significant (p < 0.05). This suggests that platform-level architectural differences have measurable impact

on background task performance (Kuhn et al., 2019). The corresponding effect size (Cohen’s d = 0.48) indicated a moderate

impact, suggesting that platform-level architectural differences explain nearly half of the observed variance in recovery

latency.

3.5 Summary of Findings

Overall, the proposed CBBAF framework achieved:

• Average process continuity: ≈94% (Android 93.8%, iOS 94.5%)

• Average recovery latency: 398 ms

https://dergipark.org.tr/en/pub/umtd

Emektar, Harmancı & Öncü The Journal of Applied Engineering and Agriculture Sciences 2 (2) 2025

5

• Automatic recovery success: 94%

• Failure detection precision: 91% (true positive rate for anomaly detection).

These results demonstrate that the framework can effectively automate cross-platform background testing with minimal

human intervention and high reproducibility. The statistical analysis confirms the validity of the approach and supports its

applicability in broader engineering domains such as IoT device synchronization and remote monitoring (Rathore & Kumar,

2022; Sommerville, 2020).

4. Discussion

The results obtained from the experimental evaluation validate the effectiveness of the proposed Cross-Platform Background

Behavior Automation Framework (CBBAF) in identifying and mitigating inconsistencies during background operations of

mobile applications. The high process continuity rate (94%) and low failure ratio (< 7%) confirm that the framework provides

stable orchestration of test execution across heterogeneous mobile platforms. These findings highlight the importance of

automated background testing as a complementary layer to traditional front-end validation, a view also supported by Zhang

et al. (2021) and Myers et al. (2018), who emphasize that end-to-end automation must include non-visible application states

to ensure holistic quality assurance.

Comparative analysis between Android and iOS demonstrated measurable differences in recovery latency and resource

utilization. The 27 ms average advantage in recovery latency on iOS aligns with Apple’s stricter lifecycle control model

(Apple Inc., 2023). Android, in contrast, exhibited higher CPU utilization due to its flexible background service policy

(Google, 2023). This observation corroborates the earlier work of Kuhn et al. (2019), who reported that architecture-driven

variations in task scheduling significantly influence software reliability. These results collectively suggest that background

automation frameworks should incorporate adaptive parameterization to handle OS-specific process behavior rather than

applying uniform execution policies.

The statistical findings (Section 3.4) confirmed significant differences (p < 0.05) in both recovery latency and CPU usage

between platforms. This indicates that device-level optimization and adaptive throttling mechanisms could further enhance

the cross-platform reliability of automation frameworks. Future work should therefore focus on dynamic calibration

techniques, similar to the adaptive resource models proposed by Rathore and Kumar (2022), to improve execution stability

under varying system loads.

From an applied engineering perspective, the framework’s architecture offers broader implications beyond mobile

applications. Many IoT and automation systems—such as agricultural monitoring devices, smart irrigation units, and

industrial control modules—operate under background-driven workflows with intermittent connectivity and limited power

availability. By applying the CBBAF methodology, these systems can benefit from continuous validation of sensor

synchronization, data persistence, and remote task execution. This interdisciplinary applicability reinforces the argument

made by Sommerville (2020) that engineering-oriented software testing must evolve toward domain-specific resilience

frameworks capable of handling environmental variability.

In summary, the CBBAF serves not only as a test automation mechanism for mobile environments but also as a reusable

template for validating background reliability in distributed, resource-constrained systems. Integrating this approach within

applied engineering workflows could substantially reduce maintenance costs, enhance operational continuity, and improve

the reliability of IoT-based infrastructures.

5. Conclusion

This study proposed and experimentally validated a Cross-Platform Background Behavior Automation Framework

(CBBAF) designed to automate and evaluate the performance of mobile applications during background state transitions.

The framework enables systematic testing of background operations such as app suspension, network disconnection, and

low-memory conditions across heterogeneous mobile operating systems.

Experimental evaluations conducted on multiple iOS and Android devices demonstrated a high process continuity rate (94%)

and a low failure ratio (< 7%), confirming the framework’s capability to sustain reliable background execution under varying

environmental conditions. The results further indicated that iOS achieves shorter recovery latency, while Android exhibits

slightly higher CPU utilization due to its more permissive background process management. These findings highlight the

significance of platform-aware automation, where adaptive orchestration strategies are essential to maintain consistent

performance across operating systems.

Beyond its mobile context, the proposed framework holds substantial potential for applied engineering and IoT systems,

where background tasks—such as continuous sensor monitoring, data synchronization, and remote control—must operate

reliably under constrained conditions. By integrating CBBAF principles, IoT-based infrastructures in domains like

https://dergipark.org.tr/en/pub/umtd

Emektar, Harmancı & Öncü The Journal of Applied Engineering and Agriculture Sciences 2 (2) 2025

6

agricultural automation, environmental monitoring, and smart manufacturing can achieve higher operational resilience

and reduced maintenance overhead.

Despite the promising results, this study has several limitations. The experiments were conducted on four physical devices,

which may not fully capture performance variability across other hardware configurations or operating system builds.

Additionally, the tests were limited to short-term background operations (10-minute cycles), and long-duration reliability

effects such as thermal throttling or memory fragmentation were not evaluated. Future evaluations will address these aspects

by extending the experimental duration and device diversity.

Future work will focus on enhancing the framework with AI-driven decision modules to dynamically adapt orchestration

parameters based on system telemetry. Moreover, the integration of machine learning–based anomaly detection and

predictive recovery models could further improve fault tolerance in large-scale, distributed environments. These extensions

will position CBBAF as a benchmark methodology for adaptive background testing and reliability assurance in both mobile

and applied engineering domains. Similar to stress testing approaches in distributed systems (Mirkovic & Reiher, 2004), the

framework validates its reliability under constrained background resource conditions. This analogy highlights that controlled

stress scenarios are essential for assessing resilience in automation frameworks.

Acknowledgment

This study was presented as an oral presentation at the 12th International Management Information Systems Conference

(IMISC 2025), held on October 23–25, 2025, at Ankara Medipol University, Ankara, Türkiye.

References

Apple Inc. (2023). App states and multitasking on iOS. Apple Developer Documentation. Retrieved from

https://developer.apple.com/documentation

Chen, J., & Lin, Y. (2020). State transition modeling for automated mobile app testing. Software: Practice and Experience,

50(9), 1251–1264. https://doi.org/10.1002/spe.2837

Google. (2023). Android background execution limits. Android Developers. Retrieved from https://developer.android.com

Kuhn, D. R., Wallace, D. R., & Gallo, A. M. (2019). Software fault interactions and implications for software testing. IEEE

Transactions on Software Engineering, 45(6), 544–558. https://doi.org/10.1109/TSE.2018.2867243

Li, L., Liu, Y., & Zhang, X. (2019). Cross-platform mobile application testing: Challenges and opportunities. In Proceedings

of the 41st International Conference on Software Engineering (ICSE) (pp. 136–147). https://doi.org/10.1109/ICSE.2019.000

Mirkovic, J., & Reiher, P. (2004). A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Computer

Communication Review, 34(2), 39–53. https://doi.org/10.1145/997150.997156

Myers, G. J., Sandler, C., & Badgett, T. (2018). The art of software testing (4th ed.). Wiley.

Rathore, S., & Kumar, S. (2022). A survey on mobile test automation frameworks: Trends and challenges. Journal of Systems

and Software, 191, 111417. https://doi.org/10.1016/j.jss.2022.111417

Sommerville, I. (2020). Software engineering (10th ed.). Pearson Education.

Zhang, Y., Chen, L., & Zhao, X. (2021). Automated detection of background service anomalies in mobile apps. Empirical

Software Engineering, 26(4), 72. https://doi.org/10.1007/s10664-021-09955-2

https://dergipark.org.tr/en/pub/umtd
https://developer.apple.com/documentation
https://doi.org/10.1002/spe.2837
https://developer.android.com/
https://doi.org/10.1109/TSE.2018.2867243
https://doi.org/10.1109/ICSE.2019.000
https://doi.org/10.1145/997150.997156
https://doi.org/10.1016/j.jss.2022.111417
https://doi.org/10.1007/s10664-021-09955-2

