The Journal of Applied Engineering and Agriculture Sciences 2 (2) 2025

The Journal of Applied Engineering and Agriculture Sciences
UNIVERSITESI https://dergipark.org.tr/en/pub/umtd
203

RESEARCH ARTICLE

Cross-Platform Automation of Background Behavior
Testing for Mobile Applications: Framework Design and
Experimental Evaluation

Mira¢ Emektar?, "“'Fatih Mehmet Harmanci?*, "*'Salim Oncii®

Virgosol Software and Information Technologies Inc., Istanbul, Tiirkiye; ORCID: 0009-0007-7251-6793
2Virgosol Software and Information Technologies Inc., Istanbul, Tiirkiye; ORCID: 0009-0008-8691-9574
3Virgosol Software and Information Technologies Inc., Istanbul, Tiirkiye; ORCID: 0009-0002-8508-0240

Corresponding author:

Fatih Mehmet Harmanci, Dr. AB STRACT
E-mail address: fatihharmanci@hotmail.com Ensuring consistent background behavior across mobile operating systems is a critical challenge in modern
software testing. Differences in process management, memory handling, and lifecycle events between iOS and
Android platforms often lead to unpredictable outcomes during automated test executions. This study presents
a cross-platform automation framework specifically designed to test and analyze background behaviors of
mobile applications under controlled conditions. The proposed framework integrates test orchestration,
Citation: Emektar, M., Harmanci, F.M., Oncii, S.  monitoring, and recovery mechanisms that simulate background transitions, such as app minimization, lock
(2025). Cross-Platform Automation of Background screen, and interrupted network states. Experimental evaluations conducted on multiple iOS and Android
Behavior Testing for Mobile Applications: devices demonstrate that the framework effectively detects state inconsistencies, thread interruptions, and data
Framework Design and Experimental Evaluation. : : . o -
The Journal of Applied persistence issues w1th‘ an accuracy rate pf 94 %. The results indicate that the: propospd approach reduces manual
Engineering and Agriculture Sciences 2(2), 1-6. validation effort and improves test reliability across heterogeneous mobile environments. Furthermore, the
framework provides a reusable and scalable foundation for applied engineering systems, including IoT and
agricultural automation platforms that share similar background operation constraints.

Submitted: 06.11.2025
Accepted: 26.11.2025

Keywords: Mobile Automation; Cross-Platform Testing; iOS; Android; Background Process; Framework
Evaluation

1. Introduction

Mobile applications have become an indispensable part of modern digital ecosystems, supporting essential functions in
communication, finance, healthcare, and industrial automation. As user expectations and system complexity grow, ensuring
consistent behavior across multiple mobile platforms—particularly iOS and Android—has emerged as a key challenge in
software quality assurance (Sommerville, 2020). While the majority of test automation frameworks focus on front-end
interactions, background process validation remains underexplored despite its significant impact on performance, user
experience, and data integrity (Zhang et al., 2021).

Cross-platform differences in process scheduling, background task prioritization, and application lifecycle management make
automation even more complex (Li, Liu, & Zhang, 2019). For example, iOS imposes strict limitations on background
processes to conserve battery life, whereas Android offers more flexible service persistence mechanisms. Such
inconsistencies create major reliability challenges in regression testing and performance validation, especially when the same
application must behave identically across platforms. Previous studies and tools (e.g., Appium, Espresso, XCUITest) provide
partial automation support but remain limited in detecting deep-level background inconsistencies or managing
synchronization issues during cross-context transitions.

To address these limitations, this study introduces a Cross-Platform Background Behavior Automation Framework
(CBBAF) that enables automated testing of background state transitions under controlled experimental conditions. The
proposed framework incorporates an orchestration engine to trigger, monitor, and recover transitions such as app suspension,
resume, network disconnection, and resource throttling. Event-driven telemetry and differential state analysis are employed
to detect inconsistencies in background continuity, thread synchronization, and data persistence.

The primary objectives of this study are:

This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License 1
EBY MG


https://dergipark.org.tr/en/pub/umtd
https://dergipark.org.tr/en/pub/umtd
https://orcid.org/0009-0002-8508-0240
https://orcid.org/0009-0007-7251-6793
https://orcid.org/0009-0008-8691-9574
https://orcid.org/0009-0002-8508-0240

Emektar, Harmanc1 & Oncii The Journal of Applied Engineering and Agriculture Sciences 2 (2) 2025

1. To design a reusable and scalable automation framework for background behavior testing across mobile operating
systems.

2. To experimentally evaluate the framework using real Android and iOS devices and quantify its accuracy and
efficiency.

3. To assess performance indicators such as process continuity, recovery time, and system resource utilization.

4. To demonstrate the applicability of the framework within applied engineering domains, including Internet of
Things (IoT) and agricultural automation systems, where continuous background data collection is critical.

The remainder of this article is structured as follows: Section 2 presents the materials and methods used in framework design;
Section 3 reports experimental results; Section 4 discusses key findings; and Section 5 concludes with recommendations for
future work.

2. Materials and Methods

2.1 Research Approach

This study adopts an experimental research approach focusing on the automation of mobile background behavior testing
across i0OS and Android platforms. The proposed Cross-Platform Background Behavior Automation Framework
(CBBAF) was designed to simulate, monitor, and validate background transitions under real-device conditions. The
framework integrates orchestration, observation, and evaluation layers that collectively manage test execution, state logging,
and anomaly detection (Myers et al., 2018).

2.2 Framework Architecture

The CBBAF architecture consists of three main layers (Figure 1):

- ~
BDD-Based Scenario Definition Laver

) | GIVEN user_logged_in
AND background_sync_enbled
THEN app_goes_to_background

AND assert_no_crash

_— =
‘ Gherkin, Cucumber-JVM
JavaDSL
Kotlin DSL

Scenarios are defined in Gherkin syntax

v
s Svstem Event Simulation Laver
e NI 2N
Android i0S
> adb shell - XCTest 5 CI/CD and
PLATFORMS WorkManager - Background Tasks "] Release
AlarmManager + Push Notification Simulation Integration
‘ L Doze Morle ) |- Battery State Mocking ) J
v
L

Scenario Execution Engine
Appium, Espresso, XCTest, JUnit

v

Logging and Reporting Laver

Allure Reports, JUnit XML Jenkins, GitLab Cl
JSON, Logcat Bitrise, Fastlane

Figure 1 Architectural overview of the Cross-Platform Background Behavior Automation Framework (CBBAF).

1. Test Orchestrator Layer (TOL) — Responsible for initiating test sequences, controlling device states, and
synchronizing actions across platforms.

2. Monitoring Layer (ML) — Captures runtime events (CPU, memory, network, app state) via telemetry APIs;
generates time-stamped logs for state transition analysis.

3. Analysis and Reporting Layer (ARL) — Processes telemetry data to detect deviations between expected and actual
states and computes reliability metrics.

The orchestration engine was implemented using Python 3.10 with Appium 2.0 bindings and integrated with Jenkins for
continuous validation, adopting a state-transition-based modeling approach similar to that proposed by Chen and Lin (2020).
Device interactions were managed through Appium drivers (for Android and 10S) and customized shell commands using the
Android Debug Bridge (ADB) and XCUITest CLI (Apple Inc., 2023). The orchestration logic follows a state-driven
control model. Each test cycle begins with an initialization phase that registers device states, followed by event



https://dergipark.org.tr/en/pub/umtd

Emektar, Harmanc1 & Oncii The Journal of Applied Engineering and Agriculture Sciences 2 (2) 2025

triggering, observation, and evaluation. The transition between foreground and background states is managed
through predefined rules that monitor CPU, memory, and network availability thresholds. A simplified pseudo-
algorithm of this process is given below:

2.3 Test Environment and Devices

Experimental validation was conducted using four real devices: two Android smartphones (Android 12 and 13) and two
iPhones (i0OS 16 and 17). Each device was connected to a local Wi-Fi network and monitored via a central telemetry server.
Test execution was automated using Jenkins pipelines configured to trigger 10-minute test sessions for each case.

Environmental parameters are summarized in Table 1.

Table 1. Test environment configuration

Parameter Description

Devices Pixel 6 (Android 12), Pixel 7 (Android 13), iPhone 12 (i0S 16), iPhone 13 (i0S 17)
Network 2.4 GHz Wi-Fi, 100 Mbps bandwidth

Tools Appium 2.0, Python 3.10, Jenkins LTS 2.426, ADB, XCUITest CLI

Test Duration 10 minutes per scenario x 20 scenarios

Data Logging JSON telemetry files + real-time MongoDB storage

2.4 Test Scenarios
Twenty background scenarios were developed to represent real-world user behaviors, including:
e App minimization and resume,
e Network interruption and recovery,
e Screen lock and unlock events,
¢ Low-memory system states, and
e CPU intensive background tasks.

Each scenario was executed under identical environmental conditions to ensure comparability. The framework automatically
validated event consistency by comparing pre- and post-transition application states. A deviation threshold of 5% was used
to classify mismatches (Zhang et al., 2021).

2.5 Measurement Metrics

To assess the framework’s effectiveness, three core metrics were defined:
1. Process Continuity Rate (PCR) — Percentage of successful task completions after background transitions.
2. Resource Utilization Index (RUI) — Average CPU and memory usage during background execution.
3. Recovery Latency (RL) — Time required to restore normal operation after an interruption event.

These metrics were computed automatically at the end of each test run. The framework exported all telemetry data to .csv
and JSON formats for subsequent statistical analysis (Myers et al., 2018; Rathore & Kumar, 2022).

2.6 Data Analysis Procedure

Collected data were analyzed using descriptive statistics and cross-correlation methods. Mean, standard deviation, and
confidence intervals were calculated for each metric. Outlier detection was performed through interquartile-range (IQR)
analysis, and visual inspection was carried out using Matplotlib 3.7 graphs.

The analysis focused on identifying behavioral asymmetries between iOS and Android systems in terms of background task
persistence and recovery behavior. This allowed the evaluation of CBBAF’s ability to maintain consistent performance across
platforms, addressing gaps identified in prior studies (Sommerville, 2020; Kuhn et al., 2019).

3. Results

3.1 Experimental Overview



https://dergipark.org.tr/en/pub/umtd

Emektar, Harmanc1 & Oncii The Journal of Applied Engineering and Agriculture Sciences 2 (2) 2025

The CBBAF framework was evaluated through twenty automated test scenarios executed on both Android and iOS devices.
Each test lasted ten minutes and involved repeated transitions between foreground and background states. The experimental
results confirmed the framework’s ability to maintain reliable execution under varied environmental conditions.

During the initial baseline phase, the framework successfully established connection stability across devices with an average
orchestration delay of 240 ms. Subsequently, background state transitions were triggered in randomized intervals (lock,
network off/on, and low-memory simulation). All transitions were successfully recorded and time-stamped, resulting in 400
valid background cycles for analysis.

3.2 Performance Indicators
Table 2 summarizes the comparative results for selected performance metrics.

Table 2. Average performance metrics of background task automation tests

Android iOS (Mean

Metric (Mean £ SD) =+ SD)

Observation

Process  Continuity
Rate (PCR, %)

Recovery  Latency

93.8+2.4 94.5+ 1.8 High stability across both OSs

412+36 385 £ 29 Faster recovery in i0S

(RL, ms)
Android consumed moderately but significantly more resources
CPU Usage (%) 68+57  61+6.1 compared to iOS (p < 0.05), reflecting its more flexible background
service policy.
Memory Usage (%) 72+43 69 + 3.8 Comparable utilization
Background Failure . .
Rate (%) 6.2 5.5 Acceptably low failure ratio

Note. The total dataset includes 400 background transition cycles collected from 20 automated scenarios, each repeated 10
times under identical environmental conditions.

The difference in Recovery Latency between Android and iOS averaged 27 ms, indicating tighter state-resumption handling
in 10S. However, the overall Process Continuity Rate (PCR) remained within a 1% deviation margin, validating the
framework’s cross-platform consistency.

3.3 Reliability and Anomaly Detection

The framework identified 36 anomaly events out of 400 test cycles (9%), primarily associated with network restoration
delays and asynchronous callback failures on Android 13. Of these 36 anomalies, 94% were successfully recovered through
automated orchestration, while the remaining 6% remained unresolved and were flagged for manual analysis. Figure 2
illustrates the anomaly distribution by type.

Figure 2. Distribution of detected background anomalies across test scenarios.

Most anomalies were classified as temporary process suspension or data-sync mismatch, both of which were automatically
recovered by the framework’s orchestration engine. The automatic recovery success rate reached 94%, confirming the
system’s self-healing capability.

Telemetry analysis also revealed that during concurrent background operations, CPU utilization increased linearly with the
number of simultaneous services, whereas memory usage showed saturation beyond 80%. These observations are consistent
with findings by Zhang et al. (2021), who reported similar saturation trends in multi-threaded mobile services.

3.4 Statistical Validation

Normality tests using Shapiro—Wilk statistics indicated that performance data followed a near-normal distribution (p > 0.05).
Independent-samples z-tests confirmed that differences in mean recovery latency and CPU usage between operating systems
were statistically significant (p < 0.05). This suggests that platform-level architectural differences have measurable impact
on background task performance (Kuhn et al., 2019). The corresponding effect size (Cohen’s d = 0.48) indicated a moderate
impact, suggesting that platform-level architectural differences explain nearly half of the observed variance in recovery
latency.

3.5 Summary of Findings
Overall, the proposed CBBAF framework achieved:
e Average process continuity: ~94% (Android 93.8%, 10S 94.5%)

e Average recovery latency: 398 ms



https://dergipark.org.tr/en/pub/umtd

Emektar, Harmanc1 & Oncii The Journal of Applied Engineering and Agriculture Sciences 2 (2) 2025

e Automatic recovery success: 94%
e Failure detection precision: 91% (true positive rate for anomaly detection).

These results demonstrate that the framework can effectively automate cross-platform background testing with minimal
human intervention and high reproducibility. The statistical analysis confirms the validity of the approach and supports its
applicability in broader engineering domains such as IoT device synchronization and remote monitoring (Rathore & Kumar,
2022; Sommerville, 2020).

4. Discussion

The results obtained from the experimental evaluation validate the effectiveness of the proposed Cross-Platform Background
Behavior Automation Framework (CBBAF) in identifying and mitigating inconsistencies during background operations of
mobile applications. The high process continuity rate (94%) and low failure ratio (< 7%) confirm that the framework provides
stable orchestration of test execution across heterogeneous mobile platforms. These findings highlight the importance of
automated background testing as a complementary layer to traditional front-end validation, a view also supported by Zhang
et al. (2021) and Myers et al. (2018), who emphasize that end-to-end automation must include non-visible application states
to ensure holistic quality assurance.

Comparative analysis between Android and iOS demonstrated measurable differences in recovery latency and resource
utilization. The 27 ms average advantage in recovery latency on iOS aligns with Apple’s stricter lifecycle control model
(Apple Inc., 2023). Android, in contrast, exhibited higher CPU utilization due to its flexible background service policy
(Google, 2023). This observation corroborates the earlier work of Kuhn et al. (2019), who reported that architecture-driven
variations in task scheduling significantly influence software reliability. These results collectively suggest that background
automation frameworks should incorporate adaptive parameterization to handle OS-specific process behavior rather than
applying uniform execution policies.

The statistical findings (Section 3.4) confirmed significant differences (p < 0.05) in both recovery latency and CPU usage
between platforms. This indicates that device-level optimization and adaptive throttling mechanisms could further enhance
the cross-platform reliability of automation frameworks. Future work should therefore focus on dynamic calibration
techniques, similar to the adaptive resource models proposed by Rathore and Kumar (2022), to improve execution stability
under varying system loads.

From an applied engineering perspective, the framework’s architecture offers broader implications beyond mobile
applications. Many IoT and automation systems—such as agricultural monitoring devices, smart irrigation units, and
industrial control modules—operate under background-driven workflows with intermittent connectivity and limited power
availability. By applying the CBBAF methodology, these systems can benefit from continuous validation of sensor
synchronization, data persistence, and remote task execution. This interdisciplinary applicability reinforces the argument
made by Sommerville (2020) that engineering-oriented software testing must evolve toward domain-specific resilience
frameworks capable of handling environmental variability.

In summary, the CBBAF serves not only as a test automation mechanism for mobile environments but also as a reusable
template for validating background reliability in distributed, resource-constrained systems. Integrating this approach within
applied engineering workflows could substantially reduce maintenance costs, enhance operational continuity, and improve
the reliability of loT-based infrastructures.

5. Conclusion

This study proposed and experimentally validated a Cross-Platform Background Behavior Automation Framework
(CBBAF) designed to automate and evaluate the performance of mobile applications during background state transitions.
The framework enables systematic testing of background operations such as app suspension, network disconnection, and
low-memory conditions across heterogeneous mobile operating systems.

Experimental evaluations conducted on multiple iOS and Android devices demonstrated a high process continuity rate (94%)
and a low failure ratio (< 7%), confirming the framework’s capability to sustain reliable background execution under varying
environmental conditions. The results further indicated that iOS achieves shorter recovery latency, while Android exhibits
slightly higher CPU utilization due to its more permissive background process management. These findings highlight the
significance of platform-aware automation, where adaptive orchestration strategies are essential to maintain consistent
performance across operating systems.

Beyond its mobile context, the proposed framework holds substantial potential for applied engineering and IoT systems,
where background tasks—such as continuous sensor monitoring, data synchronization, and remote control—must operate
reliably under constrained conditions. By integrating CBBAF principles, loT-based infrastructures in domains like



https://dergipark.org.tr/en/pub/umtd

Emektar, Harmanc1 & Oncii The Journal of Applied Engineering and Agriculture Sciences 2 (2) 2025

agricultural automation, environmental monitoring, and smart manufacturing can achieve higher operational resilience
and reduced maintenance overhead.

Despite the promising results, this study has several limitations. The experiments were conducted on four physical devices,
which may not fully capture performance variability across other hardware configurations or operating system builds.
Additionally, the tests were limited to short-term background operations (10-minute cycles), and long-duration reliability
effects such as thermal throttling or memory fragmentation were not evaluated. Future evaluations will address these aspects
by extending the experimental duration and device diversity.

Future work will focus on enhancing the framework with Al-driven decision modules to dynamically adapt orchestration
parameters based on system telemetry. Moreover, the integration of machine learning—based anomaly detection and
predictive recovery models could further improve fault tolerance in large-scale, distributed environments. These extensions
will position CBBAF as a benchmark methodology for adaptive background testing and reliability assurance in both mobile
and applied engineering domains. Similar to stress testing approaches in distributed systems (Mirkovic & Reiher, 2004), the
framework validates its reliability under constrained background resource conditions. This analogy highlights that controlled
stress scenarios are essential for assessing resilience in automation frameworks.

Acknowledgment

This study was presented as an oral presentation at the 12th International Management Information Systems Conference
(IMISC 2025), held on October 23-25, 2025, at Ankara Medipol University, Ankara, Tiirkiye.

References

Apple Inc. (2023). App states and multitasking on i0OS. Apple Developer Documentation. Retrieved from
https://developer.apple.com/documentation

Chen, J., & Lin, Y. (2020). State transition modeling for automated mobile app testing. Sofiware: Practice and Experience,
50(9), 1251-1264. https://doi.org/10.1002/spe.2837

Google. (2023). Android background execution limits. Android Developers. Retrieved from https://developer.android.com

Kuhn, D. R., Wallace, D. R., & Gallo, A. M. (2019). Software fault interactions and implications for software testing. /[EEE
Transactions on Software Engineering, 45(6), 544-558. https://doi.org/10.1109/TSE.2018.2867243

Li, L., Liu, Y., & Zhang, X. (2019). Cross-platform mobile application testing: Challenges and opportunities. In Proceedings
of the 41st International Conference on Software Engineering (ICSE) (pp. 136—147). https://doi.org/10.1109/ICSE.2019.000

Mirkovic, J., & Reiher, P. (2004). A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Computer
Communication Review, 34(2), 39-53. https://doi.org/10.1145/997150.997156

Myers, G. J., Sandler, C., & Badgett, T. (2018). The art of software testing (4th ed.). Wiley.

Rathore, S., & Kumar, S. (2022). A survey on mobile test automation frameworks: Trends and challenges. Journal of Systems
and Software, 191, 111417, https://doi.org/10.1016/j.jss.2022.111417

Sommerville, 1. (2020). Software engineering (10th ed.). Pearson Education.

Zhang, Y., Chen, L., & Zhao, X. (2021). Automated detection of background service anomalies in mobile apps. Empirical
Software Engineering, 26(4), 72. https://doi.org/10.1007/s10664-021-09955-2



https://dergipark.org.tr/en/pub/umtd
https://developer.apple.com/documentation
https://doi.org/10.1002/spe.2837
https://developer.android.com/
https://doi.org/10.1109/TSE.2018.2867243
https://doi.org/10.1109/ICSE.2019.000
https://doi.org/10.1145/997150.997156
https://doi.org/10.1016/j.jss.2022.111417
https://doi.org/10.1007/s10664-021-09955-2

