

Burden of Nosocomial and Community-Acquired Rotavirus Gastroenteritis in Children

Burcu Ceylan Cura Yayla ^{ID}¹, Tuğba Bedir Demirdağ ^{ID}², Cemalettin Güneş ^{ID}², Hasan Tezer ^{ID}²,
Gülendam Bozdayı ^{ID}³, Anıl Tapısız ^{ID}²

¹ University of Health Sciences, Ankara Training and Research Hospital, Ankara, Türkiye

² Division of Pediatric Infectious Diseases, Faculty of Medicine, Gazi University, Ankara, Türkiye

³ Department of Microbiology, Faculty of Medicine, Gazi University, Ankara, Türkiye

Received: 21.08.2025; Revised: 20.10.2025; Accepted: 23.10.2025

Abstract

Background: This study aimed to evaluate the demographic and clinical characteristics, seasonal distribution, vaccination status, and complications of rotavirus gastroenteritis (RVGE) in children, as well as the frequency and clinical features of nosocomial RVGE.

Methods: This retrospective study included pediatric patients aged 1 month to 18 years who were diagnosed with RVGE at a tertiary university pediatric hospital in Türkiye over a five-year period. The diagnosis of RVGE was based on the detection of rotavirus antigen in stool samples. Data on demographics, hospitalization, nosocomial status, complications, seasonal distribution, and vaccination status were obtained from hospital records, and vaccination status was confirmed via caregiver interviews. Nosocomial RVGE was defined as symptom onset ≥ 48 hours after admission or within 72 hours of discharge.

Results: A total of 391 children were diagnosed with RVGE; 227 (58.1%) were outpatients and 164 (41.9%) were hospitalized. Nosocomial infection occurred in 60 (15.3%) of all RVGE cases, corresponding to 36.6% of hospitalized RVGE cases. The median age was 11 months (1–52) for outpatients, 10 months (1–61) for inpatients, and 5 months (1–40) for nosocomial cases. RVGE was most frequently observed in winter (36.6%). Complications occurred in 123 (31.5%) patients, the most common was dehydration, followed by bacteremia, pneumonia, seizures, and elevated liver enzymes. Only 8 children (2%) were vaccinated against rotavirus.

Conclusion: Rotavirus remains a significant cause of gastroenteritis and hospitalization in children, particularly among the unvaccinated. The high rate of nosocomial transmission highlights the need for strengthened infection control practices and consideration of routine rotavirus vaccination in national immunization programs.

Keywords: Rotavirus, gastroenteritis, children, vaccination, nosocomial infection.

DOI: 10.5798/dicletip.1840909

Correspondence / Yazışma Adresi: Burcu Ceylan Cura Yayla, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Türkiye e-mail: dr.bcc.83@gmail.com

Çocuklarda Nozokomiyal ve Toplum Kökenli Rotavirüs Gastroenteritinin Yükü

Öz

Giriş: Bu çalışmada, çocuklarda rotavirüs gastroenteritinin (RVGE) demografik ve klinik özellikleri, mevsimsel dağılımı, aşılanma durumu ve komplikasyonları ile hastane kökenli RVGE sıklığı ve klinik özelliklerinin değerlendirilmesi amaçlandı.

Yöntemler: Bu retrospektif çalışmaya, beş yıllık bir süre boyunca Türkiye'deki üçüncü basamak bir üniversite çocuk hastanesinde RVGE tanısı alan, 1 ay ile 18 yaş aras pediatrik hastalar dâhil edildi. RVGE tanısı, dişki örneklerinde rotavirüs antijeninin saptanmasına dayandırıldı. Demografik veriler, hastaneye yatis durumu, nozokomiyal durum, komplikasyonlar, mevsimsel dağılım ve aşılama durumu ile ilgili veriler hastane kayıtlarından elde edildi ve aşılama durumu, bakım verenlerle yapılan görüşmeler yoluyla doğrulandı. Nosokomiyal RVGE, semptomların yataşan sonraki ≥ 48 saat içinde veya taburcu olduktan sonraki 72 saat içinde başlaması olarak tanımlandı.

Bulgular: Toplam 391 çocukta RVGE saptandı; bunların 227'si (%58,1) ayaktan, 164'ü (%41,9) yatarak tedavi edildi. Tüm RVGE olgularının 60'ında (%15,3) nozokomiyal enfeksiyon vardı; bu, yatan RVGE olgularının %36,6'sına karşılık gelmektedir. Ortanca yaşı, ayaktan hastalarda 11 ay (1-52), yatanlarda 10 ay (1-61) ve nozokomiyal olgularda 5 ay (1-40) idi. En sık kiş mevsiminde (%36,6) görüldü. Toplam 123 hastada (%31,5) komplikasyon gelişti; en yaygın komplikasyon dehidratasyondu, bunu bakteriyemi, pnömoni, nöbet ve karaciğer enzim yükseklüğü izledi. Sadece 8 çocuk (%2) rotavirüs aşıydı.

Sonuç: Rotavirüs, özellikle aşısız çocuklarda, gastroenterit ve hastaneye yatislarının önemli bir nedenidir. Nozokomiyal bulaşın yüksek oranı, enfeksiyon kontrol önlemlerinin güçlendirilmesi ve rotavirüs aşısının ulusal bağışıklama programına dahil edilmesinin önemini vurgulamaktadır.

Anahtar kelimeler: Rotavirüs, gastroenterit, çocuk, aşılama, nozokomiyal enfeksiyon.

INTRODUCTION

Rotaviruses are the most common cause of acute gastroenteritis in children worldwide. Rotavirus is responsible for approximately 40% of diarrhea-related hospitalizations in children under five years of age, with an estimated half a million deaths attributable to rotavirus gastroenteritis (RVGE) annually¹. Although the burden of RVGE has significantly decreased following the introduction of rotavirus vaccines, before their implementation the virus was the leading cause of severe acute gastroenteritis in infants and young children worldwide, accounting for an estimated 440.000 deaths, 2 million hospitalizations, and 25 million outpatient visits annually among those under five years of age²⁻⁴. More recent global estimates indicate that by 2019, rotavirus was responsible for approximately 235.331 deaths in under-5 children and ~1.76 million hospitalizations globally in this age group, illustrating the decline in disease burden following vaccine introduction^{5,6}. Although RVGE is usually self-limited, it can result in severe dehydration and

serious complications requiring hospitalization. Vaccination remains the most effective strategy to reduce the associated morbidity and mortality¹.

The implementation of rotavirus vaccines in over 120 countries has substantially reduced disease burden⁷; however, the vaccine is not yet included in Türkiye's national immunization program, contributing to the continued impact of RVGE on childhood morbidity and hospitalizations⁸. Nosocomial RVGE is of particular concern, especially in pediatric wards where the virus can spread rapidly via contaminated hands, surfaces, and fomites. These infections prolong hospital stays, increase costs, and can complicate the clinical course of already vulnerable patients^{9,10}.

The aim of this study is to evaluate the clinical and epidemiological characteristics of pediatric RVGE cases diagnosed at a tertiary care center with a focus on vaccination status and the prevalence of nosocomial transmission.

METHODS

This was a retrospective observational study conducted at a tertiary care pediatric hospital in Türkiye over a five-year period. Children aged 1 month to 18 years who were diagnosed with acute gastroenteritis and tested positive for rotavirus antigen in stool samples were included. Stool samples were tested for rotavirus antigen using a commercial enzyme-linked immunosorbent assay (ELISA) kit, according to the manufacturer's instructions. Demographic and clinical data were collected from hospital records, including age, sex, hospitalization status (inpatient or outpatient), seasonal distribution, presence of complications, vaccination status, and whether the infection was classified as nosocomial.

Exclusion criteria included patients with incomplete or missing medical records, those with co-infections detected in stool samples (e.g., bacterial or parasitic pathogens), patients transferred from other hospitals with ongoing diarrhea at the time of admission.

Patients were categorized as having community-acquired or nosocomial rotavirus infection based on the timing of symptom onset in relation to hospitalization. Nosocomial RVGE was defined as diarrhea beginning at least 48 hours after hospitalization or within 72 hours of discharge, with stool positive for rotavirus antigen. Community-acquired rotavirus gastroenteritis (CA-RVGE) was defined as diarrhea present at the time of admission or beginning within first 48 hours of hospitalization¹¹. All outpatients were classified as CA-RVGE cases, except for those who presented with symptoms within 72 hours after discharge who were classified as nosocomial cases. Vaccination status was obtained through hospital records and verified via telephone interviews with caregivers. Patients were classified as either "vaccinated" or "unvaccinated".

The patient groups with community-acquired and nosocomial rotavirus infection were compared in terms of age, gender, seasonal distribution, vaccination status, complication rates, hospitalization status and length of hospital stay. Similarly, patients with and without complications were compared using the same parameters, as well as in terms of the presence or absence of nosocomial infection, to evaluate their association with adverse outcomes.

Statistical Analyses

Statistical analysis was performed using SPSS version 23. Continuous variables were expressed as means \pm standard deviations or medians (minimum–maximum), depending on the results of normality testing. Normality was assessed for all parameters using the Kolmogorov-Smirnov test. Since a normal distribution was observed, continuous variables (e.g., age, length of hospital stay) were compared using the Student's t-test. Categorical variables (gender, seasonal distribution, vaccination status, complication rates) were expressed as frequencies and percentages and compared using the chi-square or Fisher's exact test, as appropriate. A p-value <0.05 was considered statistically significant.

RESULTS

A total of 391 children were diagnosed with RVGE during the study period. Of these, 220 (56.3%) were males and 171 (43.7%) females. The median age was 10 months (1–61 months). Overall, 227 patients (58.1%) were treated as outpatients. There were 164 (41.9%) hospitalized patients with rotavirus gastroenteritis. Among all RVGE cases, 60 (15.3%) were nosocomial, corresponding to 36.6% of hospitalized RVGE cases, while 331 (84.7%) had community-acquired infection. Seasonal distribution revealed that cases were most frequently diagnosed in winter (36.6%), followed by spring (26.3%), autumn (22.3%),

and summer (14.8%). Only 8 patients (2%) had received rotavirus vaccination, while 383 (98%) were unvaccinated. Complications occurred in 122 children (31.2%), most commonly mild (14.3%) and moderate-to-severe dehydration (14.1%). Less frequent complications included bacteremia (1.3%), pneumonia (0.7%), seizures (0.5%), and elevated liver function tests (0.3%) (Table I). These were clinical complications associated with RVGE rather than separate nosocomial bacterial or viral infections.

Outpatient Subgroup

Among the 227 children diagnosed in the outpatient setting, 134 (59%) were males and 93 (41%) were females. The median age was 11 months (1-52 months). Infections were most diagnosed during winter (33.9%), followed by spring (28.2%), autumn (23.8%), and summer (14.1%). Only 8 children (3.5%) were vaccinated against rotavirus, while 219 (96.5%) were unvaccinated. Complications were rare, with only one patient (0.4%) experiencing mild dehydration.

Inpatient Subgroup

Of the 164 hospitalized patients, 86 (52.4%) were males and 78 (47.6%) were females. The median age was 10 months (1-61 months). Most cases occurred in winter (40.2%), followed by spring (23.8%), autumn (20.1%), and summer (15.9%). All hospitalized patients were unvaccinated. Among the 164 hospitalized patients, 121 (73.8%) experienced at least one complication, most commonly mild dehydration (45.5%) and moderate-to-severe dehydration (45.5%). Other complications included bacteremia (4.1%), pneumonia (2.5%), seizures (1.6%), and elevated liver function tests (0.8%).

Nosocomial Subgroup

A total of 60 patients were diagnosed with nosocomial rotavirus infection, with a median age of 5 months (1-40 months). Of these, 31 (51.7%) were females and 29 (48.3%) were males. Most nosocomial infections were detected in winter (36.7%) and spring (30%), followed by summer (18.3%) and autumn (15%). All patients in this group were unvaccinated. Complications occurred in 21 patients (35%), most commonly mild dehydration (85.7%), followed by moderate-to-severe dehydration (14.3%). The remaining 39 patients (65%) experienced an uncomplicated clinical course.

Comparison of subgroups

The rate of complications was significantly higher in inpatients compared to outpatients ($p<0.001$), while no difference was observed between patients with nosocomial RVGE and those with CA-RVGE ($p= 0.490$). In the comparison between patients with and without complications, there was no significant difference in gender ($p = 0.583$) or seasonal distribution ($p = 0.315$).

The median age of patients with complications was 7 months (1-40 months) compared to 10 months (1-61 months) in those without complications, with no statistically significant difference ($p= 0.630$). The patients with complications had longer hospital stays than those without complications (median 6 days (2-14 days) vs. 3 days (1-5 days), $p<0.001$). Unvaccinated patients had a significantly higher rate of complications compared to vaccinated patients ($p= 0.049$).

No significant differences were found between

patients with and without nosocomial RVGE in terms of gender, season, or vaccination status ($p= 0.178, 0.114$, and 0.224 , respectively). The median age of the patients with nosocomial RVGE was 5 months (1–40 months) whereas the median age of patients with CA–RVGE was 11 months (1–61 months). The patients with nosocomial RVGE were significantly younger than CA–RVGE ($p< 0.001$). The duration of hospital stays of nosocomial RVGE were not different than the duration of CA–RVGE (median 5 days (2–14 days) vs. 4 days (1–7 days), ($p= 0.490$) (Table II).

Table I: Demographic and clinical characteristics of children with rotavirus gastroenteritis

Characteristic	n (%)
Sex	
Male	220 (56.3%)
Female	171 (43.7%)
Age (months), median (min–max)	10 (1–61)
Seasons	
Autumn	87 (22.3%)
Winter	143 (36.6%)
Spring	64 (28.2%)
Summer	32 (14.1%)
Vaccination status	
Vaccinated	8 (2.0%)
Unvaccinated	383 (98.0%)
Complications	
Mild dehydration	56 (14.3%)
Moderate/severe dehydration	55 (14.1%)
Bacteremia	5 (1.3%)
Pneumonia	3 (0.7%)
Seizures	2 (0.5%)
Elevated liver enzymes	1 (0.3%)

Table II: Comparison of RVGE cases by complication status and acquisition type

	Complication (n=122)	No complication (n=269)	p	Nosocomial RVGE (n=60)	CA–RVGE (n=331)	p
Age (months), median (min–max)	10 (1–61)	10 (1–52)	0.630	5 (1–40)	11 (1–61)	<0.001
Gender (n, %)			0.583			0.178
Female	56 (45.9%)	115 (42.8%)		31 (51.7%)	140 (42.3%)	
Male	66 (54.1%)	154 (57.2%)		29 (48.3%)	191 (57.7%)	
Season (n, %)			0.315			0.114
Autumn	22 (18%)	65 (24.2%)		18 (30%)	69 (20.8%)	
Winter	52 (42.6%)	91 (33.8%)		22 (36.7%)	121 (36.6%)	
Spring	32 (26.2%)	71 (26.4%)		9 (15.0%)	94 (28.4%)	
Summer	16 (13.1%)	42 (15.6%)		11 (18.3%)	47 (14.2%)	
Hospitalization status (n, %)			<0.001			<0.001
Inpatient	121 (99.2%)	43 (16%)		60 (100%)	104 (31.4%)	
Outpatient	1 (0.8%)	226 (84%)		0	227 (68.6%)	
Nosocomial infection (n, %)			0.490			
Yes	21 (17.2%)	39 (14.5%)		60 (100%)	0	
No	101 (82.8%)	230 (85.5%)		0	331 (100%)	
Vaccination status (n, %)			0.049			0.224
Vaccinated	0	8 (3%)		0	8 (2%)	
Unvaccinated	122 (100%)	261 (97%)		60 (100%)	323 (98%)	
Hospital stays days, median (min–max)	6 (2–14)	3 (1–5)	<0.001	5 (2–14)	4 (1–7)	0.490

CA–RVGE: Community-acquired rotavirus gastroenteritis

DISCUSSION

Nosocomial RVGE represented 15.3% of all RVGE cases and 36.6% of hospitalized RVGE cases in our cohort, highlighting it as a substantial yet preventable cause of morbidity in pediatric patients. The markedly low rotavirus vaccination rate (2%) among our patients, coupled with the younger median age of those with nosocomial RVGE, underscores the heightened vulnerability of unprotected infants and young children in hospital settings. This considerable burden likely reflects the absence of routine rotavirus vaccination in Türkiye, seasonal clustering during peak winter months, and delays in isolating symptomatic patients. Notably, complications occurred more frequently among inpatients than outpatients, and their presence was associated with prolonged hospital stays. These findings highlight the urgent need to reinforce infection prevention measures in pediatric wards and to implement effective immunization strategies aimed at reducing the burden of both community-acquired and nosocomial RVGE.

Before routine vaccination, a meta-analysis reported that, on average, 27% (range: 14–51%) of RV hospitalizations in developed countries were nosocomial¹². More recent studies have shown lower proportions, ranging from 11% to 32%, likely due to improvements in infection control and vaccine uptake¹³. Country-specific data vary: 24% in Poland¹⁴, 27.75% in Slovakia¹⁵ and 16.7% in Spain¹⁶. In countries with long-standing vaccination programs, such as the United States and the Netherlands, overall rotavirus burden—measured by hospitalizations and test positivity—has declined markedly following vaccine introduction, although specific data on nosocomial cases remain limited^{12,17}. Our study found that nosocomial RVGE accounted for 36.6% of hospitalized cases, aligning with the higher end of previously reported ranges. However, we also calculated the proportion

among all RVGE cases, which was 15.3%, to better reflect the overall burden in our setting, as many children were admitted for non-RVGE reasons before acquiring the infection in the hospital. This dual approach provides both comparability with prior studies and a more comprehensive view of nosocomial RVGE in pediatric wards. The relatively high rates observed in our cohort likely reflect seasonal clustering during peak winter months, delayed isolation of symptomatic patients, and the absence of routine rotavirus vaccination in Türkiye. These findings highlight the urgent need to strengthen infection control measures and to incorporate universal rotavirus vaccination into the national immunization program to reduce the burden of both community-acquired and nosocomial RVGE.

In RVGE, most complications and fatalities arise from dehydration and its consequences, including electrolyte disturbances and metabolic acidosis¹. In a Turkish cohort, complications occurred in 44.2% of cases, with electrolyte imbalance (32.6%) and septicemia (6.5%) being predominant¹⁸. Similarly, a Swedish study reported complication rates >10%, with hypertonic dehydration seen in 5.3% and seizures in 1.7% of hospitalized children with RVGE¹⁹. In our cohort, complications developed in 31.2% of children, most commonly dehydration, followed by bacteremia, pneumonia, seizures, and elevated liver enzymes.

Complications were more frequent in inpatients, as hospitalization was frequently required for severe dehydration or related complications. The median length of hospital stay was similar between nosocomial and community-acquired RVGE but was notably longer in patients with complications. Although Ogilvie et al. did not directly compare overall complication rates between inpatients and outpatients, their findings indicate that community-acquired RVGE was associated with

a higher prevalence of dehydration and severe dehydration compared to nosocomial cases, and that nosocomial infections prolonged hospitalization, in some reports by 4–12 days²⁰. Consistent with these findings, Festini et al. described a longer hospital stay for nosocomial RVGE in Italy, and Nitsch-Osuch et al. reported an even greater difference in Poland. Differences in reported complication rates and hospital stay across studies may be explained by variations in study populations, underlying comorbidities, case definitions, and healthcare practices and vaccination coverage^{14,21}.

Rotavirus vaccination significantly reduces severe RVGE outcomes—including hospitalizations and serious clinical courses—beyond merely lowering infection incidence. For instance, a Canadian study demonstrated a 94% vaccine effectiveness in preventing RVGE-related hospitalizations among children who received two doses of the vaccine²². In the United States, rotavirus vaccine introduction was associated with marked declines in both inpatient visits and severe infections among young children²³. Meta-analysis data further support these findings, showing a median reduction of 67% in rotavirus-related hospital admissions across vaccinated populations²⁴. In our study, with a vaccination coverage of only 2%, unvaccinated children experienced a significantly higher complication rate than vaccinated children; however, this finding should be interpreted with caution due to the very small number of vaccinated cases. Likewise, a study from Turkey, despite reporting a modest vaccination coverage of 12–17% in the private sector, demonstrated a marked (>50%) reduction in both RVGE incidence and related hospitalizations²⁵. Similarly, a study from Vietnam with a vaccination coverage of only 10.9% reported a significantly lower risk of RVGE and milder clinical courses among vaccinated children, further supporting the protective effect of

rotavirus immunization even at modest coverage levels²⁶. These findings underscore the substantial public health benefits that could be achieved if rotavirus vaccination were incorporated into the national immunization program.

In our cohort, children with nosocomial RVGE were significantly younger than those with CA-RVGE (median 5 vs. 11 months), consistent with previous reports indicating that younger age, particularly in infancy, is associated with increased risk of nosocomial transmission due to prolonged hospitalization and greater exposure to healthcare environments¹². The seasonal distribution of nosocomial RVGE cases, with a predominance in winter and a secondary peak in spring, mirrors findings from Italy, where both community-acquired and nosocomial infections follow similar patterns²⁷. Broader European data also confirm that RVGE activity peaks during the winter months, a factor that may facilitate rapid in-hospital spread when pediatric wards operate at or near full capacity²⁰.

Limitations

First, the retrospective design and single-center nature of this study may limit the generalizability of our findings. Second, data collection relied on hospital records, which may be subject to missing or incomplete entries, particularly regarding the onset of symptoms and precise timing of exposure. Third, vaccination status was obtained from medical records and/or caregiver reports, introducing the possibility of misclassification. Another limitation of our study is that rotavirus subtyping was not available at our center during the study period; therefore, we were unable to provide genotype-specific data. Despite these limitations, our study provides valuable insight into the epidemiology and clinical burden of nosocomial RVGE in a setting without universal rotavirus vaccination.

CONCLUSION

Our findings demonstrate that nosocomial RVGE remains a significant and preventable cause of morbidity in pediatric populations, particularly in settings without universal rotavirus vaccination and among unvaccinated, younger children. Strengthening infection prevention measures and incorporating rotavirus vaccination into the national immunization program could substantially reduce the burden of both community-acquired and nosocomial RVGE.

Ethics Committee Approval: This study was approved by the Institutional Clinical Research Ethics Committee (Approval No: 2025-307).

Conflict of Interest: No conflicts of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

REFERENCES

1. Cortese MM. Rotavirus. In Long SS, Prober CG, Fischer M, Kimerlin DW eds. Principles and Practice of Pediatric Infectious Diseases. 6th ed. Philadelphia: Elsevier; 2023: p.1141-44.
2. Cortese MM, Parashar UD; Centers for Disease Control and Prevention (CDC). Prevention of rotavirus gastroenteritis among infants and children: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2009; 58(RR-2): 1-25.
3. Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI. Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis. 2003; 9(5): 565-72.
4. World Health Organization. Rotavirus vaccines. WHO position paper - July 2021. Wkly Epidemiol rec 2021;96:301. Available from: <https://www.who.int/publications/i/item/WHO-WER9628>. Accessed June 02 2025.
5. Du Y, Chen C, Zhang X, et al. Global burden and trends of rotavirus infection-associated deaths from 1990 to 2019: an observational trend study. Virol J. 2022; 19(1):166.
6. Hallowell BD, Chavers T, Parashar U, Tate JE. Global Estimates of Rotavirus Hospitalizations Among Children Below 5 Years in 2019 and Current and Projected Impacts of Rotavirus Vaccination. J Pediatric Infect Dis Soc. 2022; 11(4):149-158.
7. International Vaccine Access Center. Available from: <http://view-hub.org>. Accessed January 03, 2023.
8. Tapisiz A, Bedir Demirdağ T, Cura Yayla BC, et al. Rotavirus infections in children in Turkey: A systematic review. Rev Med Virol. 2019; 29(1): e2020.
9. Böncüoğlu E, Kiymet E, Şahinkaya Ş, et al. Üçüncü basamak bir çocuk hastanesi yanık ünitesinde meydana gelen rotavirüs salgınının incelenmesi. J Pediatr Inf. 2023; 17(1): 35-9.
10. Arbanas I, Monescu V, Dragomir N, et al. A 7-Year Survey (2015-2021) in One Pediatric Hospital (Brasov, Romania) on Rotavirus Gastroenteritis Specified as Community- or Hospital-Acquired Infection in Young Children. Trop Med Infect Dis. 2023; 8(12): 509.
11. Gleizes O, Desselberger U, Tatochenko V, et al. Nosocomial rotavirus infection in European countries: a review of the epidemiology, severity and economic burden of hospital-acquired rotavirus disease. Pediatr Infect Dis J 2006; 25: S12-2.
12. Bruijning-Verhagen P, Quach C, Bonten M. Nosocomial rotavirus infections: a meta-analysis. Pediatrics. 2012; 129(4): e1011-9.
13. Ardura-Garcia C, Kreis C, Rakic M, et al. Rotavirus disease and health care utilisation among children under 5 years of age in highly developed countries: A systematic review and meta-analysis. Vaccine. 2021; 39(22): 2917-28.
14. Nitsch-Osuch A, Kuchar E, Kosmala A, Zycinska K, Wardyn K. Nosocomial rotavirus gastroenterocolitis in a large tertiary paediatric hospital in Warsaw, 2006-2010. Arch Med Sci. 2013; 9(3): 493-8.
15. Stefkovicová M, Simurka P, Juracková L, Hudecková H, Mad'ar R. Nosocomial rotaviral gastroenteritis in paediatric departments. Cent Eur J Public Health. 2008; 16(1): 12-6.
16. Ruiz-Contreras J, Alfayate-Miguel S, Carazo-Gallego B, et al. Rotavirus gastroenteritis

hospitalizations in provinces with different vaccination coverage rates in Spain, 2013-2018. *BMC Infect Dis.* 2021; 21(1): 1138.

17. Burke RM, Tate JE, Barin N, et al. Three Rotavirus Outbreaks in the Postvaccine Era - California, 2017. *MMWR Morb Mortal Wkly Rep.* 2018; 67(16): 470-2.

18. Aldemir Koçabaş B, Karbuz A, Özdemir H, et al. Complications with rotavirus: A single center experience. *Turkish Journal of Pediatrics.* 2016; 58: 602-8.

19. Johansen K, Hedlund KO, Zweyberg-Wirgart B, Bennet R. Complications attributable to rotavirus-induced diarrhoea in a Swedish paediatric population: report from an 11-year surveillance. *Scand J Infect Dis.* 2008; 40(11-12): 958-64.

20. Ogilvie I, Khoury H, Goetghebeur MM, El Khoury AC, Giaquinto C. Burden of community-acquired and nosocomial rotavirus gastroenteritis in the pediatric population of Western Europe: a scoping review. *BMC Infect Dis.* 2012; 12: 62.

21. Festini F, Cocchi P, Mambretti D, et al. Nosocomial Rotavirus Gastroenteritis in pediatric patients: a multi-center prospective cohort study. *BMC Infect Dis.* 2010; 10: 235.

22. Gosselin V, Généreux M, Gagnier A, Petit G. Effectiveness of rotavirus vaccine in preventing severe gastroenteritis in young children according to socioeconomic status. *Hum Vaccin Immunother.* 2016; 12(10): 2572-9.

23. Payne DC, Englund JA, Weinberg GA, et al. Association of Rotavirus Vaccination with Inpatient and Emergency Department Visits Among Children Seeking Care for Acute Gastroenteritis, 2010-2016. *JAMA Netw Open.* 2019; 2(9): e1912242.

24. Burnett E, Parashar U, Tate J. Rotavirus Vaccines: Effectiveness, Safety, and Future Directions. *Paediatr Drugs.* 2018; 20(3): 223-33.

25. Gönüllü E, Soysal A, Yıldız İ, Karaböcüoğlu M. Impact of self-financed rotavirus vaccination on acute gastroenteritis in young children in Turkey. *Hum Vaccin Immunother.* 2021; 17(2): 510-6.

26. Mai CTN, Ly LTK, Doan YH, et al. Prevalence and Characterization of Gastroenteritis Viruses among Hospitalized Children during a Pilot Rotavirus Vaccine Introduction in Vietnam. *Viruses.* 2023; 15(11): 2164.

27. Camilloni B, Alunno A, Nunzi E, et al. Hospital-acquired rotavirus acute gastroenteritis in 10 consecutive seasons in Umbria (Italy). *J Med Virol.* 2020; 92(12): 3202-8.