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Abstract: The aim of this work is to examine some properties of the concircular curvature
tensor on 4−dimensional manifolds admitting a Lorentz metric (so called space-times). In
the first two sections, the study is introduced and the interrelated concepts together with
some notations are presented. In the third section of the study, some results are obtained
connected to eigenbivector structure of the concircular curvature tensor on these manifolds
by taking into account the classification scheme of 2–forms (also known as bivectors) in
this metric signature. Then, the known holonomy algebras on space-times are considered
and some theorems are given regarding the concircular and Riemann curvature tensors.
This analysis is also associated with the types of the Riemann curvature tensor on these
manifolds. In the last section, the results of the study is summarized and the discussion
part is presented.

Uzay-Zamanlardaki Konsörkılır Eğrilik Tensörü Üzerine

Anahtar Kelimeler
Konsörkılır eğrilik tensörü,
Bivektör,
Uzay-zaman,
Dolanım teorisi

Özet: Bu çalışmanın amacı, uzay-zaman olarak adlandırılan 4−boyutlu Lorentz metrik
işaretli manifoldlar üzerinde konsörkılır eğrilik tensörünün bazı özelliklerinin incelenme-
sidir. İlk iki bölümde çalışma tanıtılmış ve birbiriyle ilişkili kavramlar ile bazı notasyonlar
sunulmuştur. Çalışmanın üçüncü bölümünde, bu metrik işarette (bivektörler olarak da
bilinen) 2–formların sınıflandırma şeması göz önüne alınarak, bu manifoldlar üzerindeki
konsörkılır eğrilik tensörünün özbivektör yapısı ile ilgili bazı sonuçlar elde edilmiştir.
Daha sonra, uzay-zamanlar üzerinde bilinen dolanım cebirleri dikkate alınmış, konsörkılır
ve Riemann eğrilik tensörlerine ilişkin bazı teoremler verilmiştir. Söz konusu analiz, bu
manifoldlar üzerindeki Riemann eğrilik tensörünün tipleri ile de ilişkilidir. Son bölümde
ise, çalışmada elde edilen sonuçlar özetlenmiş ve tartışma bölümü sunulmuştur.

1. Introduction

Special transformations preserving some geometric struc-
tures have a significant place in geometry and physics (see,
e.g., [1]). Moreover, a symmetry of a 4−dimensional con-
nected manifold admitting a Lorentz metric (−,+,+,+),
which is called a space-time, preserves some geometric
features of the manifold and it is an interesting subject in
general relativity theory (see, e.g., [2]). Conformal trans-
formations are one of the most important examples of such
transformations and they preserve angles locally. A concir-
cular transformation is a conformal transformation which
transforms a geodesic circle (which is defined as a curve
whose first curvature is constant and whose second curva-
ture is identically zero) into a geodesic circle (for details,
see, [3, 4]). In general, a conformal transformation does
not have to preserve a geodesic circle and the geometry
admitting a concircular transformation is called a concir-
cular geometry. The following tensor field Z is called the
concircular curvature tensor and it is invariant under a

concircular transformation:

Z = Riem− r
n(n−1)

G (1)

where Riem, r and n denote the Riemann curvature tensor,
the scalar curvature and the dimension of the manifold M,
respectively. The tensor G is given by

G(U,X ,Y,W ) = g(U,W )g(X ,Y )−g(U,Y )g(X ,W ) (2)

where U,X ,Y,W ∈ T M and g denotes the metric tensor
of the manifold. It is known that an Einstein manifold is
mapped into itself under the concircular transformation.
On the other hand, if the concircular curvature tensor
vanishes identically on the manifold, then it is called con-
circularly flat. In this case, M is of constant curvature and
the converse is also true, [3]. Therefore, the concircular
curvature tensor can be thought as a measure of the failure
of the manifold to be of constant curvature (for example,
see [5]).
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When looking at the literature, many studies were carried
out on concircular curvature tensor in different manifolds,
e.g., on contact metric manifolds, Einstein manifolds,
Kenmotsu manifolds, pseudo-symmetric manifolds, fluid
space-times (for example, see, [5–9]) and many others.
Additionally, concircularly recurrent pseudo-Riemannian
manifolds were studied in [10] and it was shown that
such manifolds are recurrent manifolds, that is, Riem is
recurrent.

In this paper, a space-time is considered as defined above
and some properties of the concircular curvature tensor are
investigated on this manifold. The eigenbivector structure
of this tensor field is studied with the aid of the classifica-
tion of 2−forms in Lorentz signature (−,+,+,+) which
will be mentioned in Section 2. Another concept discussed
in this section is the theory of holonomy and it will be use-
ful in Section 3. Other than these, the relationship between
the known curvature types in space-times and the concircu-
lar curvature tensor is examined since Z crucially depends
on Riem. In Section 3, some results about these concepts
are obtained and expressed in several theorems. Finally,
these results are interpreted in the conclusion section.

2. Preliminaries

Throughout the following, (M,g) will be a space-time
structure. First of all, it will be useful to give some ba-
sic notations in this section. By u.v, we mean the inner
product g(u,v) arising from g(m) where u and v are the
members of the tangent space of the manifold at m written
as TmM. A non-zero member v of TmM is called timelike,
spacelike or null if v.v < 0, v.v > 0 or v.v = 0, respectively.
A pseudo-orthonormal basis for TmM will be denoted by
x,y,z, t where these members of TmM are mutually orthog-
onal vectors and satisfy the following relations:

x.x = y.y = z.z =−t.t = 1. (3)

Moreover, one can define a null basis l,n,x,y for TmM
where x, y are given in (3), l, n are null vectors of TmM
defined by

√
2l = z+ t,

√
2n = z− t and satisfy l.n = 1.

For the details of this section, we refer to [2].

2.1. 2–forms in space–times

A 2− f orm (also known as a bivector) is a second order
skew-symmetric tensor field and the space of all 2−forms
at m ∈ M will be denoted by ΛmM. In this case, ΛmM
is a 6−dimensional vector space and it is a Lie algebra
under matrix commutation. The classification of 2−forms
constitutes an attractive place in the literature and it is
known for all metric signatures in 4−dimensional man-
ifolds (where the metric signature can only be positive
definite (+,+,+,+) or Lorentz (−,+,+,+) or neutral
signature (+,+,−,−)). For all signatures on these mani-
folds, a 2−form F can be classified according to the value
of its rank which can only be 2 or 4 (for a non-zero mem-
ber of ΛmM) since F is skew-symmetric. If the rank of F
equals 2, then F is called a simple 2− f orm, whereas if
this rank equals 4, then F is called a non-simple 2− f orm.

A simple 2−form can be expressed as follows:

Fab = uavb− vaub (4)

where Fab(= −Fba) denotes the components of F and
u,v ∈ TmM. The 2−space spanned by u,v ∈ TmM is
uniquely determined by this 2−form and called the blade
of F . Then, the blade of F (or even F) is denoted by u∧ v.
For Lorentz signature, a simple 2−form can be spacelike
(if its blade is spacelike, that is, each non-zero member
of it is spacelike) or timelike (if its blade is timelike, that
is, it contains exactly two distinct null directions) or null
(if its blade is null, that is, it contains exactly one null
direction). The classification of 2−forms in space-times
is known from general relativity and the canonical forms
together with corresponding Segre types, can be found,
e.g., in [2, 11]. In a null basis l,n,x,y at m ∈ M, exam-
ples of these 2−forms and blades are: i) x∧ y (simple and
spacelike), ii) l∧n (simple and timelike), iii) l∧ y or l∧ x
(simple and null), iv) α(l∧n)+β (x∧ y) (non-simple and
α,β ∈ R, α 6= 0 6= β ). It is noted that one can define a
2−form metric | | on ΛmM given by |F, F̂ | = FabF̂ab for
F, F̂ ∈ ΛmM and |F,F |= FabFab is called the size of F .

2.2. Holonomy theory

It will also be useful to mention about the holonomy group
of a space-time (because it is a connected manifold) with
respect to the Levi-Civita connection denoted by ∇ of the
metric g. The holonomy group is the collection of all linear
isomorphisms on TmM arising from the parallel transport
of each member of TmM around a smooth, closed curve
c at m ∈ M. It can be shown that since M is connected
(and so, it is path-connected), the holonomy groups at
any two points of the manifold are isomorphic to each
other. Hence one can consider the holonomy group of
(M,g) (for details of the holonomy theory, we refer to,
[12] and for applications to space-times see [2]). Let Φ

be this holonomy group. Since g has Lorentz signature,
then Φ is isomorphic to a subgroup of the Lorentz group
L . It is known that Φ is a Lie group admitting a Lie
algebra φ which is a subalgebra of o(1,3) for Lorentz
signature. The possibilities for φ were given in [13] in
which 15 holonomy types occur and that are labelled as
R1, R2, ..., R15. Among these algebras, R1 is the trivial
case, so it will not be considered in the following. There is
no 5−dimensional holonomy algebra and R15 is the full
algebra. It is also noted that the 1−dimensional algebra R5
cannot occur as a space-time holonomy group (for details,
see [2], pages 239–240) and so it will not be studied here.
The dimension and bases (in 2−form representation) for
each holonomy type occurring in space-times are given as
follows. Here, the symbol <> denotes a spanning set.

� 1−dimensional holonomy algebras:

• R2 < l∧n >

• R3 < l∧ x > (or < l∧ y >)

• R4 < x∧ y >

� 2−dimensional holonomy algebras:
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• R6 < l∧n, l∧ x >

• R7 < l∧n,x∧ y >

• R8 < l∧ x, l∧ y >

� 3−dimensional holonomy algebras:

• R9 < l∧n, l∧ x, l∧ y >

• R10 < l∧n, l∧ x,n∧ x >

• R11 < l∧ x, l∧ y,x∧ y >

• R12 < l∧ x, l∧ y, l∧n+ω(x∧ y)> (0 6= ω ∈ R)

• R13 < x∧ y,y∧ z,x∧ z >

� 4−dimensional holonomy algebra:

• R14 < l∧n, l∧ x, l∧ y,x∧ y >

� 6−dimensional holonomy algebra:

• R15 o(1,3)

The relation between 2−form representation of the sub-
algebras of φ and the Riemann curvature tensor will be
given in the next subsection.

2.3. Riemann curvature tensor

Since the concircular curvature tensor is closely related to
the Riemann curvature tensor, it will make sense to give
more details about Riem. Let the components of Riem be
denoted by Ra

bcd . So, one gets the type (0, 4) curvature
tensor with components Rabcd = gaeRe

bcd . One can define
a curvature map indicated by f̃ between the space of all
2−forms given by Fab→ Rab

cdFcd . It can be shown that
f̃ is a linear map and with the help of this map, one gives
a classification of the curvature tensor at m ∈M as follows
where five classes denoted by A, B, C, D and O occur, [2]:
� Class A : In this class, Riem is not zero at m and it is
not in any of the other classes (B, C or D defined below).
So, the rank of f̃ , rank( f̃ ) is either 2, 3, 4, 5 or 6 at m ∈M.
Hence, this type is the most general case.
� Class B : Riem takes this type when rank( f̃ ) = 2 and the
range space of f̃ , rg( f̃ ) is spanned by a spacelike and a
timelike 2−form whose blades are orthogonal.
� Class C : This occurs when rank( f̃ ) = 2 or 3 and rg( f̃ )
can be spanned by two or three simple 2−forms. Moreover,
the members of rg( f̃ ) have a common (non-zero) eigen-
vector k ∈ TmM corresponding to zero eigenvalue, that is,
each 2−form F ′ in rg( f̃ ) satisfies F ′abkb = 0.
� Class D : In this class, rank( f̃ ) = 1 and rg( f̃ ) is spanned
by a simple 2−form F̃ (in this case, F̃ is necessarily simple
since Ra[bcd] = 0 where the square bracket around indices
denotes the skew-symmetrization of the enclosed indices).
Thus, Rabcd = γF̃abF̃cd (γ ∈ R) at m ∈M.
� Class O : If Riem vanishes at m ∈ M, then this class
occurs.

Some other notes will be helpful for the next section.
Firstly, consider the following equation

Rabcdkd = 0 (5)

where 0 6= k ∈ TmM. It is proved that the equation (5) has
no solutions if the curvature type is A or B. Additionally, if
the curvature type is C, then (5) has a unique independent
solution and if the curvature type is D at m ∈M, then (5)
has exactly two independent solutions (for details, see [2],
pages 261–262).

It is also useful to note that i) if the holonomy type is R2,
R3 or R4, the curvature type at any m ∈M is O or D, ii)
for R6 or R8 it is O, D or C, iii) for R7 it is O, D or B, iv)
for R9 or R12 it is O, D, C or A, v) for R10, R11 or R13 it is
O, D or C and finally, vi) for R14 or R15 it can be O, D, C,
B, A, [14].

On the other hand, it is known from the infinitesimal holon-
omy theory that rg( f̃ ) is a subspace of the Lie algebra φ

and so, the Riemann curvature tensor can be written as a
symmetrized sum of products of members of φ (see, for
example, [2]).

3. Results

This section is devoted to the results of the work. By using
(1) and (2), for a space-time M, one has the concircular
curvature tensor Z, in the local expression,

Zabcd = Rabcd−
r

12
(gadgbc−gbdgac). (6)

Now, consider the eigenbivector structure of Z. First of all,
the following lemma will be helpful for the next step.

Lemma 3.1. Let 0 6= F ∈ ΛmM. Then F is an eigenbivec-
tor of Z corresponding to eigenvalue α + r

6 if and only if it
is an eigenbivector of Riem corresponding to eigenvalue
α .

Proof. Suppose that 0 6= F ∈ ΛmM is an eigenbivector of
Riem. Then, RabcdFcd = αFab for some α ∈ R. Contract-
ing (6) over Fcd , one gets

ZabcdFcd = αFab−
r

12
(Fc

agbc−Fc
bgac)

= αFab−
r

12
(Fba−Fab)

=

(
α +

r
6

)
Fab. (7)

Therefore, from (7), F is an eigenbivector of Z correspond-
ing to eigenvalue α + r

6 .

Conversely, if F is an eigenbivector of Z with eigenvalue
β ∈ R, it can be obtained from (6) that it is an eigen-
bivector of Riem corresponding to eigenvalue β − r

6 . This
completes the proof.

Let us now consider the 1−dimensional holonomy
algebras and examine the eigenbivector structure of Z.
Then, one obtains the following theorem:

Theorem 3.2. Let (M,g) be a space-time structure and
suppose that Riem does not vanish at m ∈ M. Then the
following conditions hold:
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i. For holonomy type R2, l∧n is an eigenbivector of Z
corresponding to a non-zero eigenvalue.

ii. For holonomy type R3, l∧x (or l∧y) is an eigenbivec-
tor of Z corresponding to a zero eigenvalue.

iii. For holonomy type R4, x∧ y is an eigenbivector of Z
corresponding to a non-zero eigenvalue.

For all these cases, the curvature type of Riem is D.

Proof. Consider 1−dimensional holonomy algebras and
assume that there exists m ∈M such that Riem does not
vanish at m. Then, a local expression for the Riemann
curvature tensor at m ∈M is written as follows:

Rabcd = γFabFcd (8)

where F is a simple 2−form and γ is not zero at m ∈M.
So, the curvature type is D (see, Section 2.3).

i. For holonomy type R2, φ is spanned by 2−form F = l∧n
and by using (4) and (8), one gets the expression of Riem
as follows:

Rabcd = γ(lanb−nalb)(lcnd−ncld). (9)

Multiplying (9) by Fcd(= lcnd−ncld) and using the fact
that l.n = 1, it can be seen that F is an eigenbivector of
Riem with the eigenvalue −2γ . Thus, it is an eigenbivector
of Z by Lemma 3.1. Contracting (9), one gets the scalar
curvature r = 2γ and putting these into (7), it follows
that F = l∧n is an eigenbivector of Z corresponding the
eigenvalue − 5

3 γ which is not zero on at m ∈M.

ii. For holonomy type R3, φ is spanned by 2−form
F = l ∧ x and using (8), the scalar curvature is found
to be zero. Therefore, Z = Riem from (6). Since l ∧ x
is an eigenbivector of Riem with eigenvalue 0, then
RabcdFcd = ZabcdFcd = 0. So, F is an eigenbivector of Z
with eigenvalue 0.

iii. By using similar steps given above, one can observe
for holonomy type R4 that, F = x∧y is an eigenbivector of
the concircular curvature tensor with eigenvalue 5

3 γ which
is not zero at m ∈M. Hence, the proof is completed.

Corollary 3.3. Let (M,g) be a space-time structure and
consider 1−dimensional holonomy algebras. Suppose that
Riem does not vanish at m ∈M. Then, Z admits timelike,
null and spacelike eigenbivectors where the corresponding
eigenvalues are non-zero if the eigenbivector is spacelike
or timelike and zero if it is null.

Proof. Since the blades of the bases members of the
holonomy algebras R2, R3 and R4 are timelike, null and
spacelike, respectively, the result is clear from Theorem
3.2.

Now consider the 2−dimensional holonomy algebras and
investigate some features of Z.

Theorem 3.4. Let (M,g) be a space-time structure and
suppose that Riem does not vanish at m ∈ M. Let the
range space of the curvature map be spanned by 2−forms
F̃ , G̃ ∈ ΛmM. A necessary and sufficient condition for the
2−form F̃ be an eigenbivector of Z is that the relation

δ |F̃ , G̃|+ξ |F̃ , F̃ |= 0

is satisfied for some δ ,ξ ∈ R.

Proof. Suppose that rg( f̃ ) is spanned by 2−forms F̃ , G̃ ∈
ΛmM and that Riem does not vanish at m ∈M. Then, one
has the following expression of Riem

Rabcd = λ F̃abF̃cd +δ G̃abG̃cd +ξ (F̃abG̃cd + G̃abF̃cd) (10)

for some smooth functions λ ,δ ,ξ . Contracting (6) by F̃cd

and using (10), it follows that

ZabcdF̃cd = λ |F̃ , F̃ |F̃ab +δ |F̃ , G̃|G̃ab

+ξ (|F̃ , G̃|F̃ab + |F̃ , F̃ |G̃ab)+
r
6

F̃ab

= (λ |F̃ , F̃ |+ξ |F̃ , G̃|+ r
6
)F̃ab

+(δ |F̃ , G̃|+ξ |F̃ , F̃ |)G̃ab. (11)

In this case, if F̃ is an eigenbivector of Z, it can be seen
from (11) that the condition

δ |F̃ , G̃|+ξ |F̃ , F̃ |= 0 (12)

holds since G̃ 6= 0. Conversely, if the equation (12) is
satisfied, one gets from (11) that ZabcdF̃cd = ψF̃ab for
some ψ ∈ R. Therefore, F̃ is an eigenbivector of Z. This
completes the proof.

Example: Consider the holonomy type R7 with algebra
< F̃ , G̃ > where F̃ = l∧n, G̃ = x∧ y. Then Riem satisfies
(10). Moreover, using the identity Ra[bcd] = 0 and (10), it
can be obtained that ξ = 0. Thus, for this holonomy type,
Riem takes the form

Rabcd = λ F̃abF̃cd +δ G̃abG̃cd (13)

for some smooth functions λ ,δ . Also, one gets

|F̃ , G̃|= 0. (14)

Using similar steps given above and taking into account
(6), (13), (14), it is seen that the equation (12) is
satisfied. Hence, F̃ = l∧n is an eigenbivector of Z and so
Theorem 3.4 holds for holonomy type R7. Analogously, it
can be obtained that G̃= x∧y is also an eigenbivector of Z.

Next, assume that the equation (5) is satisfied. In this case,
if one wants to investigate the solutions of

Zabcdkd = 0 (15)

for 0 6= k ∈ TmM, a contraction of (6) with kd yields

r(kagbc− kbgac) = 0. (16)

From (16), either r = 0 or

kagbc− kbgac = 0 (17)
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holds. If r = 0, then it follows from (6) that Z = Riem.
However, if r 6= 0, multiplying (17) by gbc, it follows that

4ka− kbδ
b
a = 3ka = 0. (18)

Thus, k = 0 from (18) and hence there are no non-zero
solutions of (15). So, we proved the following theorem.

Theorem 3.5. Let (M,g) be a space-time structure and
suppose that there exists 0 6= k ∈ TmM such that the equa-
tion (5) is satisfied and that r 6= 0. Then, there are no
non-zero solutions of (15).

It can be deduced from above that if the equation (15) has
non-zero solutions and if r 6= 0, then there are no non-zero
solutions of (5). Therefore, one has the following result.

Corollary 3.6. Let (M,g) be a space-time structure and
suppose that there exists 0 6= k ∈ TmM such that the equa-
tion (15) is satisfied and that r 6= 0. Then, the curvature
type cannot be C or D at m ∈M.

Finally, it will be useful to look at the concircularly flat
space-times. A contraction of (6) by gad yields the follow-
ing tensor field

Zbc = Rbc−
r
4

gbc (19)

which is also invariant under the concircular tranformation,
[3]. Now, if Z vanishes identically on M, then it is obtained
from (19) that (M,g) is an Einstein manifold. Let r 6= 0,
then (M,g) is called a proper Einstein manifold and it was
shown in [15] that possible holonomy algebras for a proper
Einstein manifold are R7, R14 or R15. As for the Ricci
flat case (r = 0), so called the “vacuum case” in general
relativity, possible holonomy types are R8, R14 or R15, [2].
So, one obtains the following result:

Theorem 3.7. Let (M,g) be a space-time structure. Sup-
pose that M is concircularly flat.

i. If M is Ricci flat, then the holonomy type is R8, R14
or R15.

ii. If M is not Ricci flat, then the holonomy type is R7,
R14 or R15.

4. Discussion and Conclusion

In this paper, the concircular curvature tensor was
investigated on space-times. Some properties of this
tensor field were found related to the holonomy algebras
of Lorentz signature (−,+,+,+). Also, some remarks
about the Riemann curvature tensor were given with
the help of its classification on these manifolds. A link
between the eigenbivector structure of the concircular
tensor and Riemann curvature tensor was obtained. The
classification scheme of 2−forms was also useful in this
examination. Then, these results were applied to the
holonomy algebras and several properties were presented.
Finally, concircularly flat space-times were investigated
and by considering the known results in the literature,
possible holonomy algebras for these space-times were
specified.

It is noted that the result given in Lemma 3.1 is quite
general and that it can be applied to all signatures and any
dimension. So, these structures can be examined for the
other metric signatures and 4−dimensional manifolds. The
author thinks that as an extension of this work, it would
be interesting to study this tensor field on 4−dimensional
manifolds admitting a neutral metric (+,+,−,−) (see,
e.g., [16]) in which the classification of 2−forms and the
curvature tensor are much more complicated.
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