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Abstract: Graph theory has been studied different areas such as information, 

mathematics and chemistry sciences. Especially, it has been the most important 

mathematical tools for the study the analysis of chemistry. A topological index has been 

a numerical descriptor of the molecular structure derived from the corresponding 

molecular graph, also it has used vulnerability of chemical graphs. The vulnerability of 

a graph has been the reliability of the graph after the disruption of  some vertices or 

edges until breakdown. There are a lot of topological indices which have been defined. 

Furthermore, the diamond graphs have been defined recently. In this paper, exact 

formulas for the eccentricity-based topological indices of diamond graphs have been 

obtained.  

  
  

Elmas Grafların Dışmerkezliğe Dayalı Topolojiksel İndekslerinin Değerleri 
 
 

Anahtar Kelimeler 
Graf  teori, 
Zedelenebilirlik, 
Dışmerkezlik, 
Topolojiksel indeksler, 
Elmas graflar 

Özet: Graf teori bilgi, matematik ve kimya gibi bilim alanlarında çalışılmaktadır. 
Özellikle, kimyasal analiz çalışmaları için en önemli matematiksel araçlardan 
biridir. Bir topolojik indeks, moleküler yapıdan türetilen bir grafın sayısal  
tanımlayıcısıdır, ayrıca kimyasal grafların zedelenebilirliği için kullanılır. Bir grafın 
zedelenebilirliği, grafın bazı tepelerinin ve ayrıtlarının zarar görmesinden sonra 
grafın dayanıklılığıdır. Tanımlanan bir çok topolojiksel indeks vardır. Bununla 
beraber, son zamanlarda elmas graflar tanımlanmıştır. Bu çalışmada, elmas 
grafların dışmerkezliğe dayalı topolojiksel indeksleri için tam sonuçlar elde 
edilmiştir.  

  
 
1. Introduction 
 
Graph theory's diverse applications in natural science 
(Chemistry, Biology), especially it is becoming an 
important component of the mathematical chemistry 
sciences. In chemical graph theory, a lot of graphical 
invariants have been used for obtaining correlations 
of chemical structures with various chemical 
reactivity, physical properties, or biological activity 
[1]. These graphical invariants are called topological 
indices of graphs in this field. There is a large family 
of distance or degree based topological indices of 
graphs in chemical graph theory. Also, we can say 
that the topological indices have been numerical 
parameters of a graph that are invariant under graph 
isomorphism. Research on the topological indices 
have been intensively rising recently. Topological 
indices have been the numerical indices based on the 
topology of the atoms and their bonds [1, 2]. There 
are more than one hundred topological indices. They 
have characterized the physicochemical properties of 
the most of molecules. Molecules and molecular 
compounds are represented by graphs, where their 

atom types are called by vertices and also their bonds 
called by edges [3]. Furthermore, the topological 
indices also compute the vulnerability of a molecular 
graph same as the network vulnerability parameters 
[4]. 
 
Let 𝐺 = (𝑉 𝐺 ,𝐸(𝐺)) be a graph of order n and size 
m, where 𝑛 = |𝑉 𝐺 |  and 𝑚 = |𝐸 𝐺 |. Now, we will 
give some definitions that we need throughout this 
paper. For 𝑣 ∈ 𝑉(𝐺), the open neighborhood of v is 
defined by 𝑁𝐺 𝑣 =  𝑢 ∈ 𝑉 𝐺 |𝑢𝑣 ∈ 𝐸(𝐺)   and also 
closed neighborhood of v is defined by                  
𝑁𝐺 𝑣 = 𝑁𝐺 𝑣 ∪  𝑣 . The degree of vertex v in G is the 
number of edges incident to v, also it is the size of its 
open neighborhood, and denoted by 𝑑𝑒𝑔𝐺 𝑣  [5]. Let 
u and v be any two vertices. The distance between u 
and v in the graph G is the length of a shortest path 
between them, also is denoted by 𝑑𝐺 𝑢, 𝑣 . The 
diameter 𝑑𝑖𝑎𝑚(𝐺) of a graph G  is defined the length 
of largest path which is the shortest path between 
any two vertices of G. The eccentricity value of vertex 
u in G denoted by 𝜀𝐺(𝑢), that is the length of largest 
path between a vertex u and any other vertex v of G, 
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𝜀𝐺 𝑢 = 𝑚𝑎𝑥𝑣∈𝑉 𝐺 𝑑𝐺(𝑢, 𝑣)  [6]. Let 𝑓 = 𝑢𝑣   be an 

edge in  𝐸 𝐺 . Then, the degree of the edge f, denoted 
by 𝑑𝑒𝑔𝐺 𝑓 , is defined to be 
 

𝑑𝑒𝑔𝐺 𝑓 = 𝑑𝑒𝑔𝐺 𝑢 + 𝑑𝑒𝑔𝐺 𝑣 − 2. 

 
Let 𝑓1 = 𝑢1𝑣1  and 𝑓2 = 𝑢2𝑣2  be two edges in  𝐸 𝐺 . 
The distance between 𝑓1 and 𝑓2, denoted by 𝑑𝐺 𝑓1, 𝑓2 , 
is defined to:  
 
𝑑𝐺 𝑓1 , 𝑓2 = 𝑚𝑖𝑛 𝑑𝐺 𝑢1 ,𝑢2 ,𝑑𝐺 𝑢1, 𝑣2 ,𝑑𝐺 𝑣1 ,𝑢2 ,𝑑𝐺 𝑣1 , 𝑣2  . 

 
The eccentricity value of edge f in G, denoted by  𝜀𝐺(𝑓) 
is defined as:  
 

𝜀𝐺 𝑓 = 𝑚𝑎𝑥 𝑑𝐺 𝑓, 𝑒 |𝑒 ∈ 𝐸(𝐺)  [6] . 

 
Let 𝐿𝑛 ≅ 𝑃𝑛□𝑃2 , 𝑛 ≥ 2, be ladder with the vertex set 
𝑉 𝐿𝑛 =  𝑣𝑖 ,𝑢𝑖 : 𝑖 = 1,2,… ,𝑛 . Then, the edge set 
𝐸 𝐿𝑛 =  𝑣𝑖𝑣𝑖+1,𝑢𝑖𝑢𝑖+1: 𝑖 = 1,2,… ,𝑛 − 1 ∪
 𝑣𝑖𝑢𝑖 : 𝑖 = 1,2,… ,𝑛 , see [7]. If we add the edges 
𝑢𝑖𝑣𝑖+1, 𝑖 = 1,2,… ,𝑛 − 1, to the ladder 𝐿𝑛  and remove 
the vertex  𝑢𝑛  with both incident edges  𝑢𝑛−1𝑢𝑛   and 
𝑢𝑛𝑣𝑛 , then a triangular ladder  𝑇𝐿𝑛  is obtained. A 
diamond graph 𝐵𝑟𝑛  , 𝑛 ≥ 3, is obtained by joining a 
single vertex w to all vertices  𝑣𝑖 , 𝑖 = 1,2,… ,𝑛, of a 
triangular ladder 𝑇𝐿𝑛  [8, 9].  The vertex set of  Brn  is 
V Brn =  w ∪  vi: i = 1,2,… , n ∪  ui : i = 1 ,2 ,… ,
  n−1 and the edge set is as follows: 

 
E Brn =  uiui+1: i = 1,2,… , n − 2   
                 ∪   vivi+1: i = 1,2,… , n − 1   
                    ∪   uivi : i = 1,2,… , n − 1   
                       ∪  uivi+1: i = 1,2,… , n − 1   
                          ∪   wvi: i = 1,2,… , n . 
 
Thus,  V Brn  = 2n  and  E Brn  = 5n − 5  are 
obtained.   

 
In Figure 1, we display the diamond graphs 𝐵𝑟3 
and 𝐵𝑟4, and also the diamond graph 𝐵𝑟5  is shown in 
Figure 2 .   
 

 
Figure 1. (a) The graph 𝐵𝑟3 

 
(b) the graph 𝐵𝑟4  

 

 

 
Figure 2. The graph 𝐵𝑟5 

 
First topological index namely Wiener index in 
chemistry is developed by chemist Harold Wiener [1]. 
The aim of Wiener index is to the sum of half of the 
distances between every pair of vertices of G and is 
defined as:   
 

𝑊 𝐺 =
1

2
   𝑑𝐺 𝑣𝑖 , 𝑣𝑗  

𝑛

𝑗=1

𝑛

𝑖=1

  

 

There are a lot of topological indices were introduced 
after defined the wiener index, also they divided 
according to some properties of the graph. One of 
their most important ones is known that distance of 
any two vertices (or atoms) and edges (or bonds). In 
2000, Gupta et al. [10] introduced new topological 
index namely connective eccentricity index denoted 
by 𝜉𝑐𝑒 (𝐺)  for the graph G. It is defined with as 
follows:  
 

𝜉𝑐𝑒  𝐺 =   𝑑𝑒𝑔𝐺 𝑢 𝜀𝐺 (𝑢) 

𝑢𝜀𝑉 (𝐺)

 

 
The eccentric connectivity index 𝜉𝑐(𝐺) was defined 
by Sharma et al [11]. The eccentric connectivity index  
is denoted by 𝜉𝑐(𝐺) for the any graph G , also is 
defined as follows: 
 

𝜉𝑐 𝐺 =   𝑑𝑒𝑔𝐺 𝑢 . 𝜀𝐺 𝑢  

𝑢𝜀𝑉 (𝐺)

 

 
The first Zagreb index and second Zagreb index of 
graphs were defined by Gutman et al. [12, 13] . Then 
the first and second Zagreb eccentricity indices 𝐸1(𝐺) 
and 𝐸2(𝐺) were defined by Vukicevic et al. [14]. The 
definitions of them are as follows: 
 

𝐸1 𝐺 =   𝜀𝐺 𝑢  
2

𝑢∈𝑉(𝐺)

 

and  
 

𝐸2 𝐺 =   𝜀𝐺 𝑢 . 𝜀𝐺 𝑣  

𝑢𝑣∈𝐸(𝐺)
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In [6], the average eccentricity index for the any graph 
G is defined as follows: 
 

𝑎𝑣𝑒𝑐 𝐺 =
1

|𝑉(𝐺)|
 𝜀𝐺 𝑢 

𝑢∈𝑉(𝐺)

 

 
Recently, a new topological index namely edge 
eccentric connectivity index, has been studied. This 
new index was defined by Xu et al. [15] and has  been 
studied by some authors  [16, 17, 18, 19]. The edge 
eccentric connectivity index of a graph G, denoted by 
𝜉𝑒
𝑐(𝐺) , is defined as follows:  

 

𝜉𝑒
𝑐(𝐺)  =   𝑑𝑒𝑔𝐺 𝑓 . 𝜀𝐺

 

 𝑓  

𝑓∈𝐸(𝐺)

 

 
where 𝜀𝐺 𝑓  is eccentricity value and 𝑑𝑒𝑔𝐺 𝑓  is 
degree of an edge f  in the graph G. Each eccentricity -
based indices have been much used recently in the 
QSAR/QSPR studies.   
 

In this paper, some eccentricity-based topological 
indices such as connective eccentricity, eccentric 
connectivity, Zagreb eccentricity, average eccentricity 
and edge eccentric connectivity have been computed 
for the diamond graphs. 
 

2. The Exact Values of Eccentricity-Based 
Topological Indices of Diamond Graphs 
 
In this chapter, we compute the values of 𝜉𝑐𝑒  𝐵𝑟𝑛 , 
𝜉𝑐 𝐵𝑟𝑛 , 𝐸1 𝐵𝑟𝑛  , 𝐸2 𝐵𝑟𝑛 , 𝑎𝑣𝑒𝑐 𝐵𝑟𝑛  and 𝜉𝑒

𝑐(𝐵𝑟𝑛 )  for 
the diamond graph of order 2n.  Firstly, we give the 
degrees of vertices and edges of 𝐵𝑟𝑛  . Then, we give a 
lemma for the diamond graphs.  
 
The degrees of every vertex in the diamond graphs 
𝐵𝑟𝑛  are as follows:  
 
𝑑𝑒𝑔𝐵𝑟𝑛   𝑢1 = 𝑑𝑒𝑔𝐵𝑟𝑛   𝑢𝑛−1 = 3, 

𝑑𝑒𝑔𝐵𝑟𝑛   𝑢𝑖 = 4, where 2 ≤ 𝑖 ≤ 𝑛 − 2, 

𝑑𝑒𝑔𝐵𝑟𝑛   𝑣1 = 𝑑𝑒𝑔𝐵𝑟𝑛   𝑣𝑛 = 3,
 𝑑𝑒𝑔𝐵𝑟𝑛   𝑣𝑖 = 5, where 2 ≤ 𝑖 ≤ 𝑛 − 1, 

𝑑𝑒𝑔𝐵𝑟𝑛   𝑤 = 𝑛. 

 
Furthermore, the edges of 𝐵𝑟5 

are labeled in Figure 3. 

 
Figure 3. The graph 𝐵𝑟5 

whose edges are labeled 

The degrees of every edge in the diamond graphs 𝐵𝑟𝑛  
are as follows: 
 
𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑥1 = 𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑥𝑛−2 = 5, 
𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑥𝑖 = 6, where 2 ≤ 𝑖 ≤ 𝑛 − 3, 

𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑦1 = 𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑦2𝑛−2 = 4, 
𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑦2 = 𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑦2𝑛−3 = 6, 
𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑦𝑖 = 7, where 3 ≤ 𝑖 ≤ 2𝑛 − 4, 

𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑧1 = 𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑧𝑛−1 = 6,
 

𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑧𝑖 = 8, where 2 ≤ 𝑖 ≤ 𝑛 − 2, 

𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑡1 = 𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑡𝑛 = 𝑛 + 1,
 

𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑡𝑖 = 𝑛 + 3, where 2 ≤ 𝑖 ≤ 𝑛 − 1. 

 
Lemma 2.1. Let 𝐵𝑟𝑛   be a diamond graph of order 2n. 
If 𝑛 ≥ 6, then 𝑑𝑖𝑎𝑚(𝐵𝑟𝑛) = 4. 
 
Proof. Let  𝑉(𝐵𝑟𝑛) = 𝑉1(𝐵𝑟𝑛) ∪ 𝑉2(𝐵𝑟𝑛) ∪  𝑤 , where 
𝑉1 𝐵𝑟𝑛  =  𝑢1,𝑢2,… ,𝑢𝑛−1  and 𝑉2 𝐵𝑟𝑛 =
 𝑣1 , 𝑣2 ,… , 𝑣𝑛  . These vertices can be seen in Figures 1 
and 2. Firstly, we consider the vertex w.  Clearly,  
𝑑𝐵𝑟𝑛  𝑢𝑖 ,𝑤 = 2  and 𝑑𝐵𝑟𝑛  𝑣𝑖 ,𝑤 = 1

 
for each vertex 

𝑢𝑖 ∈ 𝑉1 𝐵𝑟𝑛   and 𝑣𝑖 ∈ 𝑉2 𝐵𝑟𝑛  , respectively. Then, we 
consider any two vertices  as like 𝑢𝑖 ∈ 𝑉1 𝐵𝑟𝑛  and 
𝑣𝑖 ∈ 𝑉2 𝐵𝑟𝑛 . So, we have 𝑑𝐵𝑟𝑛  𝑢𝑖 , 𝑣𝑥 ≤ 4  and 

𝑑𝐵𝑟𝑛  𝑢𝑖 , 𝑣𝑦 ≤ 3 , where 𝑣𝑥 ∈ 𝑉1 𝐵𝑟𝑛 −  𝑢𝑖  and 

𝑣𝑦 ∈ 𝑉2 𝐵𝑟𝑛 . Similarly, we have 𝑑𝐵𝑟𝑛  𝑣𝑖 , 𝑣𝑧 ≤ 2 , 

where 𝑣𝑧 ∈ 𝑉2 𝐵𝑟𝑛  −  𝑣𝑖 . Then, it is easy to see that  
𝑑𝐵𝑟𝑛  𝑢𝑖 ,𝑢𝑛−1 = 4. Because, a path with 4-length such 

as 𝑢1 ,𝑁𝐵𝑟𝑛  𝑢1 ,𝑤,𝑁𝐵𝑟𝑛  𝑢𝑛−1 ,𝑢𝑛−1 , where 𝑁𝐵𝑟𝑛  𝑢1 , 

𝑁𝐵𝑟𝑛  𝑢𝑛−1 ∈ 𝑉2 𝐵𝑟𝑛  can be found every time for 

𝑛 ≥ 6. So, we get 𝑑𝑖𝑎𝑚(𝐵𝑟𝑛) = 4.     ∎    
 
Theorem 2.1 Let  𝐵𝑟𝑛   be a diamond graph of order 

2n.  If 𝑛 ≥ 9, then 𝜉𝑐𝑒  𝐵𝑟𝑛 =
19𝑛−17

6
 . 

 
Proof. Finding the eccentricity values of every vertex 
of 𝐵𝑟𝑛  

is very similar to Lemma 2.1. Due to 𝑛 ≥ 9, the 
eccentricity values of every vertex in the diamond 
graphs 𝐵𝑟𝑛  are as follows:  
 
𝜀𝐵𝑟𝑛   𝑢𝑖 = 4, where 1 ≤ 𝑖 ≤ 𝑛 − 1, 

𝜀𝐵𝑟𝑛   𝑣𝑖 = 3, where 1 ≤ 𝑖 ≤ 𝑛, 

𝜀𝐵𝑟𝑛   𝑤 = 2. 

 
Then we get the following:   
 

𝜉𝑐𝑒  𝐵𝑟𝑛 =   
𝑑𝑒𝑔𝐵𝑟𝑛   𝑢 

𝜀𝐵𝑟𝑛   𝑢 
 

𝑢∈𝑉(𝐵𝑟𝑛 )

 

 

=   
𝑑𝑒𝑔𝐵𝑟𝑛   𝑢𝑖 

𝜀𝐵𝑟𝑛   𝑢𝑖 
 

𝑛−1

𝑖=1

+   
𝑑𝑒𝑔𝐵𝑟𝑛   𝑣𝑖 

𝜀𝐵𝑟𝑛   𝑣𝑖 
 

𝑛

𝑖=1

+  
𝑑𝑒𝑔𝐵𝑟𝑛   𝑤 

𝜀𝐵𝑟𝑛   𝑤 
  

 

=  
2.3 +  𝑛 − 3 . 4

4
 +  

2.3 +  𝑛 − 3 . 5

3
 +  

𝑛

2
  

 

=
19𝑛−17

6
 .      ∎   

 



M. Ökten Turacı / The Values of Eccentricity-Based Topological Indices of Diamond Graphs 

 

288 
 

Theorem 2.2. Let 𝐵𝑟𝑛  be a diamond graph of order 
2n. If 𝑛 ≥ 9, then 𝜉𝑐 𝐵𝑟𝑛 = 33𝑛 − 36. 
 
Proof. The degree and eccentricity values of every 
vertex of  𝐵𝑟𝑛  

are found in the Theorem 2.1. 
Thus, we have 
 

𝜉𝑐 𝐵𝑟𝑛   =   𝑑𝑒𝑔𝐵𝑟𝑛   𝑢 . 𝜀𝐵𝑟𝑛   𝑢  

𝑢𝜀𝑉 (𝐵𝑟𝑛  )

 

 
    

=   𝑑𝑒𝑔𝐵𝑟𝑛   𝑢𝑖 . 𝜀𝐵𝑟𝑛   𝑢𝑖  

𝑛−1

𝑖=1

+   𝑑𝑒𝑔𝐵𝑟𝑛   𝑣𝑖 . 𝜀𝐵𝑟𝑛   𝑣𝑖  

𝑛

𝑖=1

 

      +  𝑑𝑒𝑔𝐵𝑟𝑛   𝑤 . 𝜀𝐵𝑟𝑛   𝑤   

 

=  2.  3.4 +  𝑛 − 3 .  4.4  +  2.  3.3 +  𝑛 − 2 .  5.3   

      +2𝑛 

 

= 33𝑛 − 36.      ∎   
 
Theorem 2.3. Let 𝐵𝑟𝑛   be a diamond graph of order 
2n. If  𝑛 ≥ 9, then 

 
𝐸1 𝐵𝑟𝑛 = 25𝑛 − 12

  
and also if 

𝑛 ≥ 12,  then 𝐸2 𝐵𝑟𝑛  = 55𝑛 − 65.   
  

Proof. The degrees and eccentricity values of every 
vertex  of  𝐵𝑟𝑛   are found in the Theorem 2.1. 
 
Thus, we have 
 

𝐸1 𝐵𝑟𝑛    =   𝜀𝐵𝑟𝑛    𝑢  
2

𝑢∈𝑉(𝐵𝑟𝑛 )

 

 

=   𝜀𝐵𝑟𝑛  (𝑢𝑖) 
2

𝑛−1

𝑖=1

+   𝜀𝐵𝑟𝑛  (𝑣𝑖) 
2

𝑛

𝑖=1

+  𝜀𝐵𝑟𝑛  (𝑤) 
2

 

 

=   n − 1 . 42 +  n. 32 + 22  

 
= 25𝑛 − 12.    ∎       
 

Clearly, in the graph 𝐵𝑟𝑛   the numbers of edges 𝑒𝑥𝑖 , 
𝑒𝑦𝑖 , 𝑒𝑧𝑖  and 𝑒𝑡𝑖  are 𝑛 − 2 , 2𝑛 − 2 , 𝑛 − 1 and 𝑛 , 
respectively. 
 

Thus, we have 

 

𝐸2 𝐵𝑟𝑛 =   𝜀𝐵𝑟𝑛  𝑢 . 𝜀𝐵𝑟𝑛  𝑣  

𝑢𝑣∈𝐸(𝐵𝑟𝑛 )

 

 

=   𝜀𝐵𝑟𝑛 𝑢 . 𝜀𝐵𝑟𝑛   𝑢  

𝑛−2

𝑖=1

+   𝜀𝐵𝑟𝑛 𝑢 . 𝜀𝐵𝑟𝑛   𝑣  

2𝑛−2

𝑖=1

 

     +  𝜀𝐵𝑟𝑛 𝑣 . 𝜀𝐵𝑟𝑛   𝑣  

𝑛−1

𝑖=1

+  𝜀𝐵𝑟𝑛 𝑣 . 𝜀𝐵𝑟𝑛   𝑤  

𝑛

𝑖=1

    

 

=   𝑛 − 2 .  4.4  +   2𝑛 − 2 .  4.3  +   𝑛 − 1 .  3.3   

        +  𝑛.  3.2   

= 55𝑛 − 65.      ∎     

Theorem 2.4. Let  𝐵𝑟𝑛   be a diamond graph of order 

2n. If 𝑛 ≥ 9, then  𝑎𝑣𝑒𝑐 𝐵𝑟𝑛 =
7

2
−

1

𝑛
 
 
. 

Proof. The degree and eccentricity values of every 
vertex of   𝐵𝑟𝑛   

 
are found in the Theorem 2.1. 

Then, we get  

 

𝑎𝑣𝑒𝑐 𝐵𝑟𝑛 =
1

|𝑉(𝐵𝑟𝑛)|
 𝜀𝐵𝑟𝑛  𝑢 

𝑢∈𝑉(𝐵𝑟𝑛 )

 

 

=
1

2𝑛
   𝜀𝐵𝑟𝑛   𝑢𝑖  

𝑛−1

𝑖=1

+   𝜀𝐵𝑟𝑛   𝑣𝑖  +  𝜀𝐵𝑟𝑛   𝑤  

𝑛

𝑖=1

  

 

=
1

2𝑛
  𝑛 − 1 . 4 + 𝑛. 3 + 2 

 
 

=
7

2
−

1

𝑛
 .    ∎ 

 

Theorem 2.5. Let  𝐵𝑟𝑛   be a diamond graph of order 
2n. If  𝑛 ≥ 12, then 𝜉𝑒

𝑐 𝐵𝑟𝑛 = 2𝑛2 + 96𝑛 − 166. 
 
Proof. The degrees of every edge of  𝐵𝑟𝑛   

are given  at 
the beginning of the Section 2. For 𝑛 ≥ 12 , the 
eccentricity values of every edge of 𝐵𝑟𝑛  

can be found 
similar to Theorem 2.1.  
 
Clearly, the eccentricity values of every edge of  𝐵𝑟𝑛  are as follows:  
 
𝜀𝐵𝑟𝑛   𝑒𝑥𝑖 = 4, where 1 ≤ 𝑖 ≤ 𝑛 − 2, 

𝜀𝐵𝑟𝑛   𝑒𝑦𝑖 = 3, where 1 ≤ 𝑖 ≤ 2𝑛 − 2, 

𝜀𝐵𝑟𝑛   𝑒𝑧𝑖 = 3, where 1 ≤ 𝑖 ≤ 𝑛 − 1, 

𝜀𝐵𝑟𝑛   𝑒𝑡𝑖 = 2, where 1 ≤ 𝑖 ≤ 𝑛. 

 
Thus, we have 
 

𝜉𝑒
𝑐(𝐵𝑟𝑛

 
)  =   𝑑𝑒𝑔𝐵𝑟𝑛  𝑓 . 𝜀𝐵𝑟𝑛

 

 𝑓  

𝑓∈𝐸(𝐵𝑟𝑛

 

)

 

 

=   𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑥𝑖 . 𝜀𝐵𝑟𝑛   𝑒𝑥𝑖  

𝑛−2

𝑖=1

 

      +   𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑦𝑖 . 𝜀𝐵𝑟𝑛   𝑒𝑦𝑖  

2𝑛−2

𝑖=1

 

            +  𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑧𝑖 . 𝜀𝐵𝑟𝑛   𝑒𝑧𝑖  

𝑛−1

𝑖=1

 

                 +  𝑑𝑒𝑔𝐵𝑟𝑛   𝑒𝑡𝑖 . 𝜀𝐵𝑟𝑛   𝑒𝑡𝑖  

𝑛

𝑖=1

    

 
=  2.  4.5 +  𝑛 − 4 . (4.6)  

      + 2.  3.4 + 2.  3.6 +  2𝑛 − 6 . (3.7)  

            + 2.  3.6 +  𝑛 − 3 . (3.8)  

                + 2.  2. (𝑛 + 1) +  𝑛 − 2 .  2. (𝑛 + 3)   

= 2𝑛2 + 96𝑛 − 166.     ∎   
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Next, the vertex eccentricity-based topological 
indices of diamond graphs for  𝑛 ≤ 8  and the edge 
eccentricity-based topological indices of diamond 
graphs for 𝑛 ≤ 11  are given in Tables 1 and 2, 
respectively. 
 

Table 1. Some vertex eccentricity-based topological indices 
of diamond graphs for 𝑛 ≤ 8. 

 𝜉𝑐𝑒  𝐵𝑟𝑛  𝜉𝑐 𝐵𝑟𝑛   𝐸1 𝐵𝑟𝑛    
 
𝑎𝑣𝑒𝑐 𝐵𝑟𝑛   

𝑛 = 3 25/2 35 21 11/6 

𝑛 = 4 13 72 52 5/2 

𝑛 = 5 15 110 80 14/5 

𝑛 = 6 103/6 150 117 37/12 

𝑛 = 7 20 187 149 45/14 

𝑛 = 8 137/6 224 181 53/16 
 

Table 2. Some edge eccentricity-based topological indices 
of diamond graphs for 𝑛 ≤ 11.  

 𝐸2 𝐵𝑟𝑛     𝜉𝑒
𝑐 𝐵𝑟𝑛   

𝑛 = 3 30 50 

𝑛 = 4 86 140 

𝑛 = 5 151 248 

𝑛 = 6 225 382 

𝑛 = 7 293 526 

𝑛 = 8 361 684 

𝑛 = 9 430 842 

𝑛 = 10 485 982 

𝑛 = 11 540 1126 
 

3. Conclusion 
 

Eccentricity-based topological indices in diamond 
graphs are considered in this paper while giving an 
insight of how to evaluate the parameters and derive 
formulas on diamond graphs. Moreover, we give a 
lemma for diamond graphs such as diameter of 𝐵𝑟𝑛  is 
4 for 𝑛 ≥ 6. 
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