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Abstract: A theoretical bifurcation control strategy is presented for a single Fitzhugh-
Nagumo (FN) type neuron. The bifurcation conditions are tracked for varying parameters
of the individual FN neurons. A MATLAB package called as MATCONT is utilized
for this purpose and all parameters of the neuron is analyzed one-by-one. Analysis by
MATCONT revealed five Hopf (H) and one Limit-Point/Saddle Point (LP) bifurcation.
The Hopf type of bifurcations are controlled by a washout filter supported by projective
control theory. Washout filters are designed as first and second order. First order washout
filter which is also physically applicable appeared to be more advantageous than the
second order version. It appeared that, the LP case could not be stabilized by the aid of a
washout filter. To solve this issue, a nonlinear controller is proposed. The only drawback
associated with that is its inability to keep the original equilibrium point. Simulations are
also provided to validate the research done.

Fitzhugh-Nagumo Modelleri İçin Çatallanma Denetimi

Anahtar Kelimeler
Fitzhugh-Nagumo nöronları,
Çatallanma,
Arındırma filtreleri,
İzdüşümsel denetim,
Doğrusal olmayan denetim

Özet: Bu yazıda tekil Fitzhugh-Nagumo (FN) nöron modelleri için teorik bir çatallanma
denetim çalışması sunulmaktadır. Değişmekte olan parametreler için çatallanma analizleri
MATLAB üzerinde çalışan MATCONT uygulaması ile yapılmıştır. Söz konusu analizde
5 Hopf (H) ve 1 adette Sınır Noktası/Eyer Düğümü (LP) olgusuna rastlanmıştır. Hopf
tipi çatallanmalar izdüşümsel denetim ile desteklenmiş arındırma süzgeçleri kullanılarak
sağlanmıştır. Arındırma süzgeçleri birinci ve ikinci derece olarak uygulanmıştır. Birinci
derece süzgeç ikinci dereceye göre daha avantajlı olduğu anlaşılmıştır. Birinci derece
süzgeç hem daha uygulanabilir olmakta hem de daha hızlı davranmaktadır. LP türü
çatallanmalar için derecesinden bağımsız olarak arındırma süzgecinden yapılan çıktı geri
beslemesi başarılı olamamakta ve bu nedenle birini derece süzgecle beraber birde zar
potansiyelinden ek bir geri besleme alınmaktadır. Bunun dezavantajı süzgecin yüksek
geçirgen niteliğinin bozulmasına neden olmakta ve LP denge noktasının korunmasına
olanak vermemektedir. Bu soruna çözüm olması için doğrusal olmayan bir denetleyici
tasarımıda gösterilmektedir. Bunun tek dezavantajı orjinal denge noktaları korunamaktadır.
Sonuçlar benzetimlerle desteklenmektedir.

1. Introduction

1.1. General introduction and literature survey

Modeling biological neurons by differential equations is
a popular subject of research in the last two decades. The
Nobel prize winner Hodgkin-Huxley (HH) model [1] is
a result of a voltage-clamp based research on the squid
giant axon. This is a quite nonlinear and computation-
ally complex neuron model but it is important due to its
ability to describe the behavior of a realistic neuron. In
order to simplify the models certain attempts are made. [2]
and [3] are some related well known examples. These are
simplified order reduced models. The Fitzhugh-Nagumo
model coined in [2, 4] is somehow different in appearance

as it does not refer to any physical terms other than the
membrane potential. The behavior of ion channels are
merged into a single recovery variable. In this view, it can
be compared to a continuous time recurrent neural network.
Although it is mathematically different, it does have a set
of bifurcations like the other two ([1] and [3]). There are
numerous studies that are concentrated on analysis of bifur-
cations in Fitzhugh-Nagumo neurons. Some related works
can be given as [5–11]. According to these sources, the
main bifurcation condition seen in Fitzhugh-Nagumo type
neurons is the single parameter Andronov-Hopf (or simply
Hopf) bifurcation [12–16]. Basically, this is a situation
where a limit cycle erupts from an equilibrium point of a
dynamical system due to the change in its stability through
a pair of complex conjugate eigenvalues. This event ap-
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pears when a parameter change occurs which yields pure
complex conjugate eigenvalues. In addition the stability
of the resultant limit cycle determines the criticality of the
Hopf bifurcation. If it is a supercritical bifurcation, one has
a stable limit cycle where as there will be an unstable limit
cycle in case of a subcritical bifurcation.Another type of a
bifurcation that occurs in FN models is the Saddle Node or
Limit Point bifurcation [12, 17, 18]. This is the vanishing
of an equilibrium point due to the collision of two equi-
libria in a dynamical system. The parameter change that
leads to this situation results in a single zero eigenvalue in
the Jacobian of the system. Bifurcations can be harmful
in physical systems due to instability or high-amplitude
oscillations. Thus, controlling a bifurcation is beneficial.
Control of a bifurcation [19] can be performed by various
methods. These can be a regular control system like linear
quadratic regulator [20], washout filters [21, 22] and local
feedback [23]. There are some advanced techniques such
as delayed feedback [24] are also seen in the literature.
Control of Fitzhugh-Nagumo models are met in the neu-
roscience and nonlinear systems literature. Some related
studies focusing on this are [11, 25–30]. Most of these
studies are related to chaotic synchronization or control-
ling of the chaos phenomenon itself.

1.2. Summary of this work

In this research, we will concentrate on a pure bifurca-
tion control study. The target action of the controllers
is to stabilize a particular bifurcating equilibrium point
by implementing a feedback from membrane potential or
from the full state (membrane potential and recovery vari-
able) of a Fitzhugh-Nagumo neuron. The controllers are
mainly based on washout filter theory [21, 22] designed
through output feedback approaches. Using output feed-
back approaches are quite beneficial as the feedback from
the output of the washout filter can be thought of an output
feedback from the combined dynamics of the washout filter
and FN neuron. The washout filter is naturally a high-pass
filter that blocks the steady state and only allows transient
portion of the signals. In nonlinear systems, application
of a washout filter will keep the location of the equilib-
rium points. This is beneficial concerning the neurological
dimension of the study because the membrane potential
will not be shifted which might lead to certain conditions
especially when applied to neuromuscular junction.
In the case that washout filters are not successful (unstable
or not working as expected), one can apply other linear or
nonlinear techniques. This may especially be necessary at
the Limit Point case.
Some peculiarities in an application of bifurcation control
is the necessity of the knowledge of the parameters. In the
real life these parameters are often unknown or vaguely
known. Because of this fact, an initial system identifica-
tion process should be applied. This goal can be achieved
by various methodologies such as combined state and pa-
rameter estimation methodologies [31–33], least squares
techniques [34–36] and possible maximum likelihood esti-
mation methods [37–39]. A similar approach is the mini-
mization of the mean square error between the measured
membrane potential and the one generated by the model

neuron. In this research, we will also demonstrate how
successful a minimum mean square optimization is in the
detection of the bifurcated parameters.

1.3. Outline of this work

One can examine the developmental steps of this research
as shown below:

1. First of all, the dynamical model of a Fitzhugh-
Nagumo neuron [4] is introduced. The information
includes the mathematical details of the model (in-
cluding its linearization) and numerical values of the
parameters (in Section 2.1).

2. An introduction to bifurcation theory is presented.
Here one will be able to meet the qualitative and math-
ematical definitions of the Saddle Points, Hopf and
Saddle Node (Limit Point) bifurcations [12] (Section
2.2).

3. A bifurcation analysis of Fitzhugh-Nagumo neuron
model is performed and associated results are pre-
sented. The analysis is performed by MATCONT
which is a MATLAB based software package. We
provide tables that reveal types of bifurcation (Hopf,
Limit Point etc.), value of the bifurcating parameter,
the corresponding equilibrium points and the associ-
ated eigenvalues of system Jacobian (Section 2.2.4).

4. In this work, our desire is to stabilize each bifurcated
equilibrium point by applying a properly designed
feedback control law that measures the neuron mem-
brane potential. Major methodologies are based on
washout filter theory [21] and nonlinearity cancella-
tion [40]. Since washout filters are linear filters, their
utilization in bifurcation control will require the de-
velopment of linear control techniques. In this study,
we will benefit from linear quadratic theory (LQR).
The washout filters are integrated with the linearized
neuron model and filter the membrane potential. How-
ever, the control law is generated from a signal which
is the linear combination of the washout filter states.
So, we will have a feedback from a subset of the com-
bined state vector (linearized neuron and washout
filter). This corresponds to an output feedback and
thus one can implement output feedback control ap-
proaches such as projective control theory [41]. The
linear techniques will especially be beneficial for the
Hopf bifurcation cases (Section 3.1 and 3.2). In the
case that linear techniques are not successful, a non-
linearity cancellation based approach is also provided
Section 4.4.1.

5. Application of the bifurcation control theory to the
Fitzhugh-Nagumo neurons are presented. The Hopf
bifurcations are stabilized by washout filter based
feedback. Two examples washout filter based control
are presented. One only implements a feedback from
the membrane potential whereas the other one imple-
ments a feedback from the full state of the neuron.
The Limit Point bifurcation is controlled by a nonlin-
ear methodology as washout filter based approaches
failed Section 4.

376



R. O. Doruk, H. Ihnish / Bifurcation Control of Fitzhugh-Nagumo Models

6. A minimum mean square based parameter estimation
[42] approach is also introduced as a last part of this
research. As the parameters of a neuron is actually
very difficult to know one will need to perform an
experiment to identify the numerical values of its
parameters. This is also beneficial as one will be able
to estimate the bifurcating parameter if applied to a
bifurcating neuron. In a realistic environment (in vivo
or in vitro) only the membrane potential information
is available. Thus, the estimation procedure should
rely on a trace of membrane potential measured. For
the optimization purposes, MATLAB Optimization
Toolbox is utilized (Section 4.5).

7. Numerical examples and simulation results are pre-
sented in Section 5.

1.4. Concerning realistic problems

In this research, we are talking about bifurcation control
of a neuron model. Of course some questions may rise
regarding the realistic extension of the developments here.
We can make the following comments on this manner:

1. Rather than physical features, Fitzhugh-Nagumo mod-
els are originally developed to reflect the dynamical
features of a biological neuron. This mainly includes
firing and bursting. But, this does not mean that it is
not suitable for a realistic application.

2. The neuron may be utilized in a realistic application
if its parameters can be properly determined in a re-
alistic environment. In Section 4.5, we discussed an
approach to achieve this goal.

3. In a mammalian nervous system, not every fiber can
be directly accessible. In other words, touching with
an electrode to the neural membrane may detrimen-
tally alter its operation. In such cases, one can either
place the electrodes a nearby location to the neuron
and record the action potential peaks and record the
neural spiking events (peaks of the action potentials
occurred) and train the model using a point process
maximum likelihood (similar to that of [43]). The
controller will then be designed. This type of prob-
lems are met when we are dealing with the modeling
of sensory neurons.

4. The problem that is addressed in this research is about
the control of a bifurcation event (merely to stop an
oscillation of the membrane potential). This may be
considered as a representative of a medical condition
such as Parkinson’s disease [44] or bipolar disorder
[45]. These can be considered as a moderate or low
frequency oscillation generated by a large group of
neurons. After performing a suitable parameter iden-
tification one can implement a feedback mechanism
to stop these oscillations which can be thought as a
treatment. Here attaching an electrode to a a neu-
ral membrane may still be an issue. One can place
the electrode to a nearby location and using the cur-
rent flow through the conductance of the surrounding
medium to measure the variations in the membrane

potential of the interested neuron(s). A current sens-
ing mechanism might be necessary here.

2. Fitzhugh-Nagumo Models and Their Bifurcation
Analysis

2.1. Mathematical details of the model

Fitzhugh-Nagumo models [4] are second order nonlinear
differential equations bearing the membrane potential (V )
and a recovery variable (W ). A FN neuron can be excited
by an external current injection (I). The mathematical
equation is shown below (form in [4, 7, 46]):

V̇ =V −dV 3−W + I

Ẇ = cV +a−bW
(1)

where (a,b,c,d) are specific neuron parameters, (V ) is
in mV’s, (I) is in µA/cm2. In addition the above equation
assumes that the time variable t is in milliseconds. Table 1
shows the nominal values of the specific parameters of (1).

Table 1. The nominal parameters of the FN model in (1).
These are evaluated using the information from [7].

Parameter Value
a 0.08
b 0.056
c 0.064
d 0.333

The variation of the membrane potential with the parame-
ters in Table 1 will be similar to to that of Figure 1. Based
on the simulation results, we can write the steady state or
equilibrium point corresponding to the nominal parameters
in Table 1 as shown below:

V∞ =−1.5369
W∞ =−0.3279

(2)

Equilibrium points (or the solutions of
(
V̇ = 0 & Ẇ = 0

)
)

may also be found by finding the roots of the following
polynomial:

bdV 3 +(c−b)V +a = 0 (3)

and then substituting the result V∞ to the following equa-
tion:

W∞ =V∞−V 3
∞ (4)

Using the values in Table 1 and solving the equations (3)
and (4) using MATLAB roots([]) command one will
have one real values solution that is exactly the same as
that of (2).
From (3) it is pretty obvious that, the equilibrium point
strictly depends on the values of the model parameters
(a,b,c,d). The change of one or more parameters of the
model will lead to a relocation of the respective equilibrium
points of (1). As that is a nonlinear system, the deviation of
equilibrium points may lead to a change in the qualitative
behavior of the model in (1). These phenomena are called
as bifurcation [12] in nonlinear systems theory and may be
detrimental for physical systems.
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The purpose of this work is to develop control laws that will
stabilize the dynamics of (1) around the bifurcated equi-
librium points. Development of linear controllers around
equilibrium points require the linearization of the nonlinear
model in (1). If x = [V,W ]T and if (1) is written as

ẋ = f (x, I,θ) (5)

with θ ∈R being a system parameter, one can write the
Jacobian linearized system as:

˙̂x = ∇x f (x, I,θ)|(x=x∞,I=I∞) x̂+ ∇I f (x, I,θ)|(x=x∞,I=I∞) Î
(6)

where x̂ = x− x∞, Î = I− I∞ and ∇x f corresponds to the
gradient of f with respect to x. One can rewrite (6) as:

˙̂x = A∞x̂+B∞Î (7)

where A∞ = ∇x f (x, I,θ)|(x=x∞,I=I∞) and B∞ =

∇I f (x, I,θ)|(x=x∞,I=I∞) Î.
Considering the model in (1), these matrices will be:

A∞ =

[
1−3dV 2 −1

c −b

]
B∞ =

[
1
0

] (8)

The eigenvalues of A∞ is important in determining the local
stability properties of (1) at x = x∞ and thus it is critical in
bifurcation discussion.

2.2. Parameter drifts and bifurcations

In the previous section we stated that nonlinear systems
(all physical systems are nonlinear in nature) may exhibit
different behaviors when an equilibrium point moves due
to a change in one or more parameter of the considered
nonlinear system.
In two dimensional (planar) systems, the most common
single parameter bifurcations are of Hopf [14] or Saddle
Node/Limit Point [17] type. There is also a critical point
called as a Saddle Point which has nothing to do with the
saddle node/limit point cases and thus it is not considered
as a bifurcation.
In this research, we will discuss the bifurcations exhibited
by (1) against deviations in parameters θ = [a,b,c,d] so
we will suppose that I = 0 in the analysis stage. It will be
treated as an input when we discuss the bifurcation control
in Section 4.
With I = 0 (5) can be rewritten as:

ẋ = f (x,θ) (9)

and its Jacobian will be A∞ in (7) and (8) with I being
substituted as I = 0.
Suppose also that x = xn

∞ is the equilibrium point of (9)
when the parameters are at their nominal values. So the
effected parameter θ is also at its nominal value as θ = θn.
So one can write f (xn

∞,θn) = 0. When θ deviates from
θ = θn, a bifurcation may appear. In the foregoing sections
we will discuss the qualitative and numerical details of the
bifurcation conditions met in this research.

2.2.1. Hopf bifurcation

Suppose that at a certain parameter θ = θh the properties
of a stable equilibrium point xh

∞

[
f (xh

∞,θh) = 0
]

changes
such that a limit cycle occurs around the equilibrium point.
In this case, we will have an oscillation around the equilib-
rium x = xh

∞. This situation is called as Hopf bifurcation
[47] and revealed by a single pair of pure complex eigen-
values of A∞ at x = xh

∞ and θ = θh.
The stability of erupted limit cycle is also an important
concern in Hopf bifurcation discussions. If there is a stable
limit cycle, one has a supercritical Hopf bifurcation other-
wise the bifurcation is subcritical which yields an unstable
limit cycle [14].
The criticality of Hopf bifurcations are mathematically
characterized by a numerical parameter called as First
Order Lyapunov Coefficient (FOLC) l1(0). This parameter
is derived from Taylor series expansion of f (x,θ) up to the
third degree. FOLC can be evaluated by software packages
such as MATCONT [48, 49]. If it is positive, we have
a subcritical and if it is negative we have a supercritical
bifurcation respectively.

2.2.2. Limit Point or Saddle Node bifurcation

Limit Point (LP) or Saddle Node bifurcation [18] refers to
a condition where the stability of two equilibria changes
due to their collision. Suppose that this collision occurs at
θ = θl with the state equilibrium at x = xl

∞. At this point,
one will have one eigenvalue of the system Jacobian A∞ at
origin.

2.2.3. Neutral Saddle Points

Suppose that the system Jacobian A∞ at θ = θs and at
the corresponding equilibrium x = xs

∞ has a pair of eigen-
values with opposite signs and equal magnitudes (±λs).
Because of its characteristic it is generally not considered
as a bifurcation.

2.2.4. Situation in Fitzhugh-Nagumo models

Fitzhugh-Nagumo models exhibit mainly Hopf and Limit
Point bifurcations as obtained from analysis by MAT-
CONT package [48, 49]. In Table 2 numerical details
concerning the bifurcation profile of FN neuron modeled
in (1). As indicated by Table 2, the FN model in (1) has 5
Hopf and 1 Limit Point bifurcations. In order to have an
idea on what is happening when the cases in Table 2 are
encountered, one can refer to the Figure 3-7

3. Bifurcation Control Approaches

3.1. Washout filter theories

Washout filters [21, 22] are naturally a type of high-pass
filter which blocks the steady-state responses of systems
but do allow the transient part of the signal. This behavior
helps to preserve the natural equilibrium of a physical
system. Mathematically, it can be shown as a state space
equation of the form as shown below:

ż = Awz+Bwy

I = Awz+Bwy
(10)
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Table 2. Bifurcation analysis results for FN model in (1) with the parameters in Table 1. The condition column indi-
cates only the affected parameter all other parameters are same as Table 1. FOLC stands for First Order Lyapunov
Coefficient which is critical in determination of the criticality of the Hopf bifurcations.

Case Condition Type Equilibrium & Other Information Eigenvalues

1 a = 0.024906 Hopf
(v =−0.972082,w =−0.666201)

FOLC=3.46×10−01

Criticality: Subcritical
( j0.2467,− j0.2467)

2 a =−0.024906 Hopf
(v = 0.972082,w = 0.666201)

FOLC=3.46×10−01

Criticality: Subcritical
( j0.2467,− j0.2467)

3 b =−0.022854 Hopf
(v =−1.011869,w =−0.666871)

FOLC=−8.15×10−01

Criticality: Supercritical
( j0.2519,− j0.2519)

4 c = 0.120676 Hopf
(v =−0.972081,w =−0.666201)

FOLC=−4.48×10−02

Criticality: Supercritical
( j0.3428,− j0.3428)

5 d = 0.032276 Hopf
(v =−3.122398,w =−2.139884)

FOLC=3.35×10−02

Criticality: Subcritical
( j0.3428,− j0.3428)

6 d =−0.000212 Limit Point
(v =−15.000000,w =
−15.714286) (1.0871,−0.0000)

where z ∈ℜp is the state of the washout filter, y which is a
scalar or a vector is the measured output of the controlled
system (i.e. the neuron) and I ∈ ℜ is the output of the
washout filter which is the control input to the controlled
system. Here, Aw ∈ℜp×p and Bw has p rows and specified
number of columns depending on the size of y. As washout
filter is a type of linear dynamical system one can augment
it to the original nonlinear system and apply state feedback
control techniques. The matrix Aw should be Hurwitz.

3.2. Linear quadratic regulators and projective con-
trol

3.2.1. Linear quadratic full state feedback control

Linear quadratic regulators are well known full state feed-
back control techniques based on the optimization of a
quadratic performance index such as:

J =
1
2

∞∫
0

(
xT Qx+uT Ru

)
dt (11)

such that ẋ = Ax+Bu. In the above, x ∈ ℜn is the state
of the linear plant, u ∈ ℜ is the input of the linear plant,
Q ∈ℜn×n and R ∈ℜ are the quadratic performance index
coefficients. Here the plant is designated by ẋ = Ax+Bu
with A ∈ ℜn×n and B ∈ ℜ. The control law is generated
as u = −R−1BT Px where P ∈ ℜn×n is a symmetric and
positive definite unique solution of the algebraic Riccati
equation AT P+PA−PBR−1BT P+Q = 0.

3.2.2. Projective control theory

Knowing the fact that full state feedback generates a con-
trol law of the form u =−Kx where the gain K = R−1BT P
processes all the elements of the state vector x from the
plant of the form ẋ = Ax+Bu. In several control problems
from realistic applications, one often appears to have cases

where all elements of the state vector can not be physically
measured. This led to studies such as [41, 50, 51] which
utilizes orthogonal projection theorems to obtain an output
feedback u =−Koy where y has the physically measurable
inputs or the output signals to be involved in feedback. Ko
is computed from an orthogonal projection from the full
state space to a subspace generated from the measurable
elements of the state vector. Now, if one writes the full
plant equation as:

ẋ = Ax+Bu

y =Cx
(12)

where y ∈ ℜr is the output where the feedback is taken
from, C ∈ ℜn×r is the matrix relating the outputs of the
plant to the state and r is the number of available feed-
back lines, namely the size of the output. The feedback is
formed as u =−Koy. To implement the projective control
one has to find the full state feedback closed loop spectrum:

ẋ = (A−BK)x = Acx (13)

and let the diagonal eigenvalue matrix and stacked eigen-
vectors of Ac are denoted as Λ and Ψ as shown below:

Λ=


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn

 , Ψ=
[
v1 v2 v3 . . . vn

]

(14)
where λi are the sorted eigenvalues of Ac and vi are the
eigenvectors associated with λi. The output feedback will
also have n eigenvalues however they will not completely
be the same as that of Λc instead only r number of eigen-
values from Λc will be the same. These are called as the
retained eigenvalues. The remaining n− r eigenvalues
can appear anywhere in the complex plane. So projective
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control will not guarantee a stable output feedback closed
loop. In these cases the dynamical version of the projec-
tive control might be an alternative. The designer should
first decide which eigenvalues from Λc should be retained.
That decision is often critical concerning the stability of
the final closed loop.
Suppose that the designer wants to retain r eigenvalues
Λr = diag(λ r

1 ,λ
r
2 , . . . ,λ

r
n) from Λc. Here λ r

i will have the
same values as λi but only r number of them will be as
such. The corresponding eigenvectors from Ψ will be
denoted as Ψr. The projective control can now be obtained
by applying the orthogonal projection equation to the full
state feedback gain K:

Ko = KΨr(CΨr)
−1 (15)

where Ko ∈ℜ1×r is the output feedback gain. The closed
loop dynamics of the output feedback gain is ẋ = (A−
BKoC)x and its closed loop eigenvalues should have Λr
exactly and n− r additional manipulatable eigenvalues
which may or may not be at stable locations.

3.2.3. Projective control approaches in bifurcation
control

As the washout filter and the bifurcated plant will form a
higher order dynamical system, projective control might
be utilized to form a washout filter based bifurcation con-
troller by applying feedback from the output of the washout
filter directly. So y will be the output of the washout filter
which will be processed by the projective output feedback
gain Ko. The bifurcated plant should of course be lin-
earized prior to the augmentation by the washout filter’s
dynamics. So one can progress as follows: For a nonlinear
system of the form ẋ = f (x,u)

Ap =
∂ f
∂x

∣∣∣∣
x=x̃,u=ũ

, Bp =
∂ f
∂u

∣∣∣∣
x=x̃,u=ũ

(16)

where p denotes plant. Here x̃ and ũ are the equilibrium
values of the nonlinear plant ẋ = f (x,u) which means
f (x̃, ũ) = 0 at the condition of any bifurcation. So the
linearized nonlinear plant together with the washout filter
will be expressed as:

˙̂x = Apx̂+Bpû

ż = Awz+BwHx̂
(17)

where H is a matrix for selecting the measurable entries
of the state vector x̂. It will have ones and zeros as entries.
The output of the system in (17) will be:

y = Awz+BwHx̂ (18)

and the designed control law is û = −Koy = −Ko(Awz+
BwHx̂). In the above C = [BwH Aw], so (15) can directly
be used for deriving Ko.

4. Bifurcation Controllers for Fitzhugh-Nagumo Mod-
els

4.1. Derivation of the linearized model for bifurcation
control

In Section 2.1, we discussed the derivation of the lin-
earized version of (1). The procedure is repeated below

for convenience. Before proceeding one has to derive the
Jacobians of the Fitzhugh-Nagumo neurons. These will be:

∂V̇
∂V

= 1−3dV 2

∂V̇
∂W

=−1

∂Ẇ
∂V

= c

∂Ẇ
∂W

=−b

(19a)

Ap =

[
1−3dV 2 −1

c −b

]
, Bp =

[
1
0

]
(19b)

Here, the linearized state vector is x̂ = [V̂ ,Ŵ ]T and the
bifurcating equilibrium values Ṽ and W̃ are given in Table
2. The control law is the injected current I to the nonlin-
ear neuron model in (1). Considering the washout filter
augmentation one may consider two cases. These will be:

1. The washout filter will only filter the membrane po-
tential V resulting in a first order filter. This case is
physically more practical.

2. In this case, it is assumed that both states of the neuron
can be measured or observed. The washout filter will
filter both the membrane potential V and the recovery
variable W . This will yield a second order filter.

In the next stages we will cover the two cases discussed
above.

4.2. Case 1: First Order Washout Filter

In this case as we will only implementing a feedback from
the membrane potential V , we will only need a first order
washout filter represented by:

ż = αwz+βwV

y = αwz+βwV
(20)

where αw < 0 is required for stability and βw is arbitrary.
It can be equal to unity. So the augmented model will be: ˙̂V

˙̂W
ż

=

1−3dV 2 −1 0
c −b 0

βw 0 αw

V̂
Ŵ
z

+
1

0
0

 I (21)

The output (measurement for feedback) relationship will
be given by:

y =
[
βw 0 αw

]V̂
Ŵ
z

 (22)

which means C =
[
βw 0 αw

]
. From this point, one can

apply to the methodologies presented in Section 3.2.2.
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4.3. Case 2: Second Order Washout Filter

In this case, we assume that both membrane potential V
and recovery variable W are observable. Thus, one will
need a second order washout filter as shown below:

[
ż1
ż2

]
=

[
αw(1,1) αw(1,2)
αw(2,1) αw(2,2)

][
z1
z2

]
+

[
βw(1,1) βw(1,2)
βw(2,1) βw(2,2)

][
V
W

]
y =

[
αw(1,1) αw(1,2)
αw(2,1) αw(2,2)

][
z1
z2

]
+

[
βw(1,1) βw(1,2)
βw(2,1) βw(2,2)

][
V
W

]
(23)

The above can be rewritten shortly as:

Ż = AwZ +BwX

Y = Awz+BwX
(24)

with Aw =

[
αw(1,1) αw(1,2)
αw(2,1) αw(2,2)

]
, Bw =[

βw(1,1) βw(1,2)
βw(2,1) βw(2,2)

]
, Z = [z1,z2]

T and X = [V,W ]T .

Here the most important criterion is the stability of Aw. It
should be Hurwitz as stated in the discussion of washout
filters. So the augmented model will be: ˙̂V

˙̂W
ż

=


1−3dV 2 −1 0 0

c −b 0 0
βw(1,1) βw(1,2) αw(1,1) α2(1,2)
βw(2,1) βw(2,2) αw(2,1) α2(2,2)


V̂

Ŵ
z

+
1

0
0

 I

(25)
The output (measurement for feedback) relationship will

be given by:

y =
[

βw(1,1) βw(1,2) αw(1,1) α2(1,2)
βw(2,1) βw(2,2) αw(2,1) α2(2,2)

]
V̂
Ŵ
z1
z2


(26)

which means C =

[
βw(1,1) βw(1,2) αw(1,1) α2(1,2)
βw(2,1) βw(2,2) αw(2,1) α2(2,2)

]
.

From this point, one can apply to the methodologies
presented in Section 3.2.2. In order that (26) to be fed
back to the FN neuron it should be processed by a gain
which also converts it to a scalar control law.

4.4. Other options

In general a combined washout filter/projective control
approach should be adequate to implement a bifurcation
controller. However, in certain cases such an arrangement
does not yield stable controllers. We will see in the Limit
Point case neither the first nor the second order washout
filter yielded a stable closed loop. Thus one will need a
different controller. This fact may appear in severe cases
such as Limit Point (LP). For that, a nonlinear controller
is expected to be beneficial. This type of controllers often
involve an internal nonlinearity cancellation and a linear
feedback.

4.4.1. Nonlinearity cancellation

Nonlinearity cancellation is the elimination of certain non-
linear terms (powers of a variable, trigonometric functions

etc.) in a dynamical system by applying an interim control
law to its input. The remaining system may or may not
be linear depending on the existence of available terms for
cancellation. Considering the Fitzhugh-Nagumo model in
(1) if we apply a nonlinear control law as:

I =−V +dV 3 +U (27)

to:

V̇ =V −dV 3−W + I

Ẇ = cV +a−bW
(28)

we will obtain:

V̇ =−W +U

Ẇ = cV +a−bW
(29)

It is obvious that the above system is linear except the
constant term a. It has a linear input term U . We can apply
a linear feedback law as shown below:

U = k1V + k2W (30)

The closed loop dynamics will now be:

V̇ = k1V + k2W −W

Ẇ = cV +a−bW
(31)

In state space form:[
V̇
Ẇ

]
=

[
k1 k2−1
0 −b

][
V
W

]
+

[
0
a

]
(32)

In the above, it is obvious that we have a constant term
which somewhat violates the standard state space equations
we see in the literature. However, as also revealed from
the same equation (32) the constant term can be separated
as a external input to the closed loop. The stability then
can be analyzed through the notion of Bounded-Input and
Bounded-Output (BIBO) stability which is described in
the theorem below:

Theorem 4.1 (Bounded Input/Bounded Output (BIBO)
Stability). Consider a linear system shown by the state
equation:

ẋ = Ax+Bu

y =Cx+Du
(33)

The above system is said to be bounded-input/bounded-
output stable if and only if the eigenvalues of A is on the
left half region of the complex plane.

Note that as a is a constant parameter in reality, it can be
considered as a bounded input to (32) of which character-
istic equation is:

∆(s) = det(sI2×2−A) = (s− k1)(s+b) (34)

The roots of above are s = k1 and s =−b. As b > 0, only
condition required is k1 < 0 per Theorem 4.1. Here, k2
may be an arbitrary finite gain including k2 = 0. The latter
leads to a feedback only from membrane potential (V )
which is beneficial as V is the only physical variable. The
only bad side of this design is its inability to preserve the
original equilibrium values of (1).
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4.5. Problem of unknown parametrics

Most of the time, the system parameters (a,b,c,d) are not
known exactly or vaguely known. A system identification
should be performed prior to activation of a bifurcation
controller. For models with small parameter sets like the
FN neuron, it will be beneficial to try the minimum mean
square estimation approaches. If one calls the parameters
to be estimated as θ = [a,b,c,d] and the actual membrane
potential as Va, the following can be written:

J(θ) =

Tf∫
0

(V (θ)−Va)
2 dt (35)

The above is the cost function to minimize. It is a func-
tion of unknown parameter θ . The term V (θ) refers to
the computed membrane potential using the a particular
estimate of the parameters θ and Tf is the duration of data
collection. Basically the estimate of θ which is θ̂ can be
found by minimizing J(θ) w.r.to the parameter θ as shown
below:

θ̂ = argmin
θ

J(θ) (36)

which means:
∂J(θ)

∂θ

∣∣∣∣
θ=θ̂

= 0 (37)

Using MATLAB® fmincon function from its optimiza-
tion toolbox this operation can simply be done. The cost
function can be generated by recording a measurement of
membrane potential and integrating the model equation
using the current estimate of the parameter θ . The two
data arrays are subtracted, squared and re-integrated prior
to supplying fmincon script. In the next section, we will
present the results of the application of the theory pre-
sented in this section to the bifurcation control of an FN
neuron.

5. Results

The numerical simulations in this section make use of
the information given in Table 1 and Table 2 in the de-
velopment of the control laws. Before proceeding to the
projective control section one will have to initialize the
washout filter coefficients according to the guidelines given
in Section 3.1. For first order washout filters we will use
αw = −0.1 and βw = 1. On the other hand, the second
order washout filters will require matrix coefficients which
can be written as Aw =−0.1I2×2 and Bw = I2×2. The full
state feedback optimal control coefficients will be initial-
ized as Q = 50I3×3 and R = 1 for first order washout filter
case and Q = 50I4×4 and R = 1 for the second order filter
respectively.

5.1. Results for control by a first order washout filter

Table 3 summarizes the results of the first order washout
filter and projective control applied on the FN nonlinear
neuron. It is understood from the simulations that LP case
does not yield a stable outcome. We will need to design
an alternative controller for this case. The information in

Section 4.4 will be utilized for this purpose. The graphical
results showing the variation of the membrane potential
for each case in Table 2 are shown in Figure 8-12. The
results associated with Case 6 will not be shown here as it
is solved by another controller.

5.2. Results for control by a second order washout fil-
ter

Table 4 summarizes the results of the second order
washout filter and projective control applied on the FN
nonlinear neuron. The situation is same for the Limit Point
bifurcation case so the approach proposed in Section 4.4
seems the only solution from the alternatives presented in
this research. The graphical results showing the variation
of the membrane potential under control by a second order
washout filter for each case in Table 2 are shown in Figure
13-17.

5.3. Results of nonlinear control

In the simulations associated with the nonlinear control
described in section Section 4.4 will be utilized. The gain
k2 will be taken as zero so that only a feedback from mem-
brane potential V is established which is meaningful in
physical sense. The results are given for Case 6 with a few
different values of the gain k1. The results are presented
graphically in Figure 18-23. The figures reveal stable out-
comes from the nonlinear control of Case 6 of Table 2.
The only peculiarity of the nonlinear approach is that the
original equilibrium values in Case 6 are not preserved.
More truly speaking they are dependent on the level of the
parameter k1.

5.4. Estimation of the neuron parameters prior to bi-
furcation controller

Using the theory presented in Section 4.5 one will be able
to perform a parameter determination study prior to an
application of a bifurcation control as the parameters of
the FN neuron should not be expected to be known at
the time of implementation. Assuming the neuron is in a
condition of a particular bifurcation case from Table 2 one
can apply the least squares technique for a predetermined
length of samples obtained from measurement. In Table
5, one will be able to see what happens when one has a
parameter estimation attempt for Case 1 of Table 2 with
the indicated length of samples.
As one can see from Table 5, the parameter estimation
results are quite accurate. Thus, for other cases we will
only present the results of the identification process with a
sample size of 20ms for the cases 2, 3, 4 and 5 (except the
Limit Point case which fails for sample sizes longer than
7ms). One can see the related results in Table 6.
In a realistic application, the measurement of the mem-
brane potential will most probably have a noise accumu-
lation due to the instrumentation. This issue should also
be addressed at least in simulation level. In a simulation,
the noise can be modeled by a normally distributed noise
signal which modifies the measured membrane potential
as shown below:

Vmeas =V (1+nm) (38)
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Table 3. Numerical results of the bifurcation control by first order washout filter and projective control feedback. Cho-
sen to be retained eigenvalues are shown in bold face. The columns are as follows: Case of bifurcation according to
Table 2, eigenvalues obtained from full state LQ feedback plus washout filter, gain obtained from projective control,
closed loop eigenvalues of washout filter and projective control together, indication whether the application is success-
ful or not. It is understood from the simulations that LP case does not yield a stable outcome.This situation is same for
various Q and R values and regardless of the retained eigenvalue configuration.

Case λ (A−BK) Ko λ (A−BKoC) Success?

1 (H)

−0.0563
−1.0189
−6.9891

 6.9534

−0.0194
−0.0449
−6.9891

 Yes

2 (H)

−0.0563
−1.0189
−6.9891

 6.9534

−0.0194
−0.0449
−6.9891

 Yes

3 (H)

−0.0237
−1.0189
−6.9889

 0.9537

−0.0174+ j0.0770
−0.0174− j0.0770

−1.0189

 Yes

4 (H)

−0.0569
−1.0255
−6.9800

 6.9524

−0.0362+ j0.0193
−0.0362− j0.0193

−6.9800

 Yes

5 (H)

−0.0563
−1.0189
−6.9891

 6.9534

−0.0194
−0.0449
−6.9891

 Yes

6 (LP)

−0.0562
−1.0053
−7.0836

 8.1196

 0.0000
−0.0488
−7.0836

 No

Table 4. Numerical results of the bifurcation control by second order washout filter and projective control feedback.
Chosen to be retained eigenvalues are shown in bold face. The columns are as follows: Case of bifurcation according
to Table 2, eigenvalues obtained from full state LQ feedback plus washout filter, gain obtained from projective control,
closed loop eigenvalues of washout filter and projective control together, indication whether the application is success-
ful or not. It is understood from the simulations of this case that LP case does not yield a stable outcome also with a
second order washout filter. This situation is same for various Q and R values and regardless of the retained eigenvalue
configuration.

Case λ (A−BK) Ko λ (A−BKoC) Success?

1 (H)


−0.0850
−0.1
−1.0168
−6.9890

 [7.9067,103.2779]


−0.000856
−0.1
−1.0168
−6.9890

 Yes

2 (H)


−0.0850
−0.1
−1.0168
−6.9890

 [7.9067,103.2779]


−0.000856
−0.1
−1.0168
−6.9890

 Yes

3 (H)


−0.06796
−0.1
−1.0168
−6.9889

 [7.9066,112.9834]


−0.000893
−0.1
−1.0168
−6.9889

 Yes

4 (H)


−0.1
−0.1330
−1.0183
−6.97999

 [7.8999,54.3666]


0.00165
−0.1
−1.0183
−6.979997

 Yes

5 (H)


−0.08504
−0.1
−1.0168
−6.98907

 [7.90672,103.27787]


−0.000856
−0.1
−1.0168
−6.9890

 Yes

6 (LP)


−0.0850
−0.1000
−1.0032
−7.0837

 [9.0740,104.7991]


0.0000
−0.1000
−1.0032
−7.0837

 No
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Table 5. The estimation results for Case 1, with the sample sizes of 5, 10, 20, 30, 60, 100, 200 ms. Note the accuracy
of the results. They are closed to each other because of that a sample size of 20ms should be adequate for parameter
estimation.

Case Duration of Sample (ms) Estimated Parameter

1 5


0.0248828873543579
0.0541595399754002
0.0643981171770769
0.332802074466949


1 10


0.0249053211554153
0.0559716655533597
0.0639958673724777
0.333003057532591


1 20


0.0249059650965805
0.0559990655943327
0.0639996669177282
0.333000444781839


1 30


0.0249059597528729
0.055999674670891
0.063999809211686
0.332999988106763


1 60


0.0249333237710483
0.0558442287975565
0.0639359319592352
0.333320749124625


1 100


0.0248905826017205
0.0559886210413623
0.0639896144231157

0.33332701550163


1 200


0.0248922500965174
0.0559884129068148
0.0639861951765453
0.333184343851034


Table 6. The estimation results for Case 1, with the sample sizes of 5, 10, 20, 30, 60, 100, 200 ms. Note the accuracy of
the results. They are closed to each other thus a sample size of 20ms should be adequate for parameter estimation. This
advantage breaks down for the Limit Point case due its instability which led to failure of the optimization algorithm.

Case Duration of Sample (ms) Estimated Parameter

2 20


−0.0249059788937565
0.0559999350469946
0.0639999797258641
0.332999887147072


3 20


0.0799998757229137
−0.0228554604746678
0.0639999084949137
0.333000277595704


4 20


0.0799998043439862
0.0559994633933543
0.120675620713213
0.333000317084924


5 20


0.0799998700190393
0.0559986628701682
0.0639995625151964
0.0322760438424776


6 5


0.0799536147174537
0.0550240563232576
0.0641215940465237
−0.00021357812004974


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Table 7. The estimation results when a measurement noise is present on membrane potential. The noise is modeled by
(38). The standard deviation of the noise chosen as 0.1 which corresponds to 10% noise level according to (38). The
optimization algorithms are same but the computation is repeated 50 times to have statistically adequate data. The mean
of parameter and their mean square error are presented.

Case Duration of Sample (ms) Mean Parameter Mean Square Error

1 20


0.024904
0.055796
0.063938

0.3332




8.3758e−09
8.2639e−07
3.8784e−08
3.48e−09


2 20


−0.024896
0.055427
0.063831
0.33322




5.5248e−08
2.3359e−05
2.8581e−06
4.36e−06


3 20


0.080351
−0.018982
0.064007
0.33339




1.2293e−07
1.499e−05

4.4807e−11
1.5137e−07


4 20


0.079826
0.055006
0.12022
0.33413




3.0205e−08
9.885e−07
2.078e−07

1.2761e−06


5 20


0.080618
0.060448
0.065618
0.032079




3.8249e−07
1.9781e−05
2.6171e−06
3.8668e−08


6 5


0.084227
0.17428

0.033162
0.00037758




1.7871e−05
0.01399
0.000951

3.4761e−07



where nm is a normally distributed random variable with
zero mean and 0.10 standard deviation. So this noise will
lead to a random modification of the membrane potential
in a percentage level generated by the random number gen-
erator (i.e. normrnd(mu,sigma,m,n) in MATLAB). In
Table 7, one can see the related results of parameter esti-
mation with noisy measurement The results in this table
are generated by repeating the optimization 50 times to
have statistically adequate data. As one can observe from
Table 7 in the cases where we have an Hopf bifurcation,
the noise does not bring a considerable level of difficulty.
The mean square errors of the estimated parameters are
quite low at the levels of 10−5’s. However, the Limit Point
case due to its unstable behavior one has to use a very short
duration sample which leaded to higher level of errors as
one can understand from the table. Concerning the bifur-
cation control, the utilization of the estimated parameters
in the bifurcation controller designs are not expected to
generate any hassles. However, the LP case should be
treated specifically here because of the estimation errors.

6. Discussion and Conclusion

In this paper, we have presented a bifurcation analysis
and control study on a single Fitzhugh-Nagumo neurons.
The bifurcation analysis has been performed by a MAT-
LAB package called as MATCONT. Utilizing this software
speeds up the analysis process. MATCONT reveals five
Hopf and one Limit Point bifurcation. For the Hopf bi-
furcation cases, we have developed first and second order

washout filter based bifurcation controllers. First order
washout filter filters measures only the membrane potential
whereas the second order version receives the membrane
potential and recovery variable information (namely all
states of the neuron). First order washout filter appeared to
be more advantageous than the second order version. Be-
sides its closeness to an experimental application, the first
order filter yields a faster response than its second order
counterpart. The Limit Point (LP) case resulted unsuccess-
ful under washout filter based control. To remedy that, a
nonlinear controller is designed. The results revealed that
the nonlinear controller can successfully cure the instabil-
ity associated with the Limit Point. The only issue with
that is the variation of the equilibrium/steady-state value
of the membrane potential with the control gain k1.
The unknown parameters at the time of bifurcation are
estimated by an algorithm based on the minimum mean
square (least squares) error based approach. It is concluded
that when we have Hopf bifurcation in the FN neuron even
there is noise the parameter estimation algorithm works
quite satisfactorily even there is noise in measurement.
However, for the LP case one can not say the same as the
error levels seem to be considerably higher than the Hopf
cases.
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Appendix

A. Graphical Illustrations

A.1. Nominal Response of the Model in (1)

Figure 1. Variation of the membrane potential

Figure 2. Variation of the recovery variable

A.2. Variation of the membrane potential under the
bifurcated cases presented in Table 2.

Note the temporary decaying behavior in Figure 5 and 6
which is an indicative of supercritical (stable limit cycle)
Hopf bifurcation. Case 6 is completely unstable thus it is
not explicitly displayed below.
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Figure 3. Case 1

Figure 4. Case 2

Figure 5. Case 3

Figure 6. Case 4

Figure 7. Case 4

A.3. Variation of the membrane potential under the
controlled bifurcated cases presented in Table 2
except Case 6.

Figure 8. Case 1
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Figure 9. Case 2

Figure 10. Case 3

Figure 11. Case 4

Figure 12. Case 5

A.4. Variation of the membrane potential under the
controlled bifurcated cases presented in Table 4.

Case 6 is not considered here because designing a second
order washout filter based controller has no considerable
advantage. Note the elongation of the durations required
for the membrane potentials to settle down.

Figure 13. Case 1

Figure 14. Case 2
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Figure 15. Case 3

Figure 16. Case 4

Figure 17. Case 5

A.5. The results associated with the nonlinear con-
troller

The control gain k2 = 0 so that the feedback is taken
from membrane potential variable V (t) only. The sim-
ulations are performed for different k1 values which are
k1 = {−0.01,−0.1,−0.5,−1,−2,−5}.

Figure 18. k1 =−0.01

Figure 19. k1 =−0.1

Figure 20. k1 =−0.5
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Figure 21. k1 =−1

Figure 22. k1 =−2

Figure 23. k1 =−5
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