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Abstract: Response surface methodology (RSM) – the method most preferred by 
quality engineers – is a natural and effective tool to achieve the desired process 
quality. Most of the current literature on process quality does not focus on 
information relating to how much better or worse a process is and also the degree 
of the process performance. On the other hand, although the process performance 
criteria are able to predict process capability, they cannot provide significant 
information relating to the process quality in terms of rate of rejects and losses. 
Therefore, this paper takes into account these two concepts and defines a criterion 
based on the process capability indices for the upside-down normal loss function 
(UDNLF). The proposed approach determines the optimal settings of a given 
process by minimizing the expected UDNLF which is defined in terms of 𝐶𝑝  and 

𝐶𝑝𝑚 indices. The proposed procedure and its merits are illustrated on the basis of 

an example. 
  
  

Süreç Yeterliliği: Kayıp Fonksiyonuna Dayalı Kalite Geliştirme için Yeni Bir Kriter 
 
 

Anahtar Kelimeler 
Dayanıklı tasarım, 
Yanıt yüzey metodolojisi, 
Kayıp fonksiyonu, 
Süreç yeterlilik indeksleri  

Özet: Yanıt yüzey metodolojisi (RSM), kalite mühendisleri tarafından oldukça 
tercih edilen bir yöntem olarak, arzu edilen süreç kalitesine ulaşmak için doğal ve 
etkin bir araçtır. Süreç kalitesi üzerine birçok çalışma, bir sürecin ne kadar iyi ya 
da kötü olduğu ve aynı zamanda süreç performans derecesi hakkında bilgi 
vermeye odaklanmamaktadır. Diğer taraftan, süreç performans kriterleri bir 
sürecin yeterliliğini tahmin etme özelliğine sahip olsa da, red ve kayıp oranları ile 
süreç kalitesi arasında önemli miktarda bilgi sağlayamamaktadır.  Bu çalışma, iki 
kavramı göz önüne alır ve ters çevrilmiş normal kayıp fonksiyonu (UDNLF) için 
süreç yeterliliği indekslerine dayalı bir kriter tanımlar. Önerilen yaklaşım, 𝐶𝑝  ve 

𝐶𝑝𝑚  indekslerine ile tanımlanmış beklenen UDNLF’ yi minimize ederek, bir sürecin 

optimal çözümünü belirler. Önerilen yöntem ve avantajları bir örnek üzerinde 
gösterilmiştir. 

  
 
1. Introduction 
 
Traditionally, loss functions have played an 
irreplaceable role in the development of robust 
design. In a statistical sense, loss functions speak in 
monetary terms and determine the loss resulting 
from the deviations of a quality characteristic from its 
desired value. In this context, one is dealing with 
financial and social losses caused by poorly designed, 
poorly constructed or poorly operated products. 
According to Taguchi’s philosophy, this result should 
be assessed in two respects: the company view (for 
example, costs relating to returned products, rework, 
scrap and repair) and the customer view (for 
example, customer dissatisfaction related to 
unsatisfactory product performance). The quality loss 

concept is therefore known as ‘loss to society’.  
 
In terms of the old traditional definition of loss, if the 
quality characteristics are within the specification 
limits, then there are no losses. However, this 
definition was found inadequate and unreal by [1]. 
Moreover, Taguchi claimed that it is possible for the 
loss to be incurred even if quality characteristics are 
within the predefined specifications, and he proposed 
the quadratic loss function, which is continuous and 
differentiable everywhere. However, Taguchi’s 
quadratic loss function has some shortcomings in 

practice – i.e. unbounded, assessing same loss when 
the process is too far from the target. Consequently, a 
new loss function based on inverted normal density 
function, inverted normal loss function (INLF), is 
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proposed by [2] – see also, [3]. The UDNLF, proposed 
by [4], is one minus a scaled normal density function 
and is a special form of INLF. Besides being zero at 
the target and asymptotically approaching to one, it 
also has a finite maximum loss. Therefore, the UDNLF 
offers effective results in modelling losses accurately 
and leads to optimal decisions in the field of 
manufacturing. Even though, these mentioned loss 
functions are the inversions of probability density 
functions, they do not give sufficient information 
about the process optimization for the purposes of 
obtaining the best operating conditions. Design and 
relating approaches such as RSM and loss function-
based methods are sound robust design strategies to 
optimize the systems.  

 
Taguchi’s robust parameter design (RPD) can be 
defined as an experimental procedure used in 
determining the quality of a process and, which tries 
to reduce the process variability by selecting the best 
operating condition. Taguchi’s RPD approach has 
been regarded with interest by influential scientists; 
however, his methodologies and analysis techniques 
have been criticized by the statistical communities. 
Consequently, new methodologies have been 
proposed in harmony with advanced statistical 
procedures. The RSM, first developed by [5], was 
revisited in the 1990s and was subsequently 
popularized. The RSM is a natural and effective tool 
to assign the optimal control factor setting of a 
process, which optimizes the response over a region 
of interest. [6] discussed a constrained optimization 
technique called the dual response surface (DRS). 
Their approach is based on modeling the primary and 
secondary response surfaces, and optimizing the 
primary response subject to a constraint on the 
secondary response. A nonlinear programming based 
on inequality constraints for the DRS problems is 
proposed by [7]. An alternative approach, by using 
the mean squared error (MSE) criterion, is proposed 
by [8] to minimize the estimated MSE by taking into 
account the distance from the target along with the 
variability in response. [9] proposed UDNLF as the 
objective function where the process mean and 
standard deviation responses are fitted by the 
response surface models. Their approach is based on 
minimizing the estimator of the expected UDNLF 
under the ‘target is best’ case. Following these 
articles, the current literature involves several other 
methods for the DRS; see, for example, [10-19]. 

 
The process should be regarded as a whole made up 
of all materials, methods, equipment, and persons 
that produce a measurable response. In line with the 
nature of the process, all the processes involve 
unwanted fluctuations that affect the system 
performance. Current literature about quality 
improvement focuses on reducing this inherent 
variability to improve the process quality. Since less 
variation indicates better quality, process variability 

is a measure of uniformity of the responses. Process 
capability is a fundamental concept to quantify this 
uniformity of a process in quality control. Since the 
1970s, process capability analysis – which includes 
techniques as histograms, probability plots, design of 
experiments, control charts, and process capability 
indices – has received a great deal of attention by 
quality engineers and statisticians. In fact, process 
capability indices, as the quantitative indicators, are 
used in the purposes of characterizing the process 
quality. Therefore, with the assistance of these 
indices, one can obtain information relating to how 
good the process performance is with respect to 
specifications. In practice, the widely used statistics, 
which relate the natural tolerance limits of a given 
process to the specification limits to measure the 
process capability, are 𝐶𝑝 , 𝐶𝑝𝑘 and 𝐶𝑝𝑚 . 

 
Many quality improvement techniques focus on 
reducing process variation in line with the “loss to 
society” concept. The widespread use of loss 
functions in industrial applications has increased 
their popularity. However, most of current literature 
does not focus on how much better or worse a 
process is and also the degree of process 
performance. Although the process performance 
criteria are able to predicting process capability, they 
cannot provide significant information relating to 
process quality in terms of the rate of rejects and 
losses. In order to bridge this gap, this paper takes 
into account these two concepts and presents a new 
criterion based on process capability indices for the 
UDNLF. In addition, this proposed approach 
demonstrates the relationship between process 
capability indices which are estimated by response 
surfaces. The proposed approach finds the optimal 
settings of a given process with the minimum loss, 
and with additional information such as the process 
capability. The ability to consider the spread of the 
specifications and the possible effects of the process 
distribution between the specification limits on the 
quality loss makes this proposed optimization 
technique feasible with regard to the ‘loss to society’ 
concept. 

 
The rest of this paperis divided into four sections. 
Section 2 provides a brief overview of the UDNLF and 
the process capability indices. The proposed 
optimization technique is introduced in Section 3. All 
our findings are illustrated by a numerical example at 
the end. Finally, the paper ends with conclusion. 

 
2.  Material and Method 

 
2.1. UDNLF overview 

 
The UDNLF, proposed by [4], is a weighted loss 
function which evaluates the losses with a more 
reasonable risk, and is defined by the following 
formula, 
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𝐿𝑈𝐷𝑁  𝑦 𝜏 = 1 − 𝑒𝑥𝑝  −
 𝑦 − 𝜏 2

2𝜆2
  (1) 

 
where 𝑦 represents the process measurements, 𝜏 is 
the target, and 𝜆 is a scale parameter. The UDNLF is 
zero at the target and asymptotically approaches to 
one. A pragmatic choice is setting 𝜆 to 42.5% of the 
specification ranges. Thus, the loss is approximately 
50% when the quality characteristic is at its 
specification limits. The scale parameter 𝜆 adjusts the 
penalty associated with any deviation from the target. 
Figure 1 presents a graphical illustration of the 
UDNLF for various values of 𝜆 when 𝜏 = 0. In Figure 
1, a larger value of 𝜆 signifies that the relatively large 
deviations from the target can be tolerated, so the 
loss reaches its maximum more slowly. 
 

 
Figure 1. The UDNLF with  𝜆 = 2.55, 1.7 and 0.85. 

 

A simple analytical formula is presented by [4] for the 
expected loss as follows: 
 

𝐸𝐿𝑈𝐷𝑁 = 1−
𝜆

 𝜎2 + 𝜆2
𝑒𝑥𝑝  

− 𝜇 − 𝜏 2

2 𝜎2 + 𝜆2 
  (2) 

  
when the process quality characteristic has a normal 
density with the process mean 𝜇  and process 
variance 𝜎2. This formula quantifies the economic 
impacts of process changes by combining the 
company view – i.e. the information about the 
systems – and the customer feedback, i.e. the 
unsatisfactory product performance caused by a 
deviation from the target. [9] proposed a reasonable 
estimator of Equation (2) as follows: 
 

𝐸 𝐿𝑈𝐷𝑁

= 1 −
𝜆

 𝜎 2(𝑥) + 𝜆2
𝑒𝑥𝑝  

−  𝜇 (𝑥)− 𝜏 2

2 𝜎 2(𝑥) + 𝜆2 
   

(3) 

 
where the fitted mean and variance response 
surfaces are denoted by 𝜇 (𝑥) and 𝜎 2(𝑥), respectively.  
They used this estimator as an objective function to 
obtain the best operating conditions of a system. 
 

2.2. Process capability indices 
 

The process capability indices are statistics widely 
used by quality engineers and statisticians as a 
quantitative measure of the capability of producing 
items within the customer specification limits. 
Beginning with 𝐶𝑝  index, several process capability 

indices have been proposed in the field of quality 
improvement and control.   

The 𝐶𝑝  index is the measurement of the potential 

capability of the process and is defined as follows: 
 

𝐶𝑝 =
(𝑈𝑆𝐿 − 𝐿𝑆𝐿)

6𝜎
 (4) 

 
where USL and LSL are upper and lower specification 
limits, respectively, and 𝜎 is known process variance. 
The value of  𝐶𝑝  is 1, which means that the process is 

just capable. 𝐶𝑝  index considers the spread of the 

specifications due to the six sigma; in other words, it 
does not focus on the location of the process mean, 𝜇.  
 
The other well-known index 𝐶𝑝𝑘 , which is a process 

capability ratio for off-center processes, is defined as 
follows:  
 

𝐶𝑝𝑘 =
min(𝑈𝑆𝐿 − 𝜇, 𝜇 − 𝐿𝑆𝐿)

3𝜎
 (5) 

 
Unlike 𝐶𝑝 , 𝐶𝑝𝑘  takes into account the process variance 

besides the departures from 𝜇. When the value 𝐶𝑝𝑘  is 

greater than 2, then process capability exceeds the 6𝜎 
level. In fact, this explains why it is called a 6𝜎 robust 
design. 
 
Chan et al. introduce 𝐶𝑝𝑚  index which considers the 

proximity to the target value, 𝜏, besides the process 
variation when assessing process performance [20]. 
When 𝜇  and 𝜎  are known, then 𝐶𝑝𝑚  is defined as 

follows: 
 

𝐶𝑝𝑚 =
𝑈𝑆𝐿 − 𝐿𝑆𝐿

6 𝜎2 + (𝜏 − 𝜇)2
=  

𝐶𝑝

 1 +
(𝜏−𝜇 )2

𝜎2

 
(6) 

 
𝐶𝑝𝑚  possess the necessary properties required for 

assessing process capability. 𝐶𝑝𝑚  reflects the process 

drifts from its desired value, 𝜏, so it is a convenient 
indicator where 𝜏 is not the midpoint of the USL and 
LSL. On the other hand, since 𝐶𝑝𝑚  incorporates 

quadratic loss, it is also referred to as the Taguchi 
index. The loss function appears in the denominator, 

the term 6 𝜎2 + (𝜏 − 𝜇)2  gives the average loss per 

piece for a given system. Additionally, when the 
process attains its target, 𝐶𝑝𝑚  is similar to 𝐶𝑝 .  

 
In practice, the mean and variance of the process are 
generally unknown process parameters. The 
reasonable estimators of Equations (4)-(6) can be 
obtained by using the sample standard deviation, 𝑠, 
and the sample mean, 𝑥 , instead of process 
parameters, 𝜎 and 𝜇, respectively. On the other hand, 
in the current literature, there are certain other 
indices such as, 𝐶𝑝𝑚𝑘 , 𝐶𝑝𝑤 , and 𝐶𝑟𝑝 . The reader is 

referred to the studies of [21-23].  

  
The process capability indices are widely used by 
optimization techniques in quality improvement. [24] 
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used 𝐶𝑝𝑚  and goal programming as an optimization 

technique for the purposes of quality improvement of 
the multi-responses systems. [25] exploited the 
target costing technique considering 𝐶𝑝𝑘 , and 

different loss function and quality control charts. [26] 
proposed the use of 𝐶𝑝𝑚  as an alternative 

optimization criterion to MSE for multi-responses 
optimization. [27] considered the maximization of the 
process capability as a criterion in the process design 
to obtain the best operating condition. Using the 
ideas set out in these articles as a point of departure, 
the current literature includes several other 
approaches – see, [28-31]. 
 
2.3. Central composite design  
 

Cental composite design (CCD), first introduced by 
[5], is the most popular class of second-order design. 
In fact, CCD is a sequential experimentation 
technique. It involves the use of a two-level factorial 
or fraction combined with the 2k axial or star points. 
As a result, the CCD involves F factorial points, 2k 
axial points, and 𝑛𝑐_center runs.  Therefore, while the 
factorial points represent a variance-optimal design, 
center runs provide information about the curvature 
in the system. A general illustration of CCD is 
presented in Table 1 (see, [5]). 
 
Table 1. An illustration of the CCD 

𝒙𝟏 𝒙𝟐 … 𝒙𝒌 

-𝛼 0 … 0 

𝛼 0 … 0 

0 -𝛼 … 0 

0 𝛼 … 0 

… … … … 

0 0 … -𝛼 

0 0 … 𝛼 

 

The flexibility in the use of CCD is caused by the 
selection of 𝛼, the axial distance, and 𝑛𝑐 , the number 
of center runs. While the choice of 𝛼 depends to a 
great extent on the region of operability and region of 
interest, the choice of 𝑛𝑐  often has an influence on the 
distribution of the variability in the region of interest. 
It is important for a second-order design to possess a 
reasonably stable distribution of the scaled 
prediction variance throughout the experimental 
design region. A reliability technique to control this 
situation is the notion of design relatability. In the 
case of CCD, rotatability is achieved by making a 
proper choice of 𝛼 , the axial distance. The first 
condition is that the factorial portion must be a full 2𝑘  

design. The second condition is that 𝛼 =  𝐹
4

. Table 2, 
which is borrowed from [32] (p. 549),  gives value of 
𝛼, for a rotatable design for various numbers of 
design variables, where N is the total experimental 
run. 

 

Table 2. Values of 𝛼 for a rotatable design for various 
numbers of design variables 

k F N 𝜶 

2 4 8+𝑛𝑐  1.414 

3 8 14+𝑛𝑐  1.682 

4 16 24+𝑛𝑐  2.000 

5 32 42+𝑛𝑐  2.378 

6 64 76+𝑛𝑐  2.828 

7 128 78+𝑛𝑐  3.364 

 
3. Results 

 
3.1. The proposed procedure 

 
The proposed approach is related minimizing the 
estimator of expected UDNLF in Equation (3) with a 
new criteria based on 𝐶𝑝𝑚  and 𝐶𝑝 . In this context, first 

the relations between 𝜆 and, 𝐶𝑝  and 𝐶𝑝𝑚  are defined. 

[4] set the scale parameter 𝜆  to 42.5% of the 
specification ranges for UDNLF. Thus, considering 
𝜆 = 0.425(𝑈𝑆𝐿 − 𝐿𝑆𝐿), the following equations are 
obtained: 
 

𝜆 = 2.55 𝜎 𝐶𝑝  (7) 

 
and 

 

(𝜏 − 𝜇)2 =
𝜎2

𝐶𝑝𝑚
2   𝐶𝑝

2 − 𝐶𝑝𝑚
2   (8) 

 
Taking into account Equations (7)-(8), and the 
expected loss in Equation (2) can be rewritten in the 
following form in terms of 𝐶𝑝𝑚  and 𝐶𝑝 , 

 
𝐸𝐿𝑈𝐷𝑁

∗

= 1

−
2.55 𝐶𝑝

1 + 2.552𝐶𝑝
2 
𝑒𝑥𝑝  

− 𝐶𝑝
2 − 𝐶𝑝𝑚

2 

2𝐶𝑝𝑚
2 1 + 2.552𝐶𝑝

2 
  

(9) 

 
This new formula quantifies the economic impacts of 
process changes by combining the company view and 
the customer feedback, besides speaking in terms of 
process capability. A reasonable estimator of 
Equation (9) is proposed as follows: 

 
𝐸 𝐿𝑈𝐷𝑁

∗

= 1

−
2.55 𝐶 𝑝

1 + 2.552𝐶 𝑝
2

 
𝑒𝑥𝑝  

−  𝐶 𝑝
2
− 𝐶 𝑝𝑚

2
 

2𝐶 𝑝𝑚
2
 1 + 2.552𝐶 𝑝

2
 
                        

(10) 

 
where 𝐶 𝑝  and 𝐶 𝑝𝑚  are the estimators of 𝐶𝑝  and 𝐶𝑝𝑚  

and are defined in the following forms: 
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𝐶 𝑝 =
𝑈𝑆𝐿 − 𝐿𝑆𝐿

6𝜎 (𝑥)
 (11) 

 
and 

𝐶 𝑝𝑚 =
𝑈𝑆𝐿 − 𝐿𝑆𝐿

6 𝜎 2(𝑥) + (𝜏 − 𝜇 (𝑥))2
 (12) 

 
Here, 𝜇 (𝑥)  and 𝜎 (𝑥)  are the fitted second-order 
response surfaces for the process mean and standard 
deviation, respectively. 
 
Finally, the optimal factor settings of the process are 

obtained by minimizing the 𝐸 𝐿𝑈𝐷𝑁
∗
 given in Equation 

(10) under the region of interest,  𝐱 ∈ 𝑅, as follows: 
 

Min 𝐸 𝐿𝑈𝐷𝑁
∗
                               (13) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝐱 ∈ 𝑅 
 
Generally, two regions of interest are considered: 
spherical and cubodial. For cubodial designs, the 
constraint is of the form −1 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,…𝑘, and 
for spherical desings the constraint is defined by 
x′x ≤ 𝜌2, where 𝜌 is the design radius. 
 
3.2. Example  
 
A Roman-style catapult experiment was introduced 
by [33] and has been revisited by many researchers, 
such as [13] and [9]. This experiment was designed 
by the Texas Instrumens’ Education and 
Development Center. As noted by [33], the catapult, 
which possesses many of the elements of a real-life 
problem, is ideally suited to the classroom 
environment. This experiment focuses on 
determining the effects of three components – arm 
length (𝑥1), stop angle (𝑥2) and pivot height (𝑥3) – on 
the catapult performance to predict the distance (𝑦) 
to the point where a projectile landed from the base 
of the catapult. A CCD with three replicates is 
conducted. According to the Table 2, for 𝑘 =
3,𝛼 =1.682 and with six center points, 𝑛𝑐 = 6,  the 
total number of experiments run was obtained as 
twenty. In Table 3, 𝑦  and 𝑠 are the point estimates of 
the process mean and standard deviation, 
respectively. Minitab 15 statistical software package 
was used for the analysis. 
 
The fitted response surfaces for the process mean 
and standard deviation were obtained by [13] as 
follows: 
 
𝜇  𝑥 = 84.88 + 15.29𝑥1 + 0.24𝑥2 + 18.80𝑥3

− 0.52𝑥1
2 − 11.80𝑥2

2

+ 0.39𝑥3
2 + 0.22𝑥1𝑥2    

+ 3.60𝑥1𝑥3 − 4.42𝑥2𝑥3 

(14) 

 
and 
 

𝜎  𝑥 = 4.53 + 1.84𝑥1 + 4.28𝑥2 + 3.73𝑥3

+ 1.16𝑥1
2 + 4.40𝑥2

2

+ 0.94𝑥3
2 + 1.20𝑥1𝑥2

+ 0.73𝑥1𝑥3 + 3.49𝑥2𝑥3 

(15) 

 
Table 3. The catapult study data 

𝒖 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒚   𝒔 

1 -1 -1 -1 38.3 4.0 

2 -1 -1  1 80.7 10.0 

3 -1  1 -1 47.0 4.4 

4 -1  1  1 75.0 19.5 

5  1 -1 -1 60.3 7.5 

6  1 -1  1 114.7 11.6 

7  1  1 -1 69.0 7.8 

8  1  1  1 94.7 30.7 

9 -1.682  0  0 56.7 4.9 

10  1.682  0  0 111.3 8.1 

11  0 -1.682  0 50.0 7.0 

12  0  1.682  0 60.0 2.4 

13  0  0 -1.682 54.7 5.0 

14  0  0  1.682 116.7 6.8 

15  0  0  0 84.7 5.9 

16  0  0  0 83.3 3.8 

17  0  0  0 85.3 3.8 

18  0  0  0 86.0 3.6 

19  0  0  0 84.3 4.7 

20  0  0  0 85.7 5.9 

 
The target value for the mean response is 80 with 
specification limits  60,100 . Additionally, the desired 
value for the standard deviation should not exceed 
3.5. The optimization problem requires the “target is 
best” case. Figure 2 presents the capability six-pack 
results for the catapult data; see also [9].  
 
Twenty subgroups of size three were used in the 
analysis; see Figure 2(a).  Figures 2(b) and 2(c) 
indicate that while the X-bar chart exhibits many out-
of-control points, the R chart is almost in control.  
This indicates that the operator is having no difficulty 
in making consistent measurements. From Figure 
2(d), p-value for the Anderson-Darling test is greater 
than 0.05, so this value indicates that the process has 
approximately a normal density function. On the 
other hand,  𝐶𝑝 = 0.58 is less than one, so the process 

spread is greater than specification limits – see, the 
capability histogram in Figure 2(e). In addition, 
𝐶𝑝𝑚 = 0.28, given in Figure 2(f), indicates anoff-

centered process and lower capability – i.e., poor 
process. 
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Figure 2. MINITAB’s capability six-pack results for the 
catapult data: (a) subgroups, (b) X-bar chart, (c) R chart, (d) 
Normal probability plot, (e) capability histogram, (f) 
capability plot. 

In line with the mentioned information about the 
catapult experiment, the optimal factor settings are 
obtained by minimizing the following optimization 
problem: 
 

𝑀𝑖𝑛   𝐸 𝐿𝑈𝐷𝑁
∗
 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 −1 ≤ 𝑥𝑖 ≤ 1 , 𝑖 = 1,2,3 

 

(16) 

where 𝐸 𝐿𝑈𝐷𝑁
∗
 is defined by Equation (10),  

 

𝐶 𝑝 =
6.67

𝜎 (𝑥)
 and 𝐶 𝑝𝑚 =

6.67

 𝜎 2(𝑥)+(𝜏−𝜇 (𝑥))2
.      (17) 

 
The important point here is that since the problem 
requires the “target is best” case, one expects that the 
estimation of the process mean hits the target with 
minimum variance. If this expectation is met, 
𝜏 = 𝜇 (𝑥)  is obtained. This means that 𝐶 𝑝 = 𝐶 𝑝𝑚 . 

Therefore, for the purposes of the optimization 
problem, a new criterion for the constraints as 
𝐶 𝑝 = 𝐶 𝑝𝑚  is added. This new constraint force 

estimates the process mean at the target. The 
optimization results of the proposed approach and a 
comparative summary are illustrated in Table 4. 
 
From Table 4, the optimal factor setting for the 
proposed approach is 𝑥∗ = (0.12661, −028594,
−0,28247) where 𝜇  𝑥 = 80, 𝜎  𝑥 = 3.1510 with the 
minimum expected loss 𝐸 𝐿𝑈𝐷𝑁 = 0.01670  under 
𝐶 𝑝 = 2.1157  and 𝐶 𝑝𝑚 = 2.115 . These results 

demonstrate that the estimated process mean hits 
the target and with an acceptable variability besides 
the minimum expected loss. Table 4 also contains 
solutions to the catapult problem from different 
approaches. [6]’s method hits the target and [8] 
estimate the process mean with a little bias with an 
acceptable variability. Additionally, [9] estimate the 
process mean with a little bias, and their approach 
provides additional information – for example, that 
the process mean and standard deviation are 
obtained with the minimum expected loss. The MSE 
of [8] is a measure of risk and cannot provide any 
information about how much better the process is.  
 
However, as mentioned by [9], the results from 
different approaches cannot be compared in a 
straightforward manner since the different methods 
have different optimization criteria. They can be 
compared on the basis of the additional information 
they provide. The proposed approach gives an 
additional information about the process such as 𝐶 𝑝𝑚  

and 𝐶 𝑝 . The obtained 𝐶 𝑝𝑚  indicates that the process is 

centered at the midpoint of the specifications and the 
process capability around the target is estimated as 
equal to value of  𝐶 𝑝 . In line with the obtained results, 

it is obvious that the process mean is at the midpoint 
of specifications and is spread between the 
specifications. It can therefore be said that the 
process is highly capable of producing. The proposed 
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approach combines the information related to the 
process and the voice of customer to determine the 
damage caused by a deviation from the target; it also 
characterizes this damage on the basis of process 
capability indices. In fact, the obtained optimal factor 
settings for the proposed approach have three 
important features: i. estimate process mean at the 
target value with minimum variability, ii. estimate the 
process mean and variance with minimum loss, iii. 
estimate process capability indices with minimum 
loss. As a result, the proposed model and 
optimization approach provides much more 
information about the process.  
 
4. Discussion and Conclusion 
 
Various technologies in the current literature focus 
on obtaining the best operating settings for a DRS 
problem. This is typically done by either minimizing 
the loss or minimizing/maximizing a particular 
response surface of the quality characteristic under 
some constraints/no constraint for a given system. 
Many researchers have proposed novel 
improvements on robust design and have sought to 
understand the possible relationships between the 
quality loss and the behavior of the spread of the 
data. This paper introduces a new perspective on this 
relationship and presents a model which 
characterizes the loss with process capability indices, 
𝐶 𝑝𝑚  and 𝐶 𝑝 . In fact, this is the most important feature 

that distinguishes this proposed approach from the 
others. As previously discussed, although many of 
existing methods – for example, the studies of [6], [7], 
[12], [14] and [34] – are effective and sound 
approaches, they do not give any information about 
how much better or worse a process is, since they do 
not construct based on the process loss minimization 
based-optimization. On the other hand, quality 
experts commonly utilize loss functions to develop 
new methodologies for quality improvement. 
Therefore, loss function based methods have an 
important effect on risk assessment in respect to 
quality. The studies of [8], [9], [35], and [36] provide 
valuable strategies based on several loss/risk 
functions. The basic idea behind these studies is to 
obtain the best operating condition by minimizing the 
penalty caused by being off-target. Following this 
fundamental philosophy, integrating a new criterion 
– i.e. process capability indices – is proposed for the 
expected UDNLF in this paper. The proposed 
approach is constructed by minimizing the expected 
UDNLF where the process capability indexes, 𝐶 𝑝𝑚  and 

𝐶 𝑝  are fitted by quadratic the response surfaces. Since 

the expected loss of UDNLF is used as an objective 
function, the scale parameter of loss function 
provides a reasonable way to combine the voice of 
the customer and information relating to the process 
capability. The proposed approach is constructed 
under the “target is best” case. Moreover, it yields 
more realistic and informative results in terms of 
defining the general characteristics of the process, 
besides establishing how much better the process is. 
The proposed approach and its merits are illustrated 
by a well-known design of experiments study in the 
literature. As a future study, an approach based on 
estimating the UDNLF with a simulation study and an 
appropriate optimization criterion can be studied. 
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