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Abstract: In this work, we seek the solutions of the equation

∂w
∂ φ̄

= Aw+Bw

with linear coefficients

A = α
(0)+α

(1)
φ +α

(2)
φ ,

B = β
(0)+β

(1)
φ +β

(2)
φ ,

such that using this solutions we approximated to complex matrix valued function which
possess the form w = K(0) + φK(1) + φ̄K(2). Here φ is a generating solution for Q-
holomorphic functions.

Matris Formda Kompleks Değerli Kısmi Diferensiyel Denklemlerin Çözümleri Yardımıyla
Kompleks Matris Değerli Fonksiyonlara Yaklaşım Üzerine

Anahtar Kelimeler
Genelleştirilmiş Beltrami
sistemleri,
Genelleştirilmiş Q-holomorf
fonksiyonlar,
Weierstrass-Stone yaklaşım
teoremi

Özet: Bu çalışmada

A = α
(0)+α

(1)
φ +α

(2)
φ ,

B = β
(0)+β

(1)
φ +β

(2)
φ ,

lineer katsayılara sahip olan
∂w
∂ φ̄

= Aw+Bw

denkleminin çözümleri araştırıldı. Bu çözümler kullanılarak w = K(0)+φK(1)+ φ̄K(2)

formuna sahip kompleks matris değerli fonksiyonlara yaklaşıldı. Burada φ , Q-holomorf
fonksiyonlar için bir doğurucu çözümdür.

1. Introduction

A similar theory to analytic function theory was developed
by Douglish and Bojarski [1, 2] for elliptic systems which
have the form

wz(z)−Q(z)wz(z) = 0, (1)

where w is a vector of the type m×1 and Q is a quasidiag-
onal matrix of the type m×m. Since such systems result
from the reductions of first order generalized elliptic sys-
tems in the plane to a canonical form, they are investigated.
Another generalization was given by Hile [3]. He consid-
ered Eq. (1) where w is an m×s matrix whose elements are
complex valued and Q(z) is self commuting complex val-
ued function. If Q doesn’t have eigenvalues of magnitude

1 for each z in the domain Ω0 in the complex plane C, then
Hile called the system (1) as generalized Beltrami system.
Such a system can not be brought into the quasidiagonal
form of Douglish and Bojarski by a similarity transfor-
mation [see 3, p. 108]. The solutions of such systems
are called as Q-holomophic functions. Hile introduced
the notion of generating solution φ(z) := φ0(z)+N(z) to
investigate Q-holomophic functions, where N is nilpotent
part and φ0 is the main diagonal term of φ . φ0 satisfies the
Beltrami equation

∂φ0

∂ z
−λ

∂φ0

∂ z
= 0.

Using the Beltrami homeomorphism, we may write the
generating solution in a more convenient form φ = zI +
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N(z) [see 4, p. 169], Furthermore, one can write a Q-
holomorphic function Φ(z) as an analytic function of gen-
erating solution that is Φ(z)≡ f (φ(z)) [3]. So, differentia-
tion with respect to φ and φ , conjugate to φ , can be given
as

∂

∂φ
= (φzφ z−φzφ z)

−1
[
φ z

∂

∂ z
−φ z

∂

∂ z

]
and

∂

∂φ
= (φzφ z−φzφ z)

−1
φzD, (2)

respectively. Here D := (∂/∂ z̄)I−Q(∂/∂ z). From (2) we
can rewrite equation (1) as

∂w
∂φ

= 0.

Later in [5, 6], by using the techniques of Vekua and Bers,
Hızlıyel and Çağlıyan gave a function theory for the equa-
tion

∂w
∂φ

= Aw+Bw, (3)

where the unknown w(z) = {wi j(z)} is an m× s com-
plex matrix, Q(z) = {qi j(z)} is a self commuting com-
plex matrix-valued functions of the type m×m. They
assumed qk,k−1 6= 0 for k = 2, . . . ,m and A = {ai j(z)} and
B = {bi j(z)} are commuting with Q. Solutions of this
equation were called generalized Q-holomorphic functions.
The result obtained in the case of Eq. (3) resemble closely
those from the classical theory of Vekua [7] and Bers [8].
In [9], Tutschke and Vasudeva considered the Vekua equa-
tion in the form

wz̄ = a(z)w+b(z)w̄

with a(z) = a0+a1z+a2z̄ and b(z) = b0+b1z+b2z̄ and in-
troduced necessary conditions to have a solution of the lin-
ear form w = k0 +k1z+k2z̄ where ai,bi,ki (i = 0,1,2) are
complex constants. Also they stated that every complex-
valued continuous function can uniformly be approximated
on a compact set by polynomials of these solutions. The
aim of this study is to show that an approximation to com-
plex matrix valued functions can be obtained using solu-
tions of the equation (3) by the help of Weierstrass-Stone
approximation theorem.

2. Vekua Type Equation in Matrix Form with Linear
Solutions

Let w = K(0)+φK(1)+ φ̄K(2) be a linear generalized Q-
holomorphic function [5]. We investigate equations in
form (3) with linear coefficients

A = α
(0)+α

(1)
φ +α

(2)
φ ,

B = β
(0)+β

(1)
φ +β

(2)
φ ,

such that w = K(0)+ φK(1)+ φ̄K(2) is a solution of this
equation where α(i),β (i),i = 0,1,2 are constant matrix
commuting with Q and K(i),i = 0,1,2, are constant ma-
trix with m× s type. Since the matrices A and B are com-
muting with Q, they can be written as A = A0I +NA and
B = B0I +NB respectively [see 5, p.439]. Where A0 =

α
(0)
11 +α

(1)
11 z+α

(2)
11 z and B0 = β

(0)
11 +β

(1)
11 z+β

(2)
11 z are the

main diagonal term of A,B and NA,NB are the nilpotent part
of A,B respectively. Substituting w=K(0)+φK(1)+ φ̄K(2)

into Eq. (3), we obtain

K(2) =
(

α
(0)+α

(1)
φ +α

(2)
φ

)(
K(0)+φK(1)+φK(2)

)
+
(

β
(0)+β

(1)
φ +β

(2)
φ

)(
K(0)

+ φ̄K(1)
+φK(2)

)
.

By equating the coefficients of 1,φ ,φ ,φφ ,φφ ,φφ , we
obtain the following system

α(0)K(0)+β (0)K(0)
= K(2),

α(0)K(1)+α(1)K(0)+β (0)K(2)
+β (1)K(0)

= 0,
α(0)K(2)+α(2)K(0)+β (0)K(1)

+β (2)K(0)
= 0,

α(1)K(1)+β (1)K(2)
= 0,

α(1)K(2)+α(2)K(1)+β (1)K(1)
+β (2)K(2)

= 0,
α(2)K(2)+β (2)K(1)

= 0,
(4)

where α(0),α(1),α(2),β (0),β (1),β (2) are coefficients that
should be found. Equation (3) can be written as

m

∑
i=1

s

∑
l=1

(
∂w
∂φ

)
il

eil =
m

∑
i=1

s

∑
l=1

i

∑
j=1

(
ai jw jl +bi jw jl

)
eil

where (...)il means the ith row and jth column elements
of (...). For i = 1 and for fixed l, 1≤ l ≤ s, we have

∂w1l

∂ z
= A0w1l +B0w1l (5)

and for 2≤ i≤ m and for fixed l, 1≤ l ≤ s ,(
∂w
∂φ

)
il
−A0wil−B0wil−

i−1

∑
j=1

(
ai jw jl +bi jw jl

)
= 0,

Equations in (4) can be rewritten for i = 1 and for fixed l,
1≤ l ≤ s in component form, respectively:

α
(0)
11 K(0)

1l +β
(0)
11 K(0)

1l = K(2)
1l ,(6)

α
(0)
11 K(1)

1l +α
(1)
11 K(0)

1l +β
(0)
11 K(2)

1l +β
(1)
11 K(0)

1l = 0, (7)

α
(0)
11 K(2)

1l +α
(2)
11 K(0)

1l +β
(0)
11 K(1)

1l +β
(2)
11 K(0)

1l = 0, (8)

α
(1)
11 K(1)

1l +β
(1)
11 K(2)

1l = 0, (9)

α
(2)
11 K(1)

1l +α
(1)
11 K(2)

1l +β
(1)
11 K(1)

1l +β
(2)
11 K(2)

1l = 0, (10)

α
(2)
11 K(2)

1l +β
(2)
11 K(1)

1l = 0. (11)

Note that the determinant of coefficients
α
(2)
11 ,α

(1)
11 ,α

(0)
11 ,β

(2)
11 ,β

(1)
11 ,β

(0)
11 vanishes. Since Cramer’s

rule from linear algebra fails for solving this system,
we should have to look for the largest non-vanishing
minor. If we omit the last column and the fifth row, we
get a 5×5 determinant whose value is −K(2)

1l |d1l |2 where

d1l = K(1)
1l K(0)

1l −K(0)
1l K(2)

1l . Hence if we suppose K(2)
1l 6= 0

and d1l 6= 0, and choose β
(2)
11 arbitrarily, other coefficients

are then uniquely determined:
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α
(2)
11 = −β

(2)
11 K(1)

1l (K
(2)
1l )−1,

α
(1)
11 = −β

(2)
11 K(2)

1l (K
(2)
1l )−1−

(
|K(2)

1l |
2−|K(1)

1l |
2
)
|d1l |−2|K(2)

1l |
2,

α
(0)
11 = K(2)

1l K(1)
1l d−1

1l −β
(2)
11 K(0)

1l (K
(2)
1l )−1,

β
(1)
11 = β

(2)
11 (K(2)

1l )−1K(1)
1l +

(
|K(2)

1l |
2−|K(1)

1l |
2
)
|d1l |−2K(2)

1l K(1)
1l ,

β
(0)
11 = β

(2)
11 K(0)

1l (K(2)
1l )−1− (K(2)

1l )2d−1
1l .

We substitute these obtained values into Eq. (10). It
can be seen that, equation (10) is satisfied if and only if
K(2)

1l K(2)
1l = K(1)

1l K(1)
1l for each choice of β

(2)
11 . For 1 < i≤m

and 1≤ l ≤ s one can obtain following system:

α
(0)
i1 K(0)

1l +β
(0)
i1 K(0)

1l = K(2)
il (12)

−
i

∑
j=2

(α
(0)
i j K(0)

jl +β
(0)
i j K(0)

jl ),

α
(0)
i1 K(1)

1l +α
(1)
i1 K(0)

1l +β
(0)
i1 K(2)

1l +β
(1)
i1 K(0)

1l = −
i

∑
j=2

(α
(0)
i j K(1)

jl +α
(1)
i j K(0)

jl

+β
(0)
i j K(2)

jl +β
(1)
i j K(0)

jl ), (13)

α
(0)
i1 K(2)

1l +α
(2)
i1 K(0)

1l +β
(0)
i1 K(1)

1l +β
(2)
i1 K(0)

1l = −
i

∑
j=2

(α
(0)
i j K(2)

jl +α
(2)
i j K(0)

jl

+β
(0)
i j K(1)

jl +β
(2)
i j K(0)

jl ), (14)

α
(1)
i1 K(1)

1l +β
(1)
i1 K(2)

1l = −
i

∑
j=2

(α
(1)
i j K(1)

jl +β
(1)
i j K(2)

jl ),(15)

α
(2)
i1 K(1)

1l +α
(1)
i1 K(2)

1l +β
(1)
i1 K(1)

1l +β
(2)
i1 K(2)

1l = −
i

∑
j=2

(α
(2)
i j K(1)

jl +α
(1)
i j K(2)

jl

+β
(1)
i j K(1)

jl +β
(2)
i j K(2)

jl ), (16)

α
(2)
i1 K(2)

1l +β
(2)
i1 K(1)

1l = −
i

∑
j=2

(α
(2)
i j K(2)

jl +β
(2)
i j K(1)

jl ).(17)

This system can be solved similarly to system (6)-(11)
and the coefficients α

(0)
il , α

(1)
il , α

(2)
il , β

(0)
il , β

(1)
il , β

(2)
il can

be determined succesively.

α
(2)
i1 = [−β

(2)
i1 K(1)

1l −
i

∑
j=2

(α
(2)
i j K(2)

jl +β
(2)
i j K(1)

jl )](K
(2)
1l )−1,

α
(1)
i1 = d

−1
1l [−K(0)

1l

i

∑
j=2

(α
(1)
i j K(1)

jl +β
(1)
i j K(2)

jl )

+K(2)
1l

i

∑
j=2

(α
(0)
i j K(1)

jl +α
(1)
i j K(0)

jl +β
(0)
i j K(2)

jl +β
(1)
i j K(0)

jl )]

+|d1l |−2K(2)
1l

(
|K(1)

1l |
2−|K(2)

1l |
2
)
[K(2)

il −
i

∑
j=2

(α
(0)
i j K(0)

jl +β
(0)
i j K(0)

jl )]

+d−1
1l K(2)

1l (K
(2)
1l )−1[(K(2)

1l )
i

∑
j=2

(α
(0)
i j K(2)

jl +α
(2)
i j K(0)

jl +β
(0)
i j K(1)

jl +β
(2)
i j K(0)

jl )

−K(0)
1l

i

∑
j=2

(α
(2)
i j K(2)

jl +β
(2)
i j K(1)

jl )]−β
(2)
i1 K(2)

1l (K
(2)
1l )−1,

α
(0)
i1 = d−1

1l [−K(1)
1l

i

∑
j=2

(α
(0)
i j K(0)

jl +β
(0)
i j K(0)

jl )

+K(0)
1l

i

∑
j=2

(α
(0)
i j K(2)

jl +α
(2)
i j K(0)

jl +β
(0)
i j K(1)

jl +β
(2)
i j K(0)

jl )

−(K(2)
1l )−1|K(0)

1l |
2

i

∑
j=2

(α
(2)
i j K(2)

jl +β
(2)
i j K(1)

jl )+K(1)
1l K(2)

il ]−β
(2)
i1 K(0)

1l (K
(2)
1l )−1,

β
(1)
i1 = d

−1
1l [−K(1)

1l

i

∑
j=2

(α
(0)
i j K(1)

jl +α
(1)
i j K(0)

jl +β
(0)
i j K(2)

jl +β
(1)
i j K(0)

jl )

+K(0)
1l

i

∑
j=2

(α
(1)
i j K(1)

jl +β
(1)
i j K(2)

jl ]

+|d1l |−2K(1)
1l

(
|K(2)

1l |
2−|K(1)

1l |
2
)
[K(2)

il −
i

∑
j=2

(α
(0)
i j K(0)

jl +β
(0)
i j K(0)

jl )]

−d−1
1l K(1)

1l (K(2)
1l )−1[K(2)

1l

i

∑
j=2

(α
(0)
i j K(2)

jl +α
(2)
i j K(0)

jl +β
(0)
i j K(1)

jl +β
(2)
i j K(0)

jl )

−K(0)
1l

i

∑
j=2

(α
(2)
i j K(2)

jl +β
(2)
i j K(1)

jl )]+β
(2)
i1 K(1)

1l (K(2)
1l )−1

β
(0)
i1 = d−1

1l [−K(0)
1l

i

∑
j=2

(α
(0)
i j K(2)

jl +α
(2)
i j K(0)

jl +β
(0)
i j K(1)

jl +β
(2)
i j K(0)

jl )

+(K(0)
1l )2(K(2)

1l )−1
i

∑
j=2

(α
(2)
i j K(2)

jl +β
(2)
i j K(1)

jl )−K(2)
1l K(2)

il

+K(2)
1l

i

∑
j=2

(α
(0)
i j K(0)

jl +β
(0)
i j K(0)

jl )]+β
(2)
i1 K(0)

1l (K(2)
1l )−1

where α
(0)
i1 ,α

(1)
i1 ,α

(2)
i1 ,β

(0)
i1 ,β

(1)
i1 come from Eqs.(13) -(15)

and (17). Let put values which obtained above into Eq.
(16). It can be seen that Eq. (16) is satisfied if and only
if K(2)

jl K(1)
1l = K(1)

jl K(2)
1l and K(1)

jl K(1)
1l = K(2)

jl K(2)
1l for each

choice of β
(2)
i1 . The following theorem has been proved

after above calculations:

Theorem 2.1. The linear function w = K(0) + φK(1) +
φK(2) is a solution of following equation

∂w
∂φ

=
(

α
(0)+α

(1)
φ +α

(2)
φ

)
w+

(
β
(0)+β

(1)
φ +β

(2)
φ

)
w,

(18)

providing that K(2)
1l 6= 0, K(0)

1l K(2)
1l − K(1)

1l K(0)
1l 6= 0 and

K(2)
jl K(1)

1l = K(1)
jl K(2)

1l , K(1)
jl K(1)

1l = K(2)
jl K(2)

1l , 1 ≤ j ≤ i. Ar-

bitrarily choosing β
(2)
i1 , the remaining coefficients are then

uniquely determined.

Remark 2.2. Let us consider the case where the conditions
of the Theorem 2.1 is not provided. The following ex-
pressions can be proved after a few calculations which are
similar to previous ones:

(1) Let K(2)
1l = 0 and K(1)

1l 6= 0, for i = 1 and fixed l, then

w1l = K(0)
1l + zK(1)

1l is solution of (5) if

α
(0)
11 = β

(1)
11 K(0)

1l (K
(1)
1l )−1, α

(2)
11 =−β

(1)
11 K(1)

1l (K
(1)
1l )−1,

β
(0)
11 =−β

(1)
11 K(0)

1l (K(1)
1l )−1, β

(2)
11 = 0,α(1)

11 = 0,

where β
(1)
11 can be choosen arbitrarily. For 1 < i≤ m and

fixed l

α
(0)
i1 = (P2−P4K(0)

1l (K(1)
1l )−1−β

(1)
i1 K(0)

1l )(K
(1)
1l )−1,

α
(1)
i1 = P4(K

(1)
1l )−1,β

(2)
i1 = P6(K

(1)
1l )
−1

α
(2)
i1 = (P3−P6K(0)

1l (K
(1)
1l )
−1−β

(0)
i1 K(1)

1l )(K
(0)
1l )−1

β
(0)
i1 = (K(2)

il +P1−α
(0)
i1 K(0)

1l )(K(0)
1l )
−1
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where β
(1)
i1 can be choosen arbitrarily and

P1 =−
i

∑
j=2

(α
(0)
i j K(0)

jl +β
(0)
i j K(0)

jl ),

P2 =−
i

∑
j=2

(α
(0)
i j K(1)

jl +α
(1)
i j K(0)

jl +β
(0)
i j K(2)

jl +β
(1)
i j K(0)

jl ),

P3 =−
i

∑
j=2

(α
(0)
i j K(2)

jl +α
(2)
i j K(0)

jl +β
(0)
i j K(1)

jl +β
(2)
i j K(0)

jl ),

P4 =−
i

∑
j=2

(α
(1)
i j K(1)

jl +β
(1)
i j K(2)

jl )

P5 =−
i

∑
j=2

(α
(2)
i j K(1)

jl +α
(1)
i j K(2)

jl +β
(1)
i j K(1)

jl +β
(2)
i j K(2)

jl )

P6 =−
i

∑
j=2

(α
(2)
i j K(2)

jl +β
(2)
i j K(1)

jl ).

Then the solution of (5) is wil = K(0)
il +

i
∑
j=1

(φi jK
(1)
jl +

φ i jK
(2)
jl ).

(2) Let show that the case K(2)
1l 6= 0 and

K(0)
1l K(2)

1l − K(1)
1l K(0)

1l = 0 is not possible. Indeed, let

multiply Eq. (6) by K(1)
1l and adding Eq. (8) multiplied by

−K(0)
1l . Replacing α

(2)
11 by β

(2)
11 in view of (11), it follows

α
(0)
11 d1l = K(2)

1l K(1)
1l −β

(2)
11 K(0)

1l (K
(2)
1l )−1d1l .

From hypothesis since K(0)
1l K(2)

1l = K(1)
1l K(0)

1l , the last equa-

tion implies K(1)
1l = 0. Taking into consideration hypothesis

with K(1)
1l = 0, we get K(0)

1l = 0. But, this contradicts Eq.
(6). Thus, no system (18) exists, since contradiction is
obtained in the case of i = 1 and this system is going to
solve successively for 1 < i≤ m.

(3) If K(2)
1l = 0 and d1l = 0, then K(0)

1l or K(1)
1l must be zero.

Let examine this situation in three cases:

(3a) If K(0)
1l = 0 and K(1)

1l 6= 0, then w1l = zK(1)
1l is solution

of (5) with

α
(0)
11 = 0, α

(1)
11 = 0, β

(0)
11 = 0,

β
(1)
11 =−α

(2)
11 K(1)

1l (K(1)
1l )
−1, β

(2)
11 = 0,

where α
(2)
11 is arbitrary. For 1 < i≤ m and fixed l

α
(0)
i1 = P2(K

(1)
1l )−1, α

(1)
i1 = P4(K

(1)
1l )−1

β
(0)
i1 = P3(K

(1)
1l )
−1, β

(1)
i1 = (P5−α

(2)
i1 K(1)

1l )(K(1)
1l )
−1

β
(2)
i1 = P6(K

(1)
1l )
−1,K(2)

il =−P1

where α
(2)
i1 is arbitrary.

(3b) If K(1)
1l = 0 and K(0)

1l 6= 0, then we can obtain

β
( j)
11 =−α

( j)
11 K(0)

1l (K0
1l)
−1, j = 0,1,2,

where α
(0)
11 ,α

(1)
11 ,α

(2)
11 are arbitrary. For 1< i≤m and fixed

l, we get

β
(0)
i1 = (K(2)

il +P1−α
(0)
i1 K0

1l)(K
(0)
1l )
−1

β
(1)
i1 = (P2−α

(1)
i1 K0

1l)(K
(0)
1l )
−1

β
(2)
i1 = (P3−α

(2)
i1 K0

1l)(K
(0)
1l )
−1

where α
(s)
i1 (s = 0,1,2) are arbitrary.

(3c) If K(0)
1l = K(1)

1l = 0 , then one has w1l = 0 and all of
coefficients can be chosen arbitrarily. For 1 < i≤ m and
fixed l, the coefficients can be chosen to provide K(2)

il =
−P1 and Ps = 0 (s = 2,3,4,5,6).

3. Co-associated Vekua Type Equations in Matrix
Form

Let lw = 0 is identical with equation (3) that is

lw =
∂w
∂ φ̄
−Aw−Bw

and an operator £ has the following form

£w =
∂w
∂φ

+ Ã(φ)w+ B̃(φ)w. (19)

For given operator l, we search for sufficient conditions
on coefficients Ã, B̃ so that £ transforms the space of solu-
tions to equation (3) into itself. In this case, operator l is
said to be associated to an operator £. For finding these
coefficients, let us take into account the expression

l(£w) = ∂w
∂φ

( ∂w
∂φ

+ Ãw+ B̃w)

−A( ∂w
∂φ

+ Ãw+ B̃w)−B( ∂w
∂φ

+ Ãw+ B̃w)

and lw = 0. Therefore, we obtain that l(£w) = 0 is a linear
combination of ∂w

∂φ
, ∂w

∂φ
,w,w. Equating coefficients of these

terms to zero, we get

B = B̃ (20)
∂A
∂φ

+
∂ Ã
∂φ

= 0 (21)

∂B
∂φ

+
∂ B̃
∂φ

+B
[(

A−A
)
+
(

Ã− Ã
)]

= 0. (22)

Since A = α(0) + α(1)φ + α(2)φ̄ , Eq. (21) gives ∂ Ã
∂φ

=

−α(1). The solution of this equation can be written as
following form

Ã = Φ+ J[−α
(1)]

by the Corollary 3.4 in [5], this means Ã can be determine
uniquely up to an arbitrary Q-holomorphic function where
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J is the Pompeiu operator defined in [5, p. 433]. There-
fore, we see that Ã(φ) = −α(1)φ +Φ(φ) where Φ is a
Q−holomorphic function. On condition that Φ(φ) is a
linear function, as Φ(φ) = γ(0)+ γ(1)φ , on equating the
coefficients of 1,φ , φ̄ ,φφ ,φφ̄ , φ̄ φ̄ , equation (22) leads to
the relations below

β
(1)+β

(2)+β
(0)

λ = 0, β
(1)

λ −β
(0)

σ̄ = 0,

β
(2)

λ +β
(0)

σ = 0,β (1)
σ̄ = 0,

β
(1)

σ −β
(2)

σ̄ = 0, β
(2)

σ = 0,

where λ = ᾱ(0) − α(0) + γ(0) − γ̄(0) and σ =
ᾱ(1)−α(1)−α(2)− γ̄(1).

Let A(φ) = α(0) and B(φ) = β (0) be constant ma-
trices for ease. Therefore, we obtain that Ã(φ) must be
Q−holomorphic from (21) and B̃ = β (0) from Eq. (20).
If we assume that Ã(φ) is also constant, condition (22)
yields

ᾱ
(0)−α

(0) = γ̄
(0)− γ

(0),

means that Imα(0) = Imγ((0)). If two Vekua type equations
are associated to the same operator £, then they are said to
be co-associated. Consequently, if £ = ∂w/∂φ + γ(0)w+
β (0)w, then £ maps the solutions of

∂w
∂ φ̄
− (µ + iυ)w−β

(0)w̄ = 0 (23)

type equations into itself, where µ is an arbitrary real
matrix

(
υ = Imγ(0)

)
.

4. Linear Solutions of Co-associated Equations

In this section, we determine the coefficients of a linear
function w = K(0)+φK(1)+ φ̄K(2) in order for this func-
tion to be a solution of Eq. (23). Substituting the linear
function into (23), we obtain the following system of equa-
tions:

(µ + iυ)K(0)+β
(0)K(0)

= K(2), (24)

(µ + iυ)K(1)+β
(0)K(2)

= 0, (25)

(µ + iυ)K(2)+β
(0)K(1)

= 0. (26)

For determining K(0),K(1),K(2), we should solve above
system. For this, the statements below on linear algebraic
equations can be used.

Proposition 4.1. Provided C(1)
11 C(1)

i j = C(2)
11 C(2)

i j ( j =

1,2, . . . , i), the equation

C(1)P+C(2)P =C(3) (27)

is solvable if C(1)
11 C(3)

il =C(2)
11 C(3)

il , where P =
{

Pi j
}

, C(3) ={
C(3)

i j

}
are m× s matrices and C(1) =

{
C(1)

i j

}
,C(2) ={

C(2)
i j

}
are commuting with Q.

Proof. Equation (27) can be written in component form,
for i = 1 and for fixed l, 1≤ l ≤ s, as

C(1)
11 P1l +C(2)

11 P1l =C(3)
1l (28)

and for 2≤ i≤ m and for fixed l, 1≤ l ≤ s, as

C(1)
11 Pil +C(2)

11 Pil =C(3)
il −

i−1

∑
j=1

(C(1)
i j Pjl +C(2)

i j P jl). (29)

In the case of i = 1, provided C(1)
11 C(1)

11 =C(2)
11 C(2)

11 , equation

(28) is solvable if C(1)
11 C(3)

1l = C(2)
11 C(3)

1l [see 9, p. 723]. It
can be explicitly seen from complex case that provided
C(1)

11 C(1)
i j = C(2)

11 C(2)
i j for 2 ≤ i ≤ m, j = 1,2, . . . , i, (29) is

solvable successively, if C(1)
11 C(3)

il =C(2)
11 C(3)

il .

Proposition 4.2. The system C(4)P+C(5)R = 0,

C(4)R+C(5)P = 0,
(30)

has non-trivial solutions if and only if C(4)
11 C(4)

i j =

C(5)
i j C(5)

11 ,(i = 1, ...,m, j = 1, ...i), where C(4),C(5) are com-
muting with Q and P,R are m× s matrices.

Proof. The system (30) can be written in component form,
for i = 1 and for fixed l, 1≤ l ≤ s, as

C(4)
11 P1l +C(5)

11 R1l = 0,

C(4)
11 R1l +C(5)

11 P1l = 0.
(31)

For 2≤ i≤m and for fixed l, 1≤ l ≤ s, (30) can be written
in component form as

C(4)
11 Pil +C(5)

11 Ril =−
i−1
∑
j=1

(C(4)
i j Pjl +C(5)

i j R jl),

C(4)
11 Ril +C(5)

11 Pil =−
i−1
∑
j=1

(C(4)
i j R jl +C(5)

i j P jl).

(32)

For i = 1, the system (31) has non trivial solutions if and
only if C(4)

11 C(4)
11 = C(5)

11 C(5)
11 [see 9, p. 723]. By using

obvious statements on linear algebraic equations, if the
condition C(4)

11 C(4)
i j =C(5)

i j C(5)
11 for 2≤ i≤ m, 1≤ j ≤ i−1

is considered, it can be seen that the system (32) have
solutions. So this completes the proof.
Let us consider Proposition 4.1 and Proposition 4.2 in
order to find non-constant solutions of (23). Firstly, if we
apply the second one to (25), (26), then we get

(µ + iυ)11 (µ− iυ)k j = β
(0)
11 β

(0)
k j , (33)

where 1≤ k ≤ m, 1≤ j ≤ k. According to the Proposition
4.1, provided (33) Eq. (24) is solvable if

(µ + iυ)11 K(2)
kl = β

(0)
11 K(2)

kl . (34)

For k = 1, Eq. (33) can be written as

(µ + iυ)11 (µ− iυ)11 = β
(0)
11 β

(0)
11 , (35)
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where from |(µ + iυ)11| = |β
(0)
11 |. Let us suppose that

|υ11| < |β (0)
11 |, then there exist two real solutions of (35).

For k = 1, we obtain from Eq. (34) (µ + iυ)11 K(2)
1l =

β
(0)
11 K(2)

1l . Assume, without any loss of generality, that

|K(2)
1l |= 1 . Let ψi j be the polar angle of α

(0)
i j and denote

the polar angel of β
(0)
i j with ϕi j. By using of Proposition

4.1, similar to complex case [9] , one can obtain

K(2)
1l = exp

(
i
2
(ψ11 +ϕ11)

)
.

In view of (25) in component form, using the value of K(2)
1l ,

we find

K(1)
1l =−exp

(
i
2
(ϕ11−3ψ11)

)
.

A similar calculation for negative value of µ11 leads to

K(2)
1l = iexp

(
i
2
(ϕ11−ψ11)

)
,

K(1)
1l =−iexp

(
i
2
(ϕ11 +3ψ11)

)
.

For 2 ≤ k ≤ m similar calculations can be done succes-
sively. From Eq. (24), permissible values of K(0) can
be found by using K(1) and K(2). In consequence of
Weierstrass-Stone approximation theorem, utilizing the
two possibilities for K(0),K(1),K(2) which has been con-
structed above, two functions w1 and w2 can be written
in the form K(0) + φK(1) + φK(2) . Thus the following
statement has been proved:

Theorem 4.3. Suppose |υ11| < |β (0)
11 |. Then there exist

two linear generalized Q-holomorphic functions w1,w2
which are solutions with the form K(0)+φK(1)+φK(2) of

∂w/∂φ = (µ + iυ)w+β
(0)w,

such that every complex matrix-valued continuous function
on a compact set in the complex plane can uniformly be
approximated by w1,w2.

Associated equations have been presented for the purpose
of solving initial value problems having type ∂w

∂ t = ∂w
∂ z +

Aw+Bw, w(z,0) = ϕ(z) [see 10]. On the condition that
the initial function is a solution of associated equation, the
solution of this initial value problem exists. Moreover, one
can construct this solution by using of contraction mapping
principle. In previous section, we obtained the sufficient
conditions for £ and l to be associated. Let us regard the
initial value problem

∂w
∂ t

=
∂w
∂φ

+ Ãw+ B̃w

w(z,0) = w0(z).

Suppose that the initial function be a solution of associated
equation and Ã and B̃ be continuous in {t : 0≤ t ≤ t0}× D̄
and for every t belong to Cα(D̄). Hence this initial value
problem can be solved and the solution of this problem
is constructable by successive approximation method [see
11].
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