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α-Topological Vector Spaces
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Abstract

The notion of α−topological vector space is introduced and several
properties are studied. A complete comparison between this class
and the class of topological vector spaces is presented. In particular,
α−topological vector spaces are shown to be independent from topo-
logical vector spaces. Finally, a su�cient condition for α�regularity of
α−topological vector spaces is given.
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1. Introduction

A topological vector space (TVS) is a vector space with a topological structure such
that the algebraic operations; addition and scalar multiplication, are continuous, see for
example Jarchow [15] and Köthe [16], Al-hawary and Al-Nayef [8, 7]. The theory of
topological vector spaces often clari�es results in many branches of functional analysis
such as the theory of normed spaces. Let (X,T) be a topological space. A subset A ⊆ X
is α-open if A ⊆ Aoo, where Ā denotes the closure of A in X and Ao denotes the interior
of A. The collection of all α-open sets in (X ,T) is denoted by αO(X) and the pair
(X,αO(X)) is called the α-topological space associated with (X ,T). We remark that
(X,αO(X)) is a topological space.

Let (X ,T) and (Y ,T
′
) be topological spaces. A map f : X → Y is α−irresolute if the

inverse image of every α-open set in Y is α-open in X, see Maheshwari and Thakur [17]
and Takashi [18]. A map f : X → Y is pre-α-open if the image of any α-open set in X

is α-open in Y. Two topological spaces (X ,T) and (Y ,T
′
) are α-homeomorphic if there

exists a map h : X → Y which is bijective, α-irresolute and pre-α-open. Such an h is
called α-homeomorphism. We shall call a map f : X → Y inverse α�continuous if the
inverse of every α�open subset of Y is open in X. We refer the reader interested in more

∗Department of Mathematics, Yarmouk University, Irbid-Jordan,
Email : talalhawary@yahoo.com



1103

details about the preceding notions to Al-Hawary [9, 10, 5, 6, 11, 2, 1, 3, 4], Crossley and
Hildebrand [12, 13], Maheshwari and Thakur [17] and Takashi [18].

Our main goal in this paper is to introduce and study properties of what we call α�
topological vector spaces (αTVSs). This concept is shown to be totally di�erent from the
concept of TVS. We give necessary and su�cient conditions for each of them to imply the
other. Section 2 is devoted to discuss the relation between TVSs and αTVSs, while in
Section 3, several properties of αTVSs are discussed. In Section 4, we de�ne the notion
of strong α�topological vector space (SαTVS) and show that it is a stronger notion than
that of αTVS and every SαTVS is α�regular.

We next recall two necessary results:

1.1. Lemma. [18] Let X and Y be topological spaces. Then
a) Every α−irresolute map f : X → Y is α−continuous, but the converse need not be

true.
b) A subset A of X is α-open if and only if there exists an open set V in X such that

V ⊆ A ⊆ V o
.

The proof of the following fundamental result follows from the de�nitions.

1.2. Lemma. Let (X ,T) and (Y ,T
′
) be topological spaces. Then a subset U ⊆ X × Y is

an α-open set (with respect to the product topology) if and only if U = A × B where A
and B are α-open sets in X and Y, respectively.

2. αTVSs versus TVSs

We begin this section with the de�nition of the notion of an α−topological vector
space.

2.1. De�nition. Let X be a vector space over the �eld of real numbers, and let T be a
topology on X such that the addition map SX : X×X → X and the scalar multiplication
mapMX : R×X → X are α−irresolute. Then (X,αO(X)) is called α−topological vector
space (αTVS).

If every subset of a topological vector space is open (closed) or every α-open set is
clopen, then clearly every αTVS is a TVS. By Lemma 1.1 (a), an α−irresolute map need
not be α-continuous and hence need not be continuous. Thus an αTVS need not be a
TVS.

Next, an interesting example of an αTVS will be given. For that, we prove the
following result:

2.2. Lemma. Let f : X → Y be a continuous and open map. Then f is α-irresolute.

Proof. For every α-open subset of Y , by Lemma 1.1, there exists an open set V in Y
such that V ⊆ A ⊆ V o

. Thus f−1(V ) ⊆ f−1(A) ⊆ f−1(V
o
). As f is continuous, f−1(V )

is open in X. We show that f−1(A) ⊆ f−1(V )
o
by showing that f−1(V

o
) ⊆ f−1(V )

o
.

For every x ∈ f−1(V
o
), f(x) ∈ V

o
and so there exists an open set U in Y such that

f(x) ∈ U ⊆ V . Now; for every y ∈ f−1(U) and for every open subset W of X such
that y ∈ W, f(y) ∈ f(W ) which is open in Y as f is an open map and as f(y) ∈ V̄ ,
V ∩ f(W ) 6= ∅. Hence there exists z ∈ V ∩ f(W ) and so f−1(z) ∈ f−1(V ) ∩W. That is
f−1(z) ∈ f−1(V ). Therefore by Lemma 1.1 (b), f−1(A) is α−open. �

2.3. Example. Consider X = R with the usual topology Tu. Then clearly SR and MR
are continuous and open by the Open Mapping Theorem. Hence by Lemma 1.1 (b), SR
and MR are α−irresolute maps and consequently (X,αO(R)) is an αTVS.
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Another su�cient condition for an αTVS to be a TVS will be given next, but �rst we
need the following de�nition and lemma.

2.4. De�nition. [14] Let (X ,T) be a topological space. A subset S ⊆ X is locally closed
if S = U ∩ F where U is open and F is closed.

2.5. Lemma. [14] Let (X ,T) be a topological space. A subset S ⊆ X is open if and only
if it is α-open and locally closed.

2.6. Corollary. Let (X,αO(X)) be an αTVS in which every α-open set is locally closed.
Then (X,αO(X)) is a TVS.

Note that every TVS equipped with the discrete topology is an αTVS, but in general
a TVS need not be an αTVS, for example (R,Tu) is a TVS which is not an αTVS. In
[14], a subset A of a topological space (X,T) is an A−set if A = U ∩ F where U is open

and F = F o.
Next we recall the following result.

2.7. Lemma. [14] For a map f : X → Y, the following are equivalent:
(a) f is continuous.
(b) f is precontinuous and LC-continuous.
(c) f is precontinuous and A�continuous.

The following main result follows from Lemma 1.1.

2.8. Theorem. Let (X,T) be a TVS such that the maps SX and MX are open. Then
(X,αO(X)) is an αTVS if SX and MX satisfy any of the three equivalent statements in
Lemma 2.7.

3. Properties of αTVSs

Recall that if (X,αO(X)) is an αTVS, then by an α�neighborhood (neighborhood) of
an element x ∈ X we mean any subset of X that includes an α�open set (open set). The
set of all α−neighborhoods of x ∈ X will be denoted by Nx(X). In particular, N0(X)
denotes the set of all α−neighborhoods of 0 (the zero element of X). The following result
is immediate from the fact that every open set is α−open and that the set of all α-open
sets on a space X is a topology.

3.1. Lemma. If S is any α-open subset of a topological space (X,T) and W ⊆ X is
open, then S

⋂
W is α�open.

A fundamental result in which four basic neighborhood properties is given next.

3.2. Theorem. Let (X,αO(X)) be an αTVS. Then
(a) If U ∈ Nx(X) is an α-neighborhood of a point x ∈ X, then x ∈ U.
(b) If U ∈ Nx(X) is an α-neighborhood of a point x ∈ X and V a neighborhood of x,

then U ∩ V is an α-neighborhood of x.
(c) If U ∈ Nx(X) is an α-neighborhood of a point x ∈ X, then there exists an

α−neighborhood V ∈ Nx(X) of x such that U ∈ Ny(X) is an α-neighborhood of y,
for every y ∈ V.

(d) If U ∈ Nx(X) is an α-neighborhood of a point x ∈ X and U ⊆ V, then V ∈ Nx(X)
is an α-neighborhood of x.

Proof. Only the proof of Part (b) is given. The proofs of other parts are similar and hence
omitted. If U ∈ Nx(X) and V is a neighborhood of x, then there exists an α�open set S
and an open setW such that x ∈ S ⊆ U and x ∈W ⊆ V . Then x ∈ S

⋂
W ⊆ U

⋂
V and

by Lemma 3.1, S
⋂
W is α�open. Therefore , (U

⋂
V ) ∈ Nx(X) is an α�neighborhood

of x. �
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We have shown in Part (b) in the preceding theorem that the intersection of an α�
neighborhood of x ∈ X with a neighborhood of x is an α�neighborhood of x. We
recall that a property A of an αTVS X is called a α-topological property if every α-
homeomorphic αTVS Y to X also achieves the property A. It follows from the next
Lemma that having an α-neighborhood is an α-topological property. The proof of the
Lemma is straightforward.

3.3. Lemma. Let (X,αO(X)) and (Y, αO(Y )) be αTVSs and let f : X → Y be an
α−homeomorphism. A subset U of X is an α−neighborhood of x ∈ X if and only if f(U)
is an α−neighborhood of f(x).

Proof. If U is an α-neighborhood of x ∈ X, then there exists an α−open V such that
x ∈ V ⊆ U. Thus f(x) ∈ f(V ) ⊆ f(U) and since f is pre α-open, f(V ) is α-open in Y.
Thus f(U) is an α-neighborhood of f(x).

Conversely, if f(U) is an α-neighborhood of f(x), then there exists an α-open W in Y
such that f(x) ∈ W ⊆ f(U). Hence x ∈ f−1(W ) ⊆ U and as f is α−irresolute, f−1(W )
is α-open. Therefore, U is an α-neighborhood of x. �

The gist of the following theorem is that the α-topological structure of an αTVS at
the point x ∈ X is determined by α−neighborhoods of 0.

3.4. Theorem. Let (X,αO(X)) be an αTVS and y ∈ X. Then
(a) For U ⊆ X, U ∈ N0(X) if and only if y + U ∈ Ny(X).
(b) If U ∈ N0(X), then tU ∈ N0(X) for all scalars t ∈ R \ {0}.

Proof. To prove Part (a), note that by assumption, the map SX is α−irresolute. De-
�ne the map fy : X → X by fy(x) = x + y. Then since fy(x) = SX(x, y), fy is
α−irresolute and as f−1

y (x) = SX(x,−y), f−1
y is also α−irresolute. Therefore, fy is

an α−homeomorphism. The proof of this part is completed by applying Lemma 3.3.
A similar argument using the map gt : X → X de�ned by gt(x) = tx can be used to

establish Part (b). �

Recall that a subset A of a vector space X is called balanced if tA ⊆ A for |t| ≤ 1;
and absorbing if for every x ∈ X, there exists ε > 0 such that tx ∈ A for |t| < ε.

3.5. Theorem. Let (X,αO(X)) be an αTVS. Then every U ∈ N0(X) is absorbing.

Proof. Let U ∈ N0(X). Then there exists an α−open set U1 ∈ N0(X) such that U1 ⊆ U .
By assumption, the scalar map MX : R×X → X is α−irresolute. Therefore, there exist
α−open sets V1 ∈ N0(R) and V2 ∈ N0(X) such that MX(V1 × V2) ⊆ U1. The set V1

contains an open interval of the form (−ε, ε) for an ε > 0, and thus tx ∈ U1 for all
t ∈ (−ε, ε) and for all x ∈ V2. This shows that U1 is absorbing. �

An αTVS is called regular (α−regular) if each α−neighborhood of the origin contains a
closed (α−closed) neighborhood of the origin. Clearly, every regular αTVS is α−regular,
while the converse holds if every α−open set in X is locally closed (an intersection of an
open set with a closed set).

Next, we characterize the α−closure of subsets of an αTVS. For that, we need the
following result whose proof is an easy consequence of the de�nition.

3.6. Lemma. Let (X,αO(X)) be an αTVS, x ∈ X and A ⊆ X. Then x ∈ αCL(A) if
and only if A intersects every U ∈ Nx(X).

3.7. Theorem. Let (X,αO(X)) be an αTVS. Then
(a) For every U ∈ N0(X), there exists a balanced V ∈ N0(X) such that V ⊆ U.
(b) If A ⊆ X, then αCL(A) =

⋂
U∈N0(X)(A+ U).

(c) If A ⊆ X, then αCL(A) ⊆ A+ U, for all U ∈ N0(X).
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Proof. For the proof of Part (a), note that by assumption, the map MX : R ×X → X
is α−irresolute, and hence for every U ∈ N0(X) there exists V ∈ N0(R ×X) such that
MX(V ) ⊆ U. Thus, there exists ε > 0 such that V = V1 × V2, (−ε, ε) ⊆ V1 ∈ N0(R)
and V2 ∈ N0(X). De�ne W :=

⋃
|t|<εtV2 and note that by Part (b) of Theorem 3.4,

tV2 ∈ N0(X) for t 6= 0 and tV2 ⊆ U for all |t| < ε. It remains to show that W is
balanced. If |s| ≤ 1 then sW =

⋃
|t|<ε (st)V2. Since |st| < ε|s| < ε, it follows that

sW = ∪|r|<ε r V2 ⊆W , with r = s t. Thus, W is balanced.
To prove Part (b) , let x ∈ αCL(A). If U ∈ N0(X), then by Part (a) there exists

a balanced neighborhood V ∈ N0(X) such that V ⊆ U. Therefore, x + V ∈ Nx(X)
and by Lemma 3.6, (x + V ) ∩ A 6= ∅, which implies that x ∈ A − V. But since V is
balanced, A − V = A + V and hence x ∈ A + V ⊆ A + U. This shows that αCL(A) ⊆⋂

U∈N0(X)(A+U). For the other direction, we prove the contrapositive: If x /∈ αCL(A),

then there exists a balanced U ∈ N0(X) such that (x + U) ∩ A = ∅. Consequently,
x /∈ A− U = A+ U. This completes the proof of Part (b).

The proof of Part (c) follows immediately from Part (b). �

4. α−regular SαTVSs

We de�ne strong α−irresolute�topological vector space (SαTVS) (X,αO(X)) to be
an αTVS in which the addition map MX : X × X → X is inverse α�continuous. Note
that every SαTVS is an αTVS. But, the converse need not be true, for example (R,T`)
where T` denotes the the left�ray topology is an αTVS, but as the addition map is not
continuous, it is not an SαTVS. Thus, the notion of SαTVS is stronger than the notion
of αTVS.

The following Lemma is needed to prove our main result of this section in Theorem
4.2.

4.1. Lemma. If (X,αO(X)) is an SαTVS, then for every U ∈ N0(X), there exists
V ∈ N0(X) such that V + V ⊆ U.

Proof. Let U ∈ N0(X). Since the map SX : X ×X → X is inverse α�continuous, there
exist open sets V1 and V2 in N0(X) such that SX(V1, V2) ⊆ U , that is V1 + V2 ⊆ U. Let
V := (V1

⋂
V2). The set V is open, and hence α-open with the property that V ⊆ V1 and

V ⊆ V2, thus, we have V + V ⊆ V1 + V2 ⊂ U . �

4.2. Theorem. Let (X,αO(X)) be an SαTVS. Then for every U ∈ N0(X), there exists
an α−closed balanced V ∈ N0(X) such that V ⊆ U. Hence every SαTVS is α−regular.

Proof. Let U ∈ N0(X). By Lemma 4.1, there exists V ∈ N0(X) such that V + V ⊆ U.
By Part (a) of Theorem 3.7, there exists a balanced neighborhood W ∈ N0(X) such that
W ⊆ V. But by Part (c) of Theorem 3.7, αCL(W ) ⊆W+V. Finally, αCL(W ) ⊆W+V ⊆
V + V ⊆ U. This shows that U contains the α-closed neighborhood αCL(W ) ∈ N0(X).
Thus X is α�regular. �
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