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Maximal accretive singular quasi-di�erential
operators
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Abstract

In this paper �rstly all maximal accretive extensions of the minimal
operator generated by a �rst order linear singular quasi-di�erential
expression in the weighted Hilbert space of vector-functions on right
semi-axis are described. Later on, the structure of spectrum set of
these extensions has been researched.
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1. Introduction

It is known that a linear closed densely de�ned operator T : D(T ) ⊂ H → H
in Hilbert space H is called accretive(dissipative) if for all f ∈ D(T ) the inequality
Re < Tf, f >H≥ 0 (Im < Tf, f >H≥ 0) is satis�ed. Also it is called maximal accre-
tive(maximal dissipative) if it is accretive(dissipative) and does not have any proper
accretive(dissipative) extension [3], [1]. The class of accretive operators is an important
class of non-selfadjoint operators in the operator theory. Note that the spectrum set of
accretive operators lies in right half-plane.

The maximal accretive extensions and their spectral analysis of the minimal operator
generated by regular di�erential-operator expression in Hilbert space of vector-functions
de�ned in one �nite interval case have been studied by V.V. Levchuk [4].

This work is organised as follows: In Section 3, all maximal accretive extensions of
the minimal operator generated by a linear singular quasi-di�erential operator expres-
sion in the weighted Hilbert spaces of the vector functions de�ned at right semi-axis are
examined. In Section 4, the structure of the spectrum of these type extensions has been
investigated.
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2. Statement of the problem

Let H be a separable Hilbert space and a ∈ R. Moreover assumed that α : (a,∞) →
(0,∞), α ∈ C(a,∞) and α−1 ∈ L1(a,∞). In the weighted Hilbert space L2

α(H, (a,∞))
of H− valued vector-functions de�ned on the right semi-axis consider the following linear
�rst order quasi-di�erential expression with operator coe�cient

l(u) = (αu)′ +Au,

where A : H → H is a selfadjoint operator with condition A ≥ 0.
By a standard way the minimal L0 and maximal L operators corresponding to quasi-

di�erential expression l( . ) in L2
α(H, (a,∞)) can be de�ned (see [2]). In this case the

minimal operator L0 is accretive, but it is not maximal in L2
α(H, (a,∞)).

The main goal of this work is to describe of all maximal accretive extensions of the
minimal operator L0 in terms of boundary condition in L2

α(H, (a,∞)). Secondly, the
structure of the spectrum set of these extensions will be investigated.

3. Description of maximal accretive extensions

Note that in similar way the minimal operator L+
0 generated by a quasi-operator

expression
l+(v) = −(αv)′ +Av

can be de�ned in L2
α(H, (a,∞)) (see [2]). In this case the operator L+ = (L0)

∗ in
L2
α(H, (a,∞)) is called the maximal operator generated by l+( . ). It is clear that L0 ⊂ L

and L+
0 ⊂ L+.

If L̃ is any maximal accretive extension of the minimal operator L0 in L2
α(H, (a,∞))

and M̃ is corresponding extension of the minimal operator M0 generated by a quasi-
di�erential expression

m(u) = i(αu)′

in L2
α(H, (a,∞)), then it is clear that

L̃u = (αu)′(t) +Au(t)

= i(−i(αu)′)(t) +Au(t)

= i(−M̃)(t) +Au(t)

= i
(
−
(
ReM̃ + iImM̃

))
u(t) +Au(t)

=
(
ImM̃

)
u(t)− i

(
ReM̃

)
u(t) +Au(t)

=
[(
ImM̃

)
+A

]
u(t)− i

(
ReM̃

)
u(t).

Therefore (
ReL̃

)
=
(
ImM̃

)
+A.

On the other hand it is clear that(
ReL̃

)
=
(
ImM̃

)
+A = Im

(
M̃ +A

)
.

Hence to describe all maximal accretive extension of the minimal operator L0 in
L2
α(H, (a,∞)) it is su�ciently to describe all maximal dissipative extensions of the min-

imal operator S0 generated by quasi-di�erential expression

s(u) = i(αu)′ +Au

in L2
α(H, (a,∞)).

Furthermore, we will denote the maximal operator generated by the quasi-di�erential
expression s( . ) in L2

α(H, (a,∞)) by S.
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In this section, we will investigate the general representation of all maximal dissipa-
tive extensions of the minimal operator S0 in L2

α(H, (a,∞)) by using Calkin-Gorbachuk
method. Let us prove the following proposition.

3.1. Lemma. The de�ciency indices of the minimal operator S0 in L2
α(H, (a,∞)) are

given in the form

(n+(S0), n−(S0)) = (dimH, dimH).

Proof. For the simplicity of calculations, we will take A = 0. It is clear that the general
solutions of di�erential equations

i(αu±)
′(t)± iu±(t) = 0, t > a

in L2
α(H, (a,∞))

u±(t) =
1

α(t)
exp

∓ t∫
a

ds

α(s)

 f, f ∈ H, t > a.

From these representations, we have

‖u+‖2L2
α(H,(a,∞)) =

∞∫
a

‖u+(t)‖2Hdt

=

∞∫
a

‖ 1

α(t)
exp

− t∫
a

ds

α(s)

 f‖2Hα(t)dt

=

∞∫
a

1

α(t)
exp

−2 t∫
a

ds

α(s)

 dt‖f‖2H

=

∞∫
a

exp

−2 t∫
a

ds

α(s)

 d

 t∫
a

ds

α(s)

 ‖f‖2H
=

1

2

1− exp

−2 ∞∫
a

ds

α(s)

 ‖f‖2H <∞.

Consequently n+(S0) = dim ker(S + iE) = dimH.
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On the other hand, it is clear that for any f ∈ H,

‖u−‖2L2
α(H,(a,∞)) =

∞∫
a

‖u−(t)‖2Hdt

=

∞∫
a

‖ 1

α(t)
exp

 t∫
a

ds

α(s)

 f‖2Hα(t)dt

=

∞∫
a

1

α(t)
exp

2

t∫
a

ds

α(s)

 dt‖f‖2H

=

∞∫
a

exp

2

t∫
a

ds

α(s)

 d

 t∫
a

ds

α(s)

 ‖f‖2H
=

1

2

exp
2

∞∫
a

ds

α(s)

− 1

 ‖f‖2H <∞.

It follows from that n−(S0) = dim ker(S− iE) = dimH. This completes the proof of
the theorem. �

Consequently, the minimal operator S0 has a maximal dissipative extension (see [1]).

In order to describe these extensions, we need to obtain the space of boundary values.

3.2. De�nition. [1] Let H be any Hilbert space and S : D(S) ⊂ H → H be a closed
densely de�ned symmetric operator in the Hilbert space H having equal �nite or in�nite
de�ciency indices. A triplet (H, γ1, γ2), where H is a Hilbert space, γ1 and γ2 are linear
mappings from D(S∗) into H, is called a space of boundary values for the operator S if
for any f, g ∈ D(S∗)

< S∗f, g >H − < f, S∗g >H=< γ1(f), γ2(g) >H − < γ2(f), γ1(g) >H

while for any F1, F2 ∈ H, there exists an element f ∈ D(S∗) such that γ1(f) = F1 and
γ2(f) = F2.

3.3. Lemma. De�ne

γ1 : D(S)→ H, γ1(u) =
1√
2
((αu)(∞)− (αu)(a)) and

γ2 : D(S)→ H, γ2(u) =
1

i
√
2
((αu)(∞) + (αu)(a)) , u ∈ D(S).

Then the triplet (H, γ1, γ2) is a space of boundary values of the minimal operator S0 in

L2
α(H, (a,∞)).



1124

Proof. For any u, v ∈ D(S)

< Su, v >L2
α(H,(a,∞)) − < u, Sv >L2

α(H,(a,∞))

= < i(αu)′ +Au, v >L2
α(H,(a,∞)) − < u, i(αv)′ +Av >L2

α(H,(a,∞))

= < i(αu)′, v >L2
α(H,(a,∞)) − < u, i(αv)′ >L2

α(H,(a,∞))

=

∞∫
a

< i(αu)′(t), v(t) >H α(t)dt−
∞∫
a

< u(t), i(αv)′(t) >H α(t)dt

= i

 ∞∫
a

< (αu)′(t), (αv)(t) >H dt+

∞∫
a

< (αu)(t), (αv)′(t) >H dt


= i

∞∫
a

< (αu)(t), (αv)(t) >′H dt

= i [< (αu)(∞), (αv)(∞) >H − < (αu)(a), (αv)(a) >H ]

= < γ1(u), γ2(v) >H − < γ2(u), γ1(v) >H .

Now for any given elements f, g ∈ H, we can �nd the function u ∈ D(S) such that

γ1(u) =
1√
2
((αu)(∞)− (αu)(a)) = f and γ2(u) =

1

i
√
2
((αu)(∞) + (αu)(a)) = g.

From this, we obtain

(αu)(∞) = (ig + f)/
√
2 and (αu)(a) = (ig − f)/

√
2.

If we choose the function u( . ) in following form

u(t) =
1

α(t)
(1− ea−t)(ig + f)/

√
2 +

1

α(t)
ea−t(ig − f)/

√
2,

then it is clear that u ∈ D(S) and γ1(u) = f, γ2(u) = g. �

The following result can be established by using the method given in [1].

3.4. Theorem. If S̃ is a maximal dissipative extension of the minimal operator S0

in L2
α(H, (a,∞)), then it is generated by the di�erential-operator expression s( . ) and

boundary condition

(αu)(a) = K(αu)(∞),

where K : H → H is a contraction operator. Moreover, the contraction operator K in H

is determined uniquely by the extension S̃, i.e. S̃ = SK and vice versa.

Proof. It is known that each maximal dissipative extension S̃ of the minimal operator
S0 is described by the di�erential-operator expression s( . ) and the boundary condition

(V − E)γ1(u) + i(V + E)γ2(u) = 0,

where V : H → H is a contraction operator. Therefore from Lemma 3.3, we obtain

(V − E) ((αu)(∞)− (αu)(a)) + (V + E) ((αu)(∞) + (αu)(a)) = 0, u ∈ D(S̃).

From this, it implies that

(αu)(a) = −V (αu)(∞).

Choosing K = −V in last boundary condition, we have

(αu)(a) = K(αu)(∞).

�



1125

From this theorem and the note mentioned above, it implies the validity of the fol-
lowing result.

3.5. Theorem. Each maximal accretive extension L̃ of the minimal operator L0 is gen-

erated by linear singular quasi-di�erential expression l( . ) and boundary condition

(αu)(a) = K(αu)(∞),

where K : H → H is a contraction operator such that this operator is determined uniquely

by the extension L̃, i.e. L̃ = LK and vice versa.

4. The spectrum of the maximal accretive extensions

In this section the structure of the spectrum set of the maximal accretive extensions
of the minimal operator L0 in L2

α(H, (a,∞)) will be researched.

4.1. Theorem. The spectrum of any maximal accretive extension LK has the form

σ(LK) =

λ ∈ C : λ =

 ∞∫
a

ds

α(s)

−1 (
ln
(
|µ|−1)+ iarg(µ) + 2nπi

)
,

µ ∈ σ

Kexp
−A ∞∫

a

ds

α(s)

 , n ∈ Z

 .

Proof. Consider the following problem to get the spectrum of the extension LK , i.e.

LK(u) = λu+ f, λ ∈ C, λr = Reλ ≥ 0.

Then we have

(αu)′(t) +Au(t) = λu(t) + f(t), t > a,

(αu)(a) = K(αu)(∞).

The general solution of the last di�erential equation

(αu)′(t) =
1

α(t)
(λE −A)(αu)(t) + f(t), t > a

is

u(t;λ) =
1

α(t)
exp

(λE −A)
t∫
a

ds

α(s)

 fλ

− 1

α(t)

∞∫
t

exp

(λE −A)
t∫
s

dτ

α(τ)

 f(s)ds, fλ ∈ H, t > a.
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In this case

‖ 1

α(t)
exp

(λE −A)
t∫
a

ds

α(s)

 fλ‖2L2
α(H,(a,∞))

=

∞∫
a

‖ 1

α(t)
exp

(λE −A)
t∫
a

ds

α(s)

 fλ‖2Hα(t)dt

=

∞∫
a

<
1

α(t)
exp

(λE −A)
t∫
a

ds

α(s)

 fλ,
1

α(t)
exp

(λE −A)
t∫
a

ds

α(s)

 fλ >H α(t)dt

=

∞∫
a

1

α(t)
exp

2λr

t∫
a

ds

α(s)

 < exp

−A t∫
a

ds

α(s)

 fλ, exp

−A t∫
a

ds

α(s)

 fλ >H dt

=

∞∫
a

1

α(t)
exp

2λr

t∫
a

ds

α(s)

 ‖exp
−A t∫

a

ds

α(s)

 fλ‖2Hdt

≤
∞∫
a

1

α(t)
exp

2λr

t∫
a

ds

α(s)

 dt‖fλ‖2H

=
1

2λr

exp
2λr

∞∫
a

ds

α(s)

− 1

 ‖fλ‖2H <∞

and

‖ − 1

α(t)

∞∫
t

exp

(λE −A)
t∫
s

dτ

α(τ)

 f(s)ds‖2L2
α(H,(a,∞))

=

∞∫
a

‖ 1

α(t)

∞∫
t

exp

(λE −A)
t∫
s

dτ

α(τ)

 f(s)ds‖2Hα(t)dt

=

∞∫
a

1

α(t)
‖
∞∫
t

exp

(λE −A)
t∫
s

dτ

α(τ)

 f(s)ds‖2Hdt

=

∞∫
a

1

α(t)
‖
∞∫
t

exp

λE t∫
s

dτ

α(τ)

exp
−A t∫

s

dτ

α(τ)

 f(s)

 ds‖2Hdt

=
∞∫
a

1

α(t)
‖
∞∫
t

exp

(
(λr + iλi)

t∫
s

dτ

α(τ)

)[
exp

(
−A

t∫
s

dτ

α(τ)

)
1√
α(s)

(√
α(s)f(s)

)]
ds‖2Hdt
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≤
∞∫
a

1

α(t)

 ∞∫
a

1

α(s)
exp

2λr

t∫
s

dτ

α(τ)

 ds

 ∞∫
a

α(s)‖f‖2Hds

 dt

≤
∞∫
a

1

α(t)

 ∞∫
a

1

α(s)
exp

2λr

∞∫
a

dτ

α(τ)

 ds

 ‖f‖2L2
α(H,(a,∞))

= exp

2λr

∞∫
a

dτ

α(τ)

 ∞∫
a

ds

α(s)

2

‖f‖2L2
α(H,(a,∞)) <∞.

Hence u( . , λ) ∈ L2
α(H, (a,∞)) for λ ∈ C, Reλ ≥ 0.

Furthermore from boundary condition, we getE −Kexp
(λE −A)

∞∫
a

ds

α(s)

 fλ =

∞∫
a

exp

(λE −A)
a∫
s

dτ

α(τ)

 f(s)ds.

Therefore in order to obtain λ ∈ σ(LK) the necessary and su�cient condition is

exp

−λ ∞∫
a

ds

α(s)

 = µ ∈ σ

Kexp
−A ∞∫

a

ds

α(s)

 .

Hence

−λ
∞∫
a

ds

α(s)
= ln|µ|+ iargµ+ 2mπi, m ∈ Z,

that is, λ =

(∞∫
a

ds

α(s)

)−1 (
ln
(
|µ|−1

)
+ iarg(µ) + 2nπi

)
, n ∈ Z, µ ∈ σ

(
Kexp

(
−A

∞∫
a

ds

α(s)

))
.

�

Example. All maximal accretive extensions Lr of the minimal operator L0 generated
by a di�erential expression

l(u) = (tαu(t, x))′ +Au(t, x), α > 1,

in Hilbert space L2
tα((0, 1) × (1,∞)) in terms of boundary conditions are described by

the following form

(tαu(t, x)) (1) = r (tαu(t, x)) (∞), 0 < r < 1, 0 < x < 1,

where
A : L2(0, 1)→ L2(0, 1), Av(x) = xv(x).

Moreover, the spectrum of such extensions is

σ(Lr) =

{
λ ∈ C : λ = (1− α)

(
ln
(
|µ|−1

)
+ iarg(µ) + 2nπi

)
, µ ∈ σ

(
rexp

(
A

α− 1

))
, n ∈ Z

}
.
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