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Abstract

The objective of this paper is to construct some unbiased estimators
of the current population mean in two-occasion successive sampling.
Utilizing the readily available information on an auxiliary variable on
both occasions, almost unbiased ratio and regression cum exponential
type estimators of current population mean have been proposed. The-
oretical properties of the proposed estimation procedures have been
examined and their respective optimum replacement strategies are for-
mulated. Performances of the proposed estimators are empirically com-
pared with (i) the sample mean estimator, when no sample units were
matched from the previous occasion and (ii) natural successive sampling
estimator when no auxiliary information was used on any occasion. Em-
pirical results are critically interpreted and suitable recommendations
are made to the survey practitioners for their practical applications.
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1. Introduction

Change is the inherent phenomenon of the nature, if such change a�ects the human
life, it is necessary to observe its behaviour and pattern over the period of time. If the
change is to be observed for a large group of individuals (population), one time survey
does not provide the relevant information over a period of time. Successive (rotation)
sampling happens to be more reasonable statistical tool to generate the estimates of
unknown population parameters on di�erent points of time (occasions) and it is also ca-
pable of providing the information related to the patterns of variation in characteristics
under study over the period of time. The problem of sampling on two successive occa-
sions with a partial replacement of sampling units was �rst considered by Jessen (1942)
in the analysis of a survey related to the farm data. The theory of successive sampling
was further extended by Patterson (1950), Rao and Graham (1964), Gupta (1979), Das
(1982) and Chaturvedi and Tripathi (1983) among others. Sen (1971, 1972, 1973) used
the information on auxiliary variables from previous occasion and developed the estima-
tors of current population mean in two occasions successive sampling. Later on Singh et

al. (1991) and Singh and Singh (2001) used auxiliary information on current occasion in
two occasions successive sampling.
In many situations, information on an auxiliary variable may be readily available on the
�rst as well as on the second occasion, for example, tonnage (or seat capacity) of each ve-
hicle or ship is known in transportation survey, many other examples may be cited where
the information on auxiliary variables are available on both the occasion in two occasions
successive sampling. Utilizing the auxiliary information on both occasions , Feng and Zou
(1997), Birader and Singh (2001), Singh (2005), Singh and Priyanka (2008, 2010), Singh
and Karna (2009), Singh and Vishwakarma (2009), Singh and Prasad (2013), Singh and
Homa (2013), Singh and Pal (2015, 2016) and Srivastava and Srivastava (2016) among
others have proposed varieties of estimators of population mean on current (second) oc-
casions in two occasion successive sampling.
It is to be mentioned that above works describe the biased estimation procedures of
current population mean in two occasions successive sampling. Bias is an important
factor in degrading the performance of estimators, keeping this point in mind and mo-
tivated with the cited works we have suggested some unbiased estimation procedures of
current population mean in two occasions successive sampling. Utilizing the informa-
tion on readily available auxiliary information on both occasions, almost unbiased ratio
and regression cum exponential type estimators of current population mean have been
proposed and their properties are studied. The dominance of proposed estimation pro-
cedures have been shown over sample mean and natural successive sampling estimators
through empirical studies. The results of empirical studies are critically analyzed and
suitable recommendations are put forward to the survey practitioners.

2. Development of the Estimators

Consider a �nite population U = (U1, U2, ..., UN ) of N units which has been sampled
over two occasions. The character under study is denoted by x(y) on the �rst (second)
occasion respectively. It is assumed that the information on an auxiliary variable z
(stable over occasions) whose population mean is known, is readily available on both
occasions and has positive correlation with x and y on the �rst and second occasions
respectively. Let a simple random sample (without replacement) of size n be drawn on
the �rst occasion. A random sub-sample of size m = nλ is retained (matched) from the
sample on �rst occasion for its use on the second occasion, while a fresh simple random
sample (without replacement) of size u = (n−m) = nµ is drawn on the second occasion
from the entire population so that the total sample size on this occasion is also n. Here
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λ and µ (λ+ µ = 1) are the fractions of the matched and fresh samples, respectively, on
the current (second) occasion. The values of λ or µ would be chosen optimally as they
directly a�ect the cost of the survey.

The following notations are considered for further use:
X̄, Ȳ , Z̄: The population means of the variables x, y and z respectively.
x̄n, x̄m, ȳu, ȳm, z̄n, z̄m: The sample means of the respective variables based on the

sample sizes shown in subscripts.
ρyx, ρyz, ρxz: The population correlation coe�cients between the variables shown in

subscripts.

S2
x=(N − 1)−1

N∑
i=1

(xi − X̄)2: The population variance of the variable x.

S2
y , S

2
z : The population variance of the variables y and z respectively.

s2
x(m): The sample variance of the variable x based on the matched sample of size m.
Cy, Cx, Cz: The coe�cients of variation of the variables shown in subscripts.
byz(u), byx(m): The sample regression coe�cients between the variables shown in

subscripts and based on the sample size shown in braces.
Syx, Sxz, Syz: The population covariances between the variables shown in subscripts.
syz(u), syx(m): The sample covariances between the variables shown in subscripts and

based on the sample sizes indicated in braces.
To estimate the population mean Ȳ on the current (second) occasion, two sets of

estimators are considered. The �rst set of estimators Su = {T1u, T2u, T3u} is based
on sample of size u = nµ drawn afresh on the second occasion and the second set of
estimators Sm = {T1m, T2m} is based on the sample of size m(= nλ) common with both
the occasions, since, information on y is collected for the fresh sample of size u, therefore,
we de�ne following exponential type estimators of set Su as

(2.1) T1u=ȳu
3∑
i=1

aie

{
i
[

Z̄−z̄u
Z̄+z̄u

]}

(2.2) T2u=ȳ
∗
u

3∑
i=1

bie

{
i
[

Z̄−z̄u
Z̄+z̄u

]}
where ȳ∗u = ȳu + b

(u)
yz (Z̄ − z̄u)

and

(2.3) T3u=ȳ
∗∗
u

3∑
i=1

cie

{
i
[

Z̄−z̄u
Z̄+z̄u

]}
where ȳ∗∗u = ȳu

z̄u
Z̄, ai, bi and ci (i=1,2,3) are suitably chosen scalars (weight) such that

3∑
i=1

ai =
3∑
i=1

bi =
3∑
i=1

ci = 1 and ai, bi, ci ∈ R(set of real numbers).

Since, the information on study variable y is also available for the matched sample of
size m retained on second occasion from the sample on �rst occasion, therefore, again
we suggest following ratio and regression cum exponential type estimators of population
mean Ȳ and belong to the set Sm

(2.4) T1m=ȳ
∗
m

3∑
i=1

αie

{
i
[

Z̄−z̄m
Z̄+z̄m

]}
where ȳ∗m = ȳm

x̄m
x̄n

and

(2.5) T2m=ȳ
∗∗
m

3∑
i=1

βie

{
i
[

Z̄−z̄m
Z̄+z̄m

]}
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where ȳ∗∗m = ȳm + b
(m)
yx (x̄n − x̄m)

where αi and βi (i=1,2,3) are suitably chosen scalars such that
3∑
i=1

αi =
3∑
i=1

βi = 1 and

αi, βi ∈ R
Considering the convex linear combinations of the estimators of the sets Su and Sm , we
have the �nal estimators of the population mean Ȳ on the current (second) occasion as

(2.6) Tij = ϕijTiu + (1− ϕij)Tjm(i = 1, 2, 3; j = 1, 2)

where ϕij(i = 1, 2, 3; j = 1, 2) are the unknown constants and to be determined under
certain criterions.

2.1. Remark. The estimators Tiu(i = 1, 2, 3) and Tjm(j = 1, 2) are proposed under the
following conditions:
(1) The sums of their respective weights are one.
(2) The weights of the linear forms are chosen so that approximate biases are zero.
(3) The approximate mean square errors attain minimum.

3. Properties of the Proposed Estimators

3.1. Bias and variance of the proposed estimators. Since the estimators Tiu(i =
1, 2, 3) and Tjm(j = 1, 2) de�ned in equations (2.1)-(2.5) are simple exponential, ratio and
regression cum exponential type estimators, they are biased estimators of Ȳ . Following
the Remark 2.1, the proposed estimators may be converted in form of almost unbiased
estimators of Ȳ . The variances V (.) up-to �rst order of sample sizes of these estimators
are derived under large sample approximations using the following transformations:
ȳu = (1 + e1)Ȳ , ȳm = (1 + e2)Ȳ , x̄m = (1 + e3)X̄, x̄n = (1 + e4)X̄, z̄u = (1 + e5)Z̄, z̄m =

(1 + e6)Z̄, s
(u)
yz = (1 + e7)Syz, s

2
z(u) = (1 + e8)S2

z , s
(m)
yx = (1 + e9)Syx, s

2
x(m) = (1 + e10)S2

x

such that E(ek) = 0 and | ek |< 1, ∀k = 1, 2, ..., 10 Under the above transformations the
estimators Tiu(i = 1, 2, 3) and Tjm(j = 1, 2) take the following forms:

(3.1) T1u =

3∑
i=1

aiȲ (1 + e1)expi
[
− e5

2

(
1 +

e5

2

)−1]
(3.2) T2u =

3∑
i=1

bi[Ȳ (1 + e1)− Z̄βyze5(1 + e7)(1 + e8)−1]expi
[
− e5

2

(
1 +

e5

2

)−1]
(3.3) T3u =

3∑
i=1

ciȲ (1 + e1)(1 + e5)−1expi
[
− e5

2

(
1 +

e5

2

)−1]
(3.4) T1m =

3∑
i=1

αiȲ (1 + e2)(1 + e4)(1 + e3)−1expi
[
− e6

2

(
1 +

e6

2

)−1]
and

(3.5) T2m =

3∑
i=1

βi[Ȳ (1 + e2)− X̄βyx(e4− e3)(1 + e9)(1 + e10)−1]expi
[
− e6

2

(
1 +

e6

2

)−1]
where βyz and βyx are population regression coe�cients between the variables shown in
subscripts.
To derived the bias and variances/mean square errors of the proposed estimators, the
following expectations ignoring the �nite population corrections are used
E(e2

1) = u−1C2
y , E(e2

2) = m−1C2
y , E(e2

3) = m−1C2
x, E(e2

4) = n−1C2
x, E(e2

5) = u−1C2
z ,

E(e2
6) = m−1C2

z , E(e1e5) = u−1ρyzCyCz, E(e2e4) = n−1ρyxCyCx,
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E(e2e3) = m−1ρyxCyCx, E(e3e4) = n−1C2
x, E(e2e6) = m−1ρyzCyCz, E(e4e6) = n−1ρxzCxCz,

E(e3e6) = m−1ρxzCxCz.
To derive the expressions of bias and mean square error of the estimator T1u , we expand
the right hand side of equation (3.1) binomially and exponentially and neglecting terms

of e
′
s having power greater than two, we have

(3.6) T1u − Ȳ = Ȳ {e1 −A
(e5

2
+
e1e5

2
− e2

5

4

(
1 +

i

2

))
}

where

(3.7) A =

3∑
i=1

iai

Taking expectation on both the sides of the equation (3.6) and for large population size,
ignoring �nite population correction (f.p.c), we get the bias of the estimator T1u to the
�rst order of approximations as

(3.8) B(T1u) = E(T1u − Ȳ ) = Ȳ fuA
[1

4

(
1 +

i

2

)
C2
z − ρyzCyCz

]
where fu = 1

u
.

Squaring both sides of equation (3.6), neglecting the terms involving power of e
′
s greater

than two and taking expectations, we get the mean square error (MSE) of the estimator
T1u to the �rst order of approximations as

(3.9) M(T1u) = E(T1u − Ȳ )2 = Ȳ 2[fuC2
y + fuA

2C
2
z

4
− fuAρyzCyCz

To minimize the MSE of T1u , we di�erentiate M(T1u) given in equation (3.9) with
respect to A and equating it to zero, we get the optimum value of A as,

(3.10) A = 2ρyz
Cy
Cz

Substituting the optimum value of A in equation (3.9), we have the minimum MSE of
the estimator T1u as

(3.11) Min.MSE(T1u) = Ȳ 2fuC
2
y

[
1− ρ2

yz

]
From equation (3.7) and (3.10) we have

(3.12) A =

3∑
i=1

iai = 2ρyz
Cy
Cz

From condition
3∑
i=1

and equation (3.12), we have three unknowns to be determined from

two equations only. It is therefore not possible to �nd unique solutions of the constants

a
′
is(i = 1, 2, 3) . Thus in order to get the unique solutions of the constants a

′
is(i = 1, 2, 3),

we shall impose a linear constraint as:

(3.13) B(T1u) = 0

which follows from equation (3.8) that

(3.14) a1

(1

2
ρyzCyCz −

3

8
C2
z

)
+ 2a2

(1

2
ρyzCyCz −

1

2
C2
z

)
+ 3a3

(1

2
ρyzCyCz −

5

8
C2
z

)
= 0

Condition
3∑
i=1

= 1 and equations (3.10) and (3.12) can be written in matrix form as

(3.15)

 1 1 1
1 2 3

1
2
ρyzCyCz − 3

8
C2
z 2( 1

2
ρyzCyCz − 1

2
C2
z ) 3( 1

2
ρyzCyCz − 5

8
C2
z )

a1

a2

a3

 =

 1

2ρyz
Cy

Cz

0
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Solving equation (3.15) and assuming Cy ∼= Cz we get the unique values of a
′
is(i = 1, 2, 3)

as:

(3.16) a1 = 4ρ2
yz − 7ρyz + 3, a2 = 12ρyz − 8ρ2

yz − 3, a3 = 1 + 4ρ2
yz − 5ρyz

Substituting the values of a1, a2, and a3 from equation (3.16) into equation (2.1), we
have an almost unbiased optimum exponential type estimator say T ∗

1u and written as

T ∗
1u ={4ρ2

yz − 7ρyz + 3}ȳuexp
[ Z̄ − z̄u
Z̄ + z̄u

]
+ {12ρyz − 8ρ2

yz − 3}ȳuexp2
[ Z̄ − z̄u
Z̄ + z̄u

]
+ {1 + 4ρ2

yz − 5ρyz}ȳuexp3
[ Z̄ − z̄u
Z̄ + z̄u

](3.17)

whose variance to the �rst degree of approximation ignoring f. p. c. is given by

(3.18) V (T ∗
1u) = Ȳ 2fuC

2
y

[
1− ρ2

yz

]
Proceeding as above, we have almost unbiased version of the estimator T2u say T ∗

2u as

T ∗
2u ={4δ + 3}ȳ∗uexp

[ Z̄ − z̄u
Z̄ + z̄u

]
− {8δ + 3}ȳ∗uexp2

[ Z̄ − z̄u
Z̄ + z̄u

]
+ {4δ + 1}ȳ∗uexp3

[ Z̄ − z̄u
Z̄ + z̄u

](3.19)

with variance

(3.20) V (T ∗
2u) = Ȳ 2fuC

2
y

[
1− ρ2

yz

]
where
δ = ρyz

Z̄
S2
z

(
ζ012
Syz
− ζ003

S2
z

)
and E

[
(xi − X̄)r(yi − Ȳ )s(zi − Z̄)t

]
; (r,s,t are integer ≥ 0),

Similarly almost unbiased version of the estimator T3u say T ∗
3u is derived as

(3.21) T ∗
3u = c∗1ȳ

∗∗
u exp

[ Z̄ − z̄u
Z̄ + z̄u

]
+ c∗2ȳ

∗∗
u exp2

[ Z̄ − z̄u
Z̄ + z̄u

]
+ c∗3ȳ

∗∗
u exp3

[ Z̄ − z̄u
Z̄ + z̄u

]
with variance

(3.22) V (T ∗
3u) = Ȳ 2fuC

2
y

[
1− ρ2

yz

]
where

c1 = c∗1 =
−(4ρ2

yz−9ρyz+25)

8ρyz−1
, c2 = c∗2 =

−(8ρ2
yz−24ρyz−45)

8ρyz−1
, c3 = c∗3 =

(12ρ2
yz−25ρyz−21)

8ρyz−1

Similarly, the unbiased version of the estimators of the set Sm with their respective
variances are derived as

(3.23) T ∗
1m = α∗

1ȳ
∗
mexp

[ Z̄ − z̄m
Z̄ + z̄m

]
+ α∗

2ȳ
∗
mexp2

[ Z̄ − z̄m
Z̄ + z̄m

]
+ α∗

3ȳ
∗
mexp3

[ Z̄ − z̄m
Z̄ + z̄m

]
with variance

(3.24) V (T ∗
1m) = Ȳ 2C2

y

[
fm(1− F 2

1 ρ
2
yz) + f2(1− 2ρyz)

]
and

(3.25) T ∗
2m = β∗

1 ȳ
∗∗
m exp

[ Z̄ − z̄m
Z̄ + z̄m

]
+ β∗

2 ȳ
∗∗
m exp2

[ Z̄ − z̄m
Z̄ + z̄m

]
+ β∗

3 ȳ
∗∗
m exp3

[ Z̄ − z̄m
Z̄ + z̄m

]
with variance

(3.26) V (T ∗
2m) = Ȳ 2C2

y

[
fm(1− F 2

2 ρ
2
yz) + f2ρyx(ρyx − 2)− 2ρ2

yzF2f1

]
where
α1 = α∗

1 =
6RF1ρyz+8QF1ρyz−6Q−3R+S

P−3R−4Q
β1 = β∗

1 = 3− 7F2ρyz + 4
fm

(P ∗ −Q∗f2)
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α2 = α∗
2 =

−2F1ρyz(P+3R+4Q)+3P−2S

P−3R−4Q
β2 = β∗

2 = 3(4F2ρyz − 1)− 8
fm

(P ∗ −Q∗f2)

α3 = α∗
3 =

2F1Pρyz+2Q−2P+S

P−3R−4Q
β3 = β∗

3 = 1− 5F2ρyz + 4
fm

(P ∗ −Q∗f2)

P = 3
4
fm − f1ρyz, Q = 1

2
fm − f1ρyz, R = 5

4
fm − f1ρyz, S = −2f2(1− ρyx),

F1 = f1
fm

, P ∗ = 1
2
(fmρyz − f2ρyxρyz), Q

∗ = −ρyx X̄S2
x

(
ζ300
S2
x
− ζ210

Syx

)
, F2 = 1− ρyx f2fm ,

fm = 1
m
, f1 = 1

n
, f2 =

(
1
m
− 1

n
).

3.1. Theorem. The almost unbiased versions of the estimator T ∗
ij are given as T ∗

ij =
ϕijT

∗
iu + (1− ϕij)T ∗

jm(i = 1.2.3; j = 1, 2)

Proof. Since the estimators T ∗
iu(i = 1, 2, 3) and T ∗

jm(j = 1, 2) derived in equations (3.17),
(3.19), (3.21), (3.23) and (3.25) are almost unbiased estimators of Ȳ . The �nal estimator
T ∗
ij(i = 1, 2, 3; j = 1, 2) are the convex linear combinations of the estimators T ∗

iu and T
∗
jm,

therefore they are also unbiased estimators of Ȳ . �

3.2. Theorem. Variance of the estimator T ∗
ij(i = 1, 2, 3; j = 1, 2) to the �rst order of

approximations are obtained as

(3.27) V (T ∗
ij) = ϕ2

ijV (T ∗
iu) + (1− ϕij)2V (T ∗

jm)(i = 1.2.3; j = 1, 2)

Proof. It is obvious that the variance of the proposed estimators T ∗
ij(i = 1, 2, 3; j = 1, 2)

are given by
V (T ∗

ij) = E(T ∗
ij−Ȳ )2 = E[ϕijT

∗
iu + (1− ϕij)T ∗

jm−Ȳ ]2 = E[ϕij(T
∗
iu−Ȳ )+(1−ϕij)(T ∗

jm−
Ȳ )]2 = ϕ2

ijV (T ∗
iu) + (1− ϕ2

ij)V (T ∗
jm) + 2ϕij(1− ϕij)E[(T ∗

iu − Ȳ )(T ∗
jm − Ȳ )] �

where V (T ∗
iu) and V (T ∗

jm) are obtained in equations (3.18), (3.20), (3.22), (3.24) and
(3.26). It should be noted that the estimators T ∗

iu and T ∗
jm are based on two non-

overlapping samples of sizes u and m respectively, their covariance types of terms are of
order N−1 and ignored for large population size.

3.3. Remark. The above results are derived under the following assumptions:
(i) Population size is su�ciently large(i.e., N →∞) , therefore, �nite population correc-
tions (f.p.c.) are ignored.
(ii) ”ρxz = ρyz”, this is an intuitive assumptions, which has been also considered by
Cochran (1977) and Feng and Zou (1997).
(iii) since x and y denote the same study variable over two occasions and z is an auxiliary
variable correlated to x and y, therefore, looking on the stability nature of the coe�cient
of variation (Reddy 1978) and following Cochran (1977) and Feng and Zou (1997), the
coe�cients of variation of variables x, y and z are considered to be approximately equal
i.e., Cy ∼= Cx ∼= Cz .

3.4. Remark. It is to be noted that the suitable choices of the weights ai, bi, ci, αi and
βi(i = 1, 2, 3) derived earlier depend on unknown population parameters such asβyz, βyx,
C2
x, Syz, Syx, ρyx, ρyz, ζ003, ζ012 and ζ210. Thus to make such estimators practicable one

has to use guessed or estimated values of these parameters. Guessed values of population
parameters may be obtained either from past data or experience gathered over time; see
for instance Reddy (1978). If such guessed values are not available it is advisable to use
sample data to estimate these parameters as suggested by Singh et al. (2007).
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3.2. Minimum variances of the proposed estimators T ∗
ij(i = 1, 2, 3; j = 1, 2).

Since the variances of the estimators T ∗
ij(i = 1, 2, 3; j = 1, 2) obtained in equation (3.27)

are the functions of the unknown constants ϕij(i = 1, 2, 3; j = 1, 2) , therefore, to get the
optimum values of ϕij , the variances of the estimators T ∗

ij are di�erentiated with respect
to ϕij and equated to zero and subsequently the optimum values of ϕij are obtained as

(3.28) ϕijopt =
V (T ∗

jm)

V (T ∗
iu) + V (T ∗

jm)
; (i = 1, 2, 3; j = 1, 2)

Substituting the optimum values of ϕij(i = 1, 2, 3; j = 1, 2) in equation (3.27), we get
the optimum variances of the estimators T ∗

ij as

(3.29) V (T ∗
ij)opt =

V (T ∗
iu).V (T ∗

jm)

V (T ∗
iu) + V (T ∗

jm)
; (i = 1, 2, 3; j = 1, 2)

Since V (T ∗
1u) = V (T ∗

2u) = V (T ∗
3u) , therefore, we have V (T ∗

11)opt = V (T ∗
21)opt = V (T ∗

31)opt
and V (T ∗

12)opt = V (T ∗
22)opt = V (T ∗

32)opt . Further, substituting the expressions of vari-
ances of the estimators T ∗

iu(i = 1, 2, 3) and T ∗
jm(j = 1, 2) from the equations (3.18),

(3.20), (3.22), (3.24) and (3.26) in equations (3.28) and (3.29), the simpli�ed values of
ϕijopt(i = 1, 2, 3; j = 1, 2) and V (T ∗

ij)opt are obtained as

(3.30) ϕ11opt =
µ11[A3 − µ2

11A2 + µ11A5]

A1 − µ11A6 − µ3
11A2 + µ2

11A5

(3.31) V (T ∗
11)opt =

S2
y

n

[ A7 − µ2
11A8 + µ11A9

A1 − µ11A6 − µ3
11A2 + µ2

11A5

]
(3.32) ϕ12opt =

A1 − µ2
12A15 − µ12A16

A1 − µ3
12A15 − µ2

12A16

and

(3.33) V (T ∗
12)opt =

S2
y

n

[A17 − µ2
12A18 − µ12A19

A1 − µ3
12A15 − µ2

12A16

]
where
A1 = 1−ρ2

yz, A2 = ρ2
yz, A3 = 1−A2, A4 = 1−2ρyx, A5 = 2A2 +A4, A6 = A1−A3, A7 =

A1A3, A8 = A1A2, A9 = A1A5, A10 = A2A8, A11 = A2A9, A12 = A6A8−A5A9 +3A2A7,
A13 = A1A8 +A5A7, A14 = A1A9 +A7A6, A15 = ρ2

yzρ
2
yx, A16 = ρ2

yx−2ρ2
yzρyx, A17 = A2

1,
A18 = A1A15, A19 = A1A16, A20 = A15A18, A21 = A15A19, A22 = A16A19 − 3A15A17,
A23 = A1A18−A16A17, A24 = A1A19 and µ1j is the fraction of fresh sample required for
estimator T ∗

1j(j = 1, 2).

3.5. Remark. Since the V (T ∗
1u) = V (T ∗

2u) = V (T ∗
3u) , therefore, we have V (T ∗

11)opt is
similar to that of the V (T ∗

21)opt , and V (T ∗
31)opt, and V (T ∗

12)opt is similar to that of the
V (T ∗

22)opt and V (T ∗
32)opt . Hence onwards only the properties of the estimators T ∗

11 and
T ∗

12 will be examined.

3.3. Optimum replacement strategies.
To determine the optimum values of µ1j(j = 1, 2) so that the population mean Ȳ may be
estimated with maximum precision, we minimize V (T ∗

1j)opt(j = 1, 2) given in equations
(3.31) and (3.33) respectively with respect to µ1j which result in 4th degree equations in
µ1 and µ12 . The respective equations in µ1j are obtained as

(3.34) µ4
11A10 − 2µ3

11A11 − µ2
11A12 + 2µ11A13 −A14 = 0

and

(3.35) µ4
12A20 + 2µ3

12A21 + µ2
12A22 + 2µ12A23 +A24 = 0
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Solving equations (3.34) and (3.35) we get the solutions of µ1j(j = 1, 2) say µ̂1j(j = 1, 2).
While choosing the values of µ̂1j , it should be remembered that 0 ≤ µ̂1j ≤ 1 and if
more than one such admissible values of µ̂1j are obtained, the lowest one will be the
best choice, because we have the same variance by replacing only the lowest fraction of
total sample size on current occasion, which reduces the cost of the survey. All others
values of µ̂1j(j = 1, 2) are inadmissible. Substituting the admissible values of µ̂1j say

µ
(o)
1j (j = 1, 2) into the equations (3.31) and (3.33) respectively, we have the optimum

values of V (T ∗
1j)opt(j = 1, 2) , which are shown below

(3.36) V (T ∗
11)opt =

S2
y

n

[ A7 − µ(o)2
11 A8 + µ

(o)
11 A9

A1 − µ(o)
11 A6 − µ(o)3

11 A2 + µ
(o)2
11 A5

]
and

(3.37) V (T ∗
12)opt =

S2
y

n

[A17 − µ(o)2
12 A18 − µ(o)

12 A19

A1 − µ(o)3
12 A15 − µ(o)2

12 A16

]
4. Simulation Study

The percent relative e�ciencies of the estimators T ∗
ij(i = 1; j = 1, 2) with respect

to (i) sample mean estimator ȳn when there is no matching from previous occasion

and (ii) natural successive sampling estimator ˆ̄Y = ϕ∗ȳu + (1 − ϕ∗)ȳ∗m , where ȳ∗m =

ȳm + b
(m)
yx (x̄n − x̄m) , when no auxiliary information is used on any occasion have been

computed for di�erent choices of correlations. Since ȳn is an unbiased estimator and ˆ̄Y is
a biased estimator of Ȳ , hence, following Sukhatme et.al (1984), the variance of ȳn and

the optimum mean square error of the estimator ˆ̄Y for large N are respectively given by

(4.1) V (ȳn) =
S2
y

n
and

(4.2) M( ˆ̄Y )opt =
[
1 +

√
(1− ρ2

yx)
]S2

y

n

4.1. Simulation results.
For di�erent choices of ρyz and ρyx , Tables 1-2 present the optimum values of µ

(o)
1j (j =

1, 2) and percent relatives e�ciencies E1 and E2 of the proposed estimators T ∗
1j(j = 1, 2)

with respect to ȳn and ˆ̄Y , where E1j = V (ȳn)
V (T∗1j)opt

× 100 and E2j =
M( ˆ̄Y )opt
V (T∗1j)opt

× 100(j =

1, 2).



Table 1: Optimum values of 11  and PRE’s of the estimators *
11T  with respect to ny and Ŷ . 

 
yz  0.5 0.6 0.7 0.8 0.9 

yx  
 
0.2 

 
(o)
11

11E  

21E  

0.3760 
105.43 
104.37 

0.3509 
116.12 
114.95 

0.3198 
133.18 
131.83 

0.2787 
163.87 
162.22 

0.2158 
237.78 
235.38 

 
0.3 

(o)
11

11E  

21E  

0.3841 
109.38 
106.86 

0.3586 
120.47 
117.69 

0.3275 
138.16 
134.98 

0.2861 
170.03 
166.12 

0.2224 
246.82 
241.14 

 
0.4 

(o)
11

11E  

21E  

0.3897 
113.93 
109.17 

0.3650 
125.46 
120.23 

0.3347 
143.89 
137.88 

0.2938 
177.09 
169.70 

0.2296 
257.15 
246.42 

 
0.5 

(o)
11

11E  

21E  

0.3864 
119.25 
111.26 

0.3670 
131.31 
122.51 

0.3401 
150.57 
140.49 

0.3011 
185.31 
172.90 

0.2372 
269.12 
251.09 

 
0.6 

(o)
11

11E  

21E  

0.3492 
125.51 
112.96 

0.3559 
138.24 
124.41 

0.3405 
158.51 
142.66 

0.3072 
195.06 
175.55 

0.2453 
283.25 
254.93 

 
0.7 

(o)
11

11E  

21E  

0.1758 
131.90 
113.05 

0.3040 
146.36 
125.44 

0.3274 
168.09 
144.06 

0.3092 
206.88 
177.31 

0.2532 
300.34 
257.41 

 
0.8 

(o)
11

11E  

21E  

0.6842 
147.16 
117.73 

0.1502 
154.22 
123.38 

0.2789 
179.47 
143.57 

0.3007 
221.56 
177.25 

0.2599 
321.63 
257.30 

 
0.9 

(o)
11

11E  

21E  

0.7173 
165.23 
118.63 

0.7503 
183.41 
131.68 

0.1631 
190.98 
137.11 

0.2669 
239.80 
172.16 

0.2617 
349.21 
250.71 



Table 2: Optimum values of 12  and PRE’s of the estimators *
12T  with respect to ny and Ŷ . 

 

yz  0.3 0.4 0.5 0.6 0.7 0.8 0.9 

yx  
 
0.3 

(o)
12  

12E  

22E  

0.5313 
111.13 
108.57 

 0.1822 
118.97 
116.23 

0.4383 
131.20 
128.17 

0.4467 
150.00 
146.55 

0.4362 
180.99 
176.82 

0.4108 
239.19 
233.68 

0.3548 
387.53 
378.60 

 
 
0.4 

(o)
12  

12E  

22E  

0.5337 
112.93 
108.22 

0.5761 
120.71 
115.68 

0.3320 
132.29 
126.77 

0.4183 
150.46 
144.18 

0.4180 
180.05 
172.54 

0.3937 
234.96 
225.15 

0.3357 
372.51 
356.96 

 
0.5 

(o)
12  

12E  

22E  

0.5442 
115.64 
107.89 

0.5651 
123.29 
115.03 

0.6752 
135.04 
125.99 

0.3589 
152.06 
141.88 

0.3944 
180.74 
168.64 

0.3777 
233.36 
217.73 

0.3211 
363.56 
339.20 

 
0.6 

(o)
12  

12E  

22E  

0.5616 
119.53 
107.57 

0.5745 
127.12 
114.41 

0.6212 
138.69 
124.82 

0.2286 
154.45 
139.00 

0.3568 
183.02 
164.72 

0.3599 
234.16 
210.74 

0.3091 
359.34 
323.41 

0.7 (o)
12  

12E  

22E  

0.5877 
125.13 
107.25 

0.5964 
132.76 
113.78 

0.6224 
144.34 
123.71 

0.0389 
156.18 
133.86 

0.2922 
186.74 
160.05 

0.3363 
237.36 
203.43 

0.2981 
359.34 
307.98 

0.8 (o)
12  

12E  

22E  

0.6279 
133.61 
106.89 

0.6338 
141.37 
113.10 

0.6497 
153.15 
122.52 

0.6935 
171.58 
137.26 

0.1965 
191.23 
152.98 

0.3015 
243.02 
194.42 

0.2862 
363.52 
290.82 

0.9 (o)
12  

12E  

22E  

0.6982 
148.23 
106.42 

0.7018 
156.30 
112.22 

0.7112 
168.58 
121.03 

0.7340 
187.76 
134.80 

0.0862 
194.94 
139.95 

0.2512 
250.99 
180.20 

0.2711 
372.29 
267.28 
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4.2. Interpretation of simulation results.
(1) From Table 1, it is clear that

(a) For smaller values of ρyx , the values of E11 and E21 are increasing and µ
(o)
11 are

decreasing while for the higher values of ρyx the values of E11 and E21 are increasing and

the values of µ
(o)
11 do not follow any de�nite pattern when the values of ρyz are increasing.

This phenomenon indicates that smaller fraction of fresh sample on the current occasion
is required, if information on a highly positively correlated auxiliary variable is used at
the estimation stage.
(b) For the �xed values of ρyz , the values of E11 and E21 are increasing while no de�nite

trends are visible in the values of µ
(o)
11 with the increasing values of ρyx .

(c) Minimum value of µ
(o)
11 is obtained as 0.1502, which indicates that only about 15

percent of the total sample size is to be replaced on the current (second) occasion for the
corresponding choices of correlations.
(2) From Table 2, it is observed that
(a) For the �xed values of ρyx , the values of E12 and E22 are increasing while no de�nite

patterns are seen in the values of µ
(o)
12 with the increasing values of ρyz.

(b) For the �xed values of ρyz , the values of E12 and µ
(o)
12 are increasing while the values

of E22 are decreasing with the increasing values of ρyx.

(c) The minimum value of µ
(o)
12 is obtained as 0.0862, which indicates that about 8 per-

cent of the total sample size is to be replaced on the current (second) occasion for the
corresponding choices of correlations.

5. Conclusions

The work presented in this paper provides some unbiased and e�cient estimation
procedures of current population mean in two-occasion successive sampling. The em-
pirical results presented in Tables 1-2 and their subsequent analyses and interpretations
vindicate that the use of auxiliary information on an auxiliary variable at estimation
stage is highly rewarding in terms of the proposed estimators. It is also visible that if
a highly correlated auxiliary variable is used at the estimation stage, relatively, only a
small fraction of the sample on the current (second) occasion is required to be replaced
by a fresh sample, which reduces the cost of the survey. Hence looking on the encourag-
ing behaviours of the proposed estimators one may recommend them for their practical
applications.
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