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Abstract

Recently, there has been a great interest among statisticians and ap-
plied researchers in constructing flexible distributions for better mode-
ling non-monotone failure rates. We study a lifetime model of the
beta generated family, called the beta Nadarajah-Haghighi distribu-
tion, which can be used to model survival data. The proposed model
includes as special models some important distributions. The hazard
rate function is an important quantity characterizing life phenomena.
Its hazard function can be constant, decreasing, increasing, upside-
down bathtub and bathtub-shaped depending on the parameters. We
provide a comprehensive mathematical treatment of the new distribu-
tion and derive explicit expressions for some of its basic mathematical
quantities. The method of maximum likelihood is used for estimating
the model parameters and a small Monte Carlo simulation is conducted.
We fit the proposed model to two real data sets to prove empirically
its flexibility as compared to other lifetime distributions.
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1. Introduction

Extending continuous univariate distributions by introducing a few extra shape pa-
rameters is an essential method to explore better the skewness and tail weights and other
properties of the generated distributions. Following the latest trend, applied statisticians
are now able to construct more generalized distributions, which provide better goodness-
of-fit measures when fitted to real data rather than by using the classical distributions.

The exponential distribution is perhaps the most widely applied statistical distribution
for problems in reliability and survival analysis. This model was the first lifetime model
for which statistical methods were extensively developed in the lifetime literature. A
generalization of the exponential distribution was recently proposed by Nadarajah and
Haghighi (NH) [20]. Its cumulative distribution function (cdf) is given by

(1.1) G(z) =1—exp[l — (1 +X2)?], >0,

where A > 0 is the scale parameter and a > 0 is the shape parameter. The probability
density function (pdf) and the hazard rate function (hrf) corresponding to (1.1) are given
by

(1.2) g(z) = a X1+ z)* "exp[l — (1 + A\z)?],
and
h(z) = a X1+ Ax)* !,

respectively.

Then, if X follows the NH distribution, we shall denote by X ~ NH(«a, ). The
exponential distribution is a special case of the NH model when @ = 1. Nadarajah and
Haghighi [20] pointed out that the its hrf can be monotonically increasing for o > 1,
monotonically decreasing for o < 1 and, for @ = 1, it becomes constant. They also
presented some motivations for introducing this distribution.

The first motivation is based on the relationship between the pdf in (1.2) and its hrf.
The NH density function can be monotonically decreasing and its hrf can be increasing.
The gamma, Weibull and exponentiated exponential (EE) distributions do not allow
for an increasing failure function when their corresponding densities are monotonically
decreasing. The second motivation is related to the ability of the NH distribution to
model data that have their mode fixed at zero. The gamma, Weibull and EE distributions
are not suitable for situations of this kind. The third motivation is based on the following
mathematical relationship: if Y is a Weibull random variable with shape parameter «
and scale parameter A, then the density function in equation (1.2) is the same as that of
the random variable Z =Y — A — 1 truncated at zero, that is, the NH distribution can
be interpreted as a truncated Weibull distribution.

In this paper, we propose a new model called the beta Nadarajoh-Haghighi (BNH) dis-
tribution, which contains as sub-models the exponential, generalized exponential (GE)
[10], beta exponential (BE) [23], NH and exponentiated NH (ENH) [13] distributions.
These special cases are given in Table 1. Besides extending these five distributions, the
advantage of the new model, in addition to the advantages of the NH distribution, lies in
the great flexibility of its pdf and hrf. Thus, the new model provides a good alternative
to many existing life distributions in modeling positive real data sets. As we will show
later, the hrf of the BNH distribution can exhibit the classical four forms (increasing, de-
creasing, unimodal and bathtub-shaped) depending on its shape parameters. We obtain
some basic mathematical properties and discuss maximum likelihood estimation of the
model parameters.
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The paper is outlined as follows. In Section 2, we define the BNH distribution and
provide plots of the density and hazard rate functions. We derive a useful linear rep-
resentation in Section 3. In Sections 4, 5 and 6, we obtain explicit expressions for the
moments, quantile function and moment generating function (mgf), respectively. Incom-
plete moments and mean deviations are determined in Sections 7 and 8, respectively.
In Section 9, we present the Rénvy and Shannon entropies. The BNH order statistics
are investigated in Section 10. Maximum likelihood estimation and a small simulation
study are addressed in Sections 11 and 12. Two empirical applications to real data are
illustrated in Section 13. Finally, Section 14 offers some concluding remarks.

Table 1. Special models of the BNH distribution.

alalb Reduced distribution

1]-1- BE distribution (Nadarajah and Kotz, 2006)
1]-1]1 GE distribution (Kundu and Gupta, 1998)
-1 ENH distribution (Lemonte, 2013)

- | 1|1 | NH distribution (Nadarajah and Haghighi, 2011)
1111 exponential distribution

2. The BNH distribution

Several ways of generating new distributions from classic ones were developed recently.
Eugene et al. [6] proposed the beta family of distributions. They demonstrated that its
density function is a generalization of the density function of the order statistics of a
random sample from a parent G distribution and studied some general properties. This
class of generalized distributions has received considerable attention in recent years. In
particular, taking G(z) to be the density function of the normal distribution, they defined
and studied the beta normal distribution, highlighting its great flexibility in modeling not
only symmetric heavy-tailed distributions, but also skewed and bimodal distributions.

Nadarajah and Gupta [22], Nadarajah and Kotz [21], [23], Lee et al. [16] and Akin-
sete et al. [1] defined the beta Fréchet, beta Gumbel, beta exponential, beta Weibull
and beta Pareto distributions by taking G(z) to be the cdf of the Fréchet, Gumbel, ex-
ponential, Weibull and Pareto distributions, respectively. More recently, Barreto-Souza
et al. [2], Pescim et al. [24] and Cordeiro and Lemonte [4] proposed the beta general-
ized exponential, beta generalized half-normal and beta Birnbaum-Saunders distributions
respectively.

The generalization of the NH distribution is motivated by the work of Eugene et al.
[6]: Let G(z) be the baseline cdf depending on a certain parameter vector. In order to
have greater flexibility in modeling observed data, they defined the beta family by the
cdf and pdf

G(x)
(2.1) F(z) = ﬁfo 71— 1) At = Ta (a, b),

and
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respectively, where a > 0 and b > 0 are two additional shape parameters, which con-
trol skewness through the relative tail weights, I,(a,b) = By(a,b)/B(a,b) is the incom-
plete beta function ratio, By(a,b) = [/ t*~'(1 —¢)"'dt is the incomplete beta function,
B(a,b) =T'(a)T'(b)/T'(a + b) is the beta function and I'(-)is the gamma function.

Then, the cdf of the BNH distribution is given by

(22) F(ZE, 0) = Ilfexp[1,(1+)\z>a](a, b), xT > O7

where @ >0, A>0,a>0,b>0and § = (a,\,a,b)".
The corresponding density and hazard rate functions to (2.2) are given by

(23)  fl:0) = ot (1) 1= expll = (14 2a)°])* ™ fexpl1 = (14 22)°]}"
and
(24)  h(z:0) = a A1+ 2z)* {1 —exp[l — (1 + Ax)*]}* H{exp[l — (1 + )\x)a}}b.

B(a,b) — Bi—exp[1—(1+r2)(a, b)

A random variable X following (2.2) is denoted by X ~ BNH(#). Simulating the BNH
random variable is relatively simple. Let Y be a random variable distributed according
to the usual beta distribution given by (2.1) with parameters a and b. Then, using the
inverse transformation method, the random variable X can be expressed as

X:%{[lflog(lfY)]i ~1}

Plots of the density and hazard rate functions for selected parameters a and b, includ-
ing the special case of the NH distribution, are displayed in Figures 1 and 2, respectively.

-—- a=24,b=05 : ——- a=32,b=12

f(x)
0

(a) a=2.0 and A =2.0 (b) a=0.5and A=0.5
Figure 1. Plots of the BNH density function for some parameter values.

Proposition 1: The BNH density function is log-convex if & < 1 and a < 1, and it
is log-concave if a > 1 and a > 1.
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f(x)
()

(a) a=04and A=0.9 (b) a=25and A =04

Figure 2. Plots of the BNH hazard function for some parameter values.

Proof: Let z = (1 + At)®. It implies that z > 1 for £ > 0. We have t = (za — 1)/A.
Now, rewriting the BNH pdf as a function of z, £(z), we obtain

(25) €)= f(* /N =="F [1-exp{1 -2} exp{b(1 - 2)}.
The results follows by noting that the second derivative of log [£(2)] is

(2.6) d? log [£(2)] _1l-a (I—a)exp{l—=z2} (1—a)exp{l—=z}
‘ d 2?2 az? 1 —exp{l — 2} [1—exp{l—2z}]*"

Proposition 2: For any A > 0 and b > 0, the BNH distribution has an increasing hrf
if « <1 and a <1 and it has a decreasing hrf if « > 1 and a > 1. The hrf is constant if
a=1l,a=1andb=1.

Proof: The result holds by using the log-convexity of the density function. Figure
2 displays some plots of the hrf for some parameter values. The parameter A does not
change the shape of the hrf since it is a scale parameter. It is evident that the hrf of the
proposed distribution can be decreasing, increasing, upside-down bathtub shaped (uni-
modal) or bathtub-shaped. It is difficult (or even impossible) to determine analytically
the parameter spaces corresponding to the upside-down bathtub shaped and bathtub-
shaped hrfs for the BNH distribution. However, we can observe from Equation (2.4)
that unimodal and bathtub-shaped hrfs can only be obtained when @ < 1 and o > 1
respectively. So, the new three parameter distribution is quite flexible and can be used
effectively in analysing real data.
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We now explore the asymptotics behaviors of the cumulative, density and hazard
functions. First, as x — 0, equations (2.2), (2.3) and (2.4) are given by

A a
F(x) c(LaB(;E,)b) as x— 0,
flx) ~ (a;\zszail as x — 0,
(a )\)a xa—l ‘
h(z) ~ B(a,b) as x— 0.

Second, the asymptotics of equations (2.2), (2.3) and (2.4) as * — oo are given by
expl—b(A2)°]

17F($)NW as X — 00,
aX*z* texp[—(Az)?]

f(z) ~ B(a,b) as X — 00,

h(z) ~ba X 2> ! as X — o0o.

3. Linear representations

In this section, we provide linear representations for the cdf and pdf of X. For |z| < 1
and b > 0 a real non-integer number, the generalized binomial expansion holds

= (D))
(1-2)" _Zizomz'
Let

(-=1)'T'(a + b)
(a+14)i!T(a)T(b—1)

w; = w;(a,b) =

Applying this identity in equation (2.1) gives the linear representation

where H,(xz) = G(z)® denotes the exponentiated-G (exp-G) cumulative distribution and
G(x) is obtained from (1.1). By differentiating the last equation, the BNH pdf can be
expressed as a linear representation

(3.1) flz) = Z w; hayi(z),

where h,(z) = aG(2)* 'g(z) denotes the exponentiated NH (exp-NH) density function
with power parameter a > 0. The properties of exponentiated distributions have been
studied by many authors in recent years, see Mudholkar et al. [18] for exponentiated
Weibull, Gupta et al. [9] for exponentiated Pareto, Gupta and Kundu [10] for exponen-
tiated exponential, Nadarajah [19] for exponentiated Gumbel, Lemonte [13] for ENH,
among several others. Equation (3.1) allows that some mathematical properties such as
ordinary and incomplete moments, generating function and mean deviations of the BNH
distribution can be derived from those quantities of the ENH distribution.
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4. Moments

Hereafter, let Yo4; ~ ENH(a+i) denotes the ENH random variable with power pa-
rameter a + 7. The s-th integer moment of X follows from (3.1) as

where the sth moment of Y,+; can be obtained from

L (=1 (;‘) (:{) <a +:;— 1) k!
E(Y,) = X 7(a+4) Z (1 +r)ktL :

J.k,r=0

Then, the sth integer moment of X can be expressed as

(i <5> (Sij) <a+i_ 1) ElT(a+0b)
E(X®) = A > g .

(1 + r)* 14 T(a)D(b — i)

5. Quantile function

The quantile function (qf) of X is given by
(5.1)  Qu)=F 'u) =21 —log(1—1I;(a,b)]"/* = 1,0 <u <1,

where Iu_l(a, b) is the inverse of the incomplete beta function. The shortcomings of the
classical kurtosis measure are well-known. There are many heavy-tailed distributions for
which this quantity is infinite. So, it becomes uninformative precisely when it needs to be.
Indeed, our motivation to use quantile-based measures stemmed from the non-existence
of classical kurtosis for many generalized distributions. The Bowley’s skewness is based
on quartiles [12]:

Q1) +Q (1) -29(3)
(-l

and the Moors’ kurtosis [17] is based on octiles:

RE-QE+QE) -Q®E)
QE)-Q[{) ’

where Q(+) is obtained from (5.1). Plots of the skewness and kurtosis for some choices of
the parameter b as functions of a, and for some choices of a as functions of b, for a = 2.0
and A\ = 3.0, are displayed in Figure 3. The inverse of the incomplete beta function
I;l(cu b) can be expressed as a power series from the Wolfram website
http://functions.wolfram.com/06.23.06.0004.01

B=

M =

oo

I (a,b) = Zqi [a B(a,b)u]"".

i=1
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Figure 3. Plots of the Bowley skewness and Moors kurtosis for some
parameter values.

Here, g1 = 1 and the other ¢;’s (for ¢ > 2) can be obtained from the recurrence equation

b= a0 52 gt (@i =) = (= 1)
S g [~ a) +s(a+ b=+ 17— )},

where 0;2 = 1if ¢ = 2 and &;,2 = 0 if 4 # 2. Using the generalized power series, we can

write

Q) =" B [I;'(a,0)]",
k=1
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where 81 = 1/[a )], B2 = 1/[202 )], B3 = (& +1)/(6a3)), Bs = (8a* +5a° +10a? +
1)/[120&® )], etc. Then,

gk

(5.2) Qu) =

B (Z qi |a B(a,b) u]i/a>

i=1

- k
B ud <Z gi+1 [a B(a,b) u}i/a>
1=0
- k
Br ue <Z)\z ui/a) )
1=0

where \; = ¢i+1 [a B(a, b)]i/a for ¢ > 0. We use throughout the paper a result of Grad-
shteyn and Ryzhik [8] for a power series raised to a positive integer k (for k > 1)

B
Il

1

e T

£
Il

1

o0 k [e @)
(5.3) (Z i vi> = chﬂ- vi,
i=0 i—0

where cx,0 = \§ and the coefficients ¢, ; (for i = 1,2,...) are obtained from the recurrence
equation

(5.4) Chy = (Z )\0)_1 zl: [m(k + 1) — Z] Am Chi—m.-

m=1

Clearly, ck,; can be determined from the quantities Ao, ..., \;. Based on equation (5.3),
we can write

65 QW = S At S et =505 g uE S el
k=1 =0 k=1 i=0 =1

where (for [ > 1) et = 37 ¢y, Br cr,i and
L={Gkll=itkk=12 -, i=01,}.

Let W(-) be any integrable function in the positive real line. We can write

(5.6) /w W () f(z; 0)da = /1 % (i o uz/a) du.
0 0 =1

Equations (5.5) and (5.6) are the main results of this section since we can obtain from
them various BNH mathematical quantities. Established algebraic expansions to deter-
mine these quantities based on equation (5.6) can be more efficient then using numerical
integration of the density (2.3), which can be prone to rounding off errors among oth-
ers. For the majority of these quantities we can substitute co in the sum by a moderate
number as twenty. In fact, several of them can follow by using the hight-hand integral
for special W (+) functions, which are usually more simple than if they are based on the
left-hand integral.

6. Moment generating function
Here, we provide a formula for the mgf M(t) = E(e'®) of X. Thus, M(t) is given by

Mx(t) = /0 exp [t Q(u)] du = Z % /0 Q(u)" du.
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However

oo n oo n =)
_ <Z e ul/a) _ un/a (Z el ul/a) _ an’lu(nﬂ)/a’
=1 1=0 1=0

where p,,0 = e1” and the coefficients p,; (for i = 1,2,...) come from the recurrence
equation
P = (ie) ™" S [0+ 1) = ] €mss Priom.
m=1
Finally, we obtain

oo

_ Pn,l tn
Mx(®)=a 3 r oo

n,l=0

An alternative expression for E(X") follows as

o

ny __ pn,l
B(X™) = DM reaErt

7. Incomplete moments

The nth incomplete moment of X is defined as m.(y) = E(X"|X > y) = fyoo z" f(z)dx
It can be immediately derived from the moments of Y having the ENH distribution. Thus,
from equation (3.1), we can write mr(y) as

S+J koGt (o141 r
mr(y) = ZZ ]+1k/a+1 ( j k

%,7=0 k=0
k , @
x T a+1,(j+1)(1+/\y) .
An alternative expression for mr( ) takes the form

/\T ab b+z)7/°‘+1 i j

1=0 j=

x T (i—&-l,(b—i—i)(l—i—)\x)a).

8. Mean deviations

The deviations from the mean and the median are usually used as measures of spread in
a population. Let 4 = E(X) and M be the median of the BNH distribution, respectively.
The mean deviations about the mean and about the median of X can be calculated as

01 = E(lz — pl) = 2p F(p) —=2ma(p) and 62 = E(|lz - 0]) = p — 2ma (M)
respectively, F(u) follows (2.2) and mi(q) = [t f(t)dt. The function mi(g) can be

expressed as
ii 11+1] (b+i) a—1\/1
\B V(b + i)/t i j

=0

{r ii +1) (é 4 1,(b+i)(1+)\a:)a>] .
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Based on the mean deviations, we can construct Lorenz and Bonferroni curves, which
are important in several areas such as economics, reliability, demography and actuary.
For a given probability 7, the Bonferroni and Lorenz curves are defined by B(w) =
ma(q)/(mp) and L(m) = mi(q)/u, respectively, where ¢ = F~(7) = Q(n) can be ob-
tained from (2.5).

9. Rényi entropy and Shannon entropy

An entropy is a measure of variation or uncertainty of a random variable X. Two
popular entropy measures are the Rényi [25] and Shannon [27] entropies. The Rényi
entropy of a random variable with pdf f(x) is defined as

In(y) = log(/ (a dx)

for v > 0 and v # 1. The Shannon entropy of a random variable X is defined by
E{-log[f(X)]}. It is a special case of the Rényi entropy when v 1 1. For the BNH
model direct calculation yields

E{—log [f(X)]} = —log(a)) +log [B(a,b)] + (1 — &) E {log [1 + AX]}
- bE{l—(1+AX)‘*}+<1—a>E{1og[1_el—<1+xx>a]}_

First, we define and compute
A(ar, az; a, A, b) :/ (1 4 Az) 1Pl (1207 [1 —e“““")“rz dx.
0

Using the binomial expansion, we have

. Ao 1+ 22\ T(j+1)
A(a17a2,a,>\ b = a Z: ( ) ( ] >(b—|—z)]+1

Proposition:
Let X be a random variable with pdf (2.3). Then,

Ellog[l +AX]} = - fddlatrt-lazliaAb)

B(a,b) ot .
E{l-(1+AX)"} = 1- Bz:b) Aa—1a—1,;0,\b)
and
B {log [1 —et= 2071 = Bzib) 814(04—17@—5;— 1,0, \,b) N

The simplest formula for the Shannon entropy of X is given by

E{—loglf(X)]} = -—log(a))+1log[B(a,b)]+ (1—a)
+ (1_0‘)3&):1)) 0A(a+1t — 187ta—1;a,)\,b) g
- b[l—%A(m—l,a—L;a,A,b)}
n (1_‘1)32)2[)) OA(a — 1,aj9—tt—1;a,/\,b) =
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After some algebraic developments, we obtain an alternative expression for Ir(7)

Tn(v) = 2 loglad) - ;2 log[B(aD)
1 A — i va—1 -1 -H\ rG+1
* 1_710g [O‘iz (-1 <7( ; )> <(7 )]( a)) (b(j_;j‘!—)l

10. Order statistics

Let X1,...,X, be a random sample of size n from BNH(a, b, &, ). Then, the pdf and
cdf of the ith order statistic, say X;.n, are given by

101 ful) = FrA P @0 - Fa)
= B(wizﬂ) :Z:)(— )" (”m ’)f( V()
and
(10.2) Fin(z) = OI fin(t)dt
- B(i,niiJr 1) :ZO (r;?: (n; 2) F™™ (),

o i+m
where F'"™™(z) = [Z br G(x)r} . Using (5.3) and (5.4), equations (10.1) and (10.2)
r=0

can be written as

1 = (=)™ Cipmr 1
“n = =7 . N 77 G )
Fenl®) = g 2 s oG @)
and
. _ = Cz+mr s
Fl:n(x)_an—z—Fl MZO; m—|—z i @
Therefore, the sth moment of X;.,, follows as
s 1 X (_1)mci+mr /+OO s r—1
FE(X;. = - - tog(t t)dt
(i) = BemoD L X me ), Ce0e
B 1 n—i oo (71) Citmor
B(i,n—i+1) Z m+i

X

r—1 s (o] Ibe—iy\—stl r—1 S i I'(1 i2
oS3 S (1) (1) (2) p

1=0 i1=0i3=0

11. Estimation

Here, we determine the maximum likelihood estimates (MLEs) of the model param-
eters of the new family from complete samples only. Let z1,...,z, be observed values
from the BNH distribution with parameters a,b,a and A\. Let © = (a,b, a, )\)T be the
parameter vector. The total log-likelihood function for © is given by
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(11.1) ¢ = E(@):mog(ax)_n1og[3(a,b)]+(1_§)

n

Zlog(l —ti)+(a—1) Zn:log(l —e') +bzn:ti,
i=1 i=1 i=1

where t; =1 — (1 + Az;)“.

Numerical maximization of (11.1) can be performed by using the RS method [26],
which is available in the gamlss package of the R, SAS (Proc NLMixed) or the Ox program,
sub-routine MaxBFGS [5] or by solving the nonlinear likelihood equations obtained by
differentiating (11.1).

The components of the score function U, (©) = (94, /da, 9y, /Ob, DL, [Oc, L, /ON) are

or " 6
Us = 5. = —n(a) + np(a +b) + ;bg(l —e"),
U —%——m/}( )—l—m/;(a—&-b)—l—Zt
" b —
n n n t(a) t; (@)
Ua:a— 22.:leog(l—tz 1—— 2 1—a)zl_et +bZt
and
ol n 1. — t(-A) - to\) b ()\)
= =2"_(1-= L 1- b t
==l a);1—ti+( “); L Z
where tga) = —(1 4 Az;)%log[1 4+ Az;] and tEA) = —axi(1l + Mz;)*" !, Setting these

equations to zero, U, = Uy = Uy = Uy = 0, and solving them simultaneously yields the
MLE 6 of ©.

For interval estimation on the model parameters, we require the observed information
matrix whose elements U,., = 8°£/9rds (for r,s = a,b,a, \) can be obtained from the
authors upon request. Under standard regularity conditions that are fulfilled for the
proposed model whenever the parameters are in the interior of the parameter space, we
can approximate the distribution of (© —©) by the multivariate normal N,3(0,.J(©) ")
distribution, where 7 is the number of parameters of the baseline distribution.

We can compute the maximum values of the unrestricted and restricted log-likelihoods
to construct likelihood ratio (LR) statistics for testing some sub-models of the BNH dis-
tribution. For example, we may use LR statistics to check if the fit using the BNH
distribution is statistically “superior” to the fits using the ENH, NH, E, GE, BE distri-
butions for a given data set. In any case, considering the partition © = (®1T, @g)T, tests
of hypotheses of the type Ho @1 @50) versus Ha : ©1 # @5‘” can be performed using
the LR statistic w = 2{6( ) — £(©)}, where © and © are the estimates of © under H4

and Hy, respectively. Under the null hypothesis Hy, w 4 Xg, where ¢ is the dimension of
the vector ©; of interest. The LR test rejects Hy if w > £, where &, denotes the upper
100v% point of the thz distribution. Often with lifetime data and reliability studies, one
encounters censoring. A very simple random censoring mechanism very often realistic is
one in which each individual 7 is assumed to have a lifetime X; and a censoring time Cj,
where X; and C; are independent random variables. Suppose that the data consist of n
independent observations z; = min(X;,C;) and 6; = I(X; < C;) is such that §; = 1 if
X, is a time to event and §; = 0 if it is right censored for ¢ = 1,...,n. The censored
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likelihood L(©) for the model parameters is
(11.2) L(©) H [f (x5 a,b, a, N)]% [S(zi;a,b, a, \)]* 7%,
i=1

where S(z;a,b,a,\) = 1—F(z;a,b, o, A) is the survival function obtained from (2.2) and
f(z;a,b,a, ) is given by (2.3). We maximize the log-likelihood (11.2) in the same way
as described before.

12. Applications

In this section, we present two applications of the new distribution for two real data
sets to illustrate its potentiality. We compared the fits of the BNH distribution with
some of its special cases and other models such as beta Weibull (BW) [7], exponetiated
Weibull (EW) [18], Weibull (W), generalized exponential (GE) [10] and exponetial (E)
distributions given by:

e BW: f(z) = %x“l exp[—b(Az)°]{1 — exp[—(Az)°]}*;
o EW: f(z) = car(Az)* ! exp[—(Az)°]{1 — exp[—(\z)°]}*~;
o W: f(x) = cA“z° exp[—(\z)°];

o GE: f(z) = aXexp[—Az](1 — exp[-Az])*™;

o E: f(z) = Aexp[—Az].

First, we consider an uncensored data set corresponding to the remission times (in
months) of a random sample of 128 bladder cancer patients reported in Lee and Wang
[15]. The second data set represents the survival times of 121 patients with breast cancer
obtained from a large hospital in a period from 1929 to 1938 [14]. The required numerical
evaluations are carried out using the AdequacyModel package of the R software. Table
2 provides some descriptive measures for the two data sets.

Table 2. Descriptives statistics

Statistics Real data sets
Data Set 1  Data Set 2
Mean 9.3656 46.3289
Median 6.3950 40.0000
Variance 110.4250 1244.4644
Skewness 3.2866 1.0432
Kurtosis 18.4831 3.4021
Minimum 0.0800 0.3000
Maximum 79.0500 154.0000

The MLEs of the model parameters for the fitted distributions and the Cramér-von
Mises (W*) and Arderson-Darling (A*) statistics are given in Table 3. These test sta-
tistics are described in [3]. They are used to verify which distribution fits better to the
data. In general, the smaller the values of W* and A*, the better the fit.

We note that the BNH model fits the first data set better than the others models
according to these statistics A* and W*. On the other hand, the second data set is better
fitted by the BNH and Weibull distributions according to these statistics. Therefore, for
both data sets, the BNH distribution can be chosen as the best distribution.

Plots of the estimated pdf and cdf of the BNH, ENH, NH and GE models fitted are
given in Figure 4. The QQ-Plots are presented in Figure 5.
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Table 3. MLEs, (standard errors in parentheses), A* and W™ statistic.

Data Set Distribution Estimates A* WH*
1(n:128) BNH (a,)\, a, b) 0.1643 0.0649 1.5848 21.6176 0.2022 0.0302
(0.3236  0.05939 0.2859 56.0143)
BW (o, 8,a,b) 2.7346 0.9074  0.6662 0.3219 0.2882  0.0436
(1.599 1.5103 0.2450 0.4363)
ENH(oz,)\7 c) 0.6372 0.3444 1.6885 0.2779 0.0421
(0.1173  0.1752  0.3646)
EW (a, B,¢) 2.7964 0.2989  0.6544 0.2884  0.0437
(1.2631 0.1687  0.1346)
NH (a, \) 0.9226  0.1217 0.6138  0.1017
(0.1514  0.0344)
W (e, B) 0.1046 1.0478 0.7864  0.1314
(0.0093  0.0675)
GE ()\, c) 0.1212 1.2179 0.6741 0.1122
(0.0135  0.1488)
E (N 0.1068 0.7159  0.1192
(0.0094)
2(n=121) | BNH (o, A\, a,b) 1.4783 0.0090 1.3645 1.7799 0.3985 0.0537
(1.1933  0.00580 0.4293  3.3848)
BW (a,B,a,b) | 0.8184  2.0818  1.4783  0.0104 0.4418  0.05887
(0.3705  2.2577  0.4305  0.0077)
ENH(a, A, ¢) 1.6630 0.0119 1.2657 0.4251 0.0567
(0.5787  0.0062  0.1877)
EW (o, 8,¢) 0.8131 0.0174 1.4761 0.4491 0.0599
(0.3345  0.0045  0.3820)
NH (a, A) 2.5705 0.0061 0.5443 0.0748
(0.7452  0.0021)
W (e, B) 0.0199 1.3053 0.4013 0.0536
(0.0014  0.0934)
GE (), ¢) 0.0278 1.5179 0.4288  0.0615
(0.0029  0.1927)
E (M) 0.0216 0.4146  0.0585
(0.0019)

13. Simulation

In this section, we conduct Monte Carlo simulation studies to assess on the finite
sample behavior of the MLEs of a, A, a and b. All results were obtained from 5000 Monte
Carlo replications and the simulations were carried out the R programming language.
In each replication, a random sample of size n is drawn from the BNH(«, A, a, b) distri-
bution and the BFGS method has been used by the authors for maximizing the total
log-likelihood function /(f). The BNH random number generation was performed using
the inversion method. The true parameter values used in the data generating processes
are « = 1.5, = 2,a = 0.5 and b = 2.5. The Table 4 reports the empirical means,
bias the mean squared errors (MSE) of the corresponding estimators for sample sizes
n = 25,50, 100, 200 and 400. From these figures in this table, we note that, as the sample
size increases, the empirical biases and mean squared errors decrease in all the cases
analyzed, as expected.
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Figure 4. Plots of the estimated pdf and cdf of the BNH, ENH and
GE models.

14. Concluding remarks

Continuous univariate distributions have been extensively used over the past decades
for modeling data in several fields such as environmental and medical sciences, engineer-
ing, demography, biological studies, actuarial, economics, finance and insurance. How-
ever, in many applied areas such as lifetime analysis, finance and insurance, there is a
clear need for extended forms of these distributions. In this paper, we proposed a new
distribution called the beta Nadarajah-Haghighi (BNH) distribution, which generalizes
the Nadarajah-Haghighi distribution. Further, the proposed distribution includes as spe-
cial models other well-known distributions in the statistical literature. We studied some
of its mathematical and statistical properties. We provided explicit expressions for the
moments, incomplet moments, mean deviations, Rényi and Shannon entropies. The new
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Figure 5. The QQ-plot for the the BNH, ENH and GE models.

model provide a good alternative to many existing life distributions in modeling positive
real data sets. The hazard rate function of the BNH model can be constant, decreas-
ing, increasing, upside-down bathtub and bathtub-shaped. The model parameters are
estimated by maximum likelihood and the expected information matrix is derived. The
usefulness of the new model is illustrated in two applications to real data using goodness-
of-fit tests. Both applications have shown that the new model is superior to other fitted
models. Therefore, the BNH distribution is an alternative model to the beta Weibull,
exponentiated Weibull, Weibull, generalized exponential, extended exponential distribu-
tions and exponentiated Nadarajah-Haghighi distributions. We hope that the proposed
model may be interesting for a wider range of statistical applications.
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Table 4. Empirical means, bias and mean squared errors

n Parameter Mean Bias MSE

25 a 2,1882 0,6882 1,7969
A 2,4169  0,4169  0,8079
a 0,5192 0,0192 0,0201
b 2,1575  -0,3425  1,6367
50 o 1,8886 0,3886  0,8238
A 2,2029 0,2029 0,3293
a 0,5116 0,0116 0,0089
b 2,2749 -0,2251 0,8922
100 o 1,7211  0,2211 0,4281
A 2,1077 0,1077  0,1942
a 0,5056  0,0056 0,004
b 2,3704 -0,1296 0,5281
200 o 1,6029 0,1029 0,628
A 2,0396  0,0396 0,074
a 0,5040 0,004  0,0018
b 2,4378 -0,0622 0,2087
400 o 1,5676  0,0676  0,1229
A 2,0329 0,0329 0,0614
a 0,5020 0,002  0,0009
b 2,4656 -0,0344 0,1636
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