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Abstract

This paper proposes an alternative predictor for the total claim amount
of individuals that can be used for any type of non-life insurance prod-
ucts in which individuals may have multiple claims within one policy
period. The impact of heterogeneity on expected total claim amount is
investigated focusing on marginal predictions. Generalized linear mixed
model (GLMM) is used for the amounts of loss per claim. Closed-
form expression of the predictor is derived using marginal mean under
GLMM and claim count distribution. Empirical studies are performed
using a private health insurance data set of a Turkish insurance com-
pany. Proposed predictive model provides the lowest prediction errors
among competing models according to the mean absolute error crite-
rion.
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1. Introduction

Insurance companies cover the unpredictable losses of a policyholder and policyholder
pays premium against the insurance coverage in return. Actuaries construct homogeneous
risk classes using explanatory variables (rating factors) related to policyholders and use
statistical models to determine fair premiums. Generally two components are used for
the premium; claim frequency and claim severity. Claim severity is the average cost per
claim and the claim frequency is the average number of claims per time period [24]. Pure
premium is calculated by the product of claim frequency and claim severity.

Aggregate loss is the total claim amount paid by the insurer for the claims that occur
over a �xed period of time. For j = 1, 2, · · · , Ni let Yij be the individual claim amounts
for insured i where Ni is the number of claims. Assume that the individual claim amounts
follow an aggregate loss model that is de�ned as,

Si =

Ni∑
j=1

Yij

where Si is the aggregate loss of insured i. Conditional on Ni, Yij are assumed to be
independent and identically distributed random variables. The distribution of Ni does

not depend on the values of individual claim amounts. Letting Yij be i.i.d. with Yij
d
= Yi,

expected aggregate loss is de�ned as,

E(Si) = E(Ni)E(Yi) = E(Ni)E(Yi)

where Yi is the mean claim amount that is the ratio of total claim amount to the number
of claims ([17],[28]). There exist an independence assumption between the claim severity
and claim frequency in aggregate loss models. However in practice this assumption is
not realistic since claim severity is expected to be a�ected by claim frequency. One way
of modeling the dependence between these two components is to model claim severity
conditional on the number of claims and to include the number of claims as an explanatory
variable in severity model ([13], [16], [28]).

Generalized linear models (GLMs) are frequently used to model cross-sectional claim
frequency and claim severity data that is observed in a �xed period of time. It is common
to use gamma, lognormal or inverse Gaussian distributions for the right skewed claim
severity data (see [14], [8] and [20]). For the frequency component, Poisson and negative
binomial (NB) distributions are commonly used in the literature (see [6], [16] and [27]).
Both deductible agreement and no claim discount (NCD) system cause presence of extra
zeros in claim count data. Although NB model is preferred to overcome the overdispersion
problem that exists in Poisson model, it is not su�cient enough to model excess zero
counts [32]. In order to deal with excess zero counts, zero-in�ated models ([18], [23]) and
hurdle models [23] are frequently used in the literature (see [4], [12], [22] and [30]).

Observations are assumed to be independent in the GLMs. However, policyholders
may experience multiple claim events in one policy period and the analyser might be
interested in modeling correlation structure among the repeated claim amounts of the
same individual in an insurance data such as health insurance. One of the sources
of variability that has an impact on the correlation is between-individual heterogeneity
[11]. There are two main approaches to model repeated measures; subject-speci�c models
and marginal (population-averaged) models. Heterogeneity is explicitly modeled by using
random e�ects in subject-speci�c models such as linear mixed model (LMM) and GLMM.
In marginal models, dependent variable is modeled as a function of explanatory variables
without taking into account heterogeneity [31]. The method of generalized estimating
equation (GEE) is typically used to estimate the parameters of marginal models.
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Frees et al. [13] used aggregate loss approach to predict annual inpatient and outpa-
tient expenditures of individuals. They used LMM for the log-transformed expenditures
per event and NB model for the number of events. In this study, an alternative predictor
for the total claim amount of individuals is suggested for non-life insurance pricing. Dif-
ferently from Frees et al. [13], this study focuses on marginal predictions considering the
di�culty of following the same policyholders over the years for yearly renewable insur-
ance contracts. The objective is to obtain marginal predictions of total claim amounts
by taking account of heterogeneity and to model claim amounts in original scale instead
of using log transformation. For this purpose, GLMM is used for the amounts of loss per
claim of policyholders. Marginal mean is obtained by averaging the conditional mean in
GLMM over the distribution of random e�ects. Number of claims is used as an explana-
tory variable in GLMM in order to model the dependence between claim severity and
claim frequency.

The organization of this paper is as follows. In Section 2 models for claim frequency
and claim severity are de�ned. In Section 3 the proposed predictive model is introduced
and the alternative models are summarized. Candidate models are �tted to Turkish
private health insurance claims data and the predictive accuracy of the proposed model
is compared with the alternative models in Section 4. In the last section, results are
summarized and conclusions are drawn.

2. The Models

2.1. Generalized linear models. Generalized linear models are the generalizations
of the ordinary linear models. The distribution of dependent variable is a member of
exponential family such as normal, Poisson, binomial, gamma and inverse Gaussian.
Probability (density) function of a random variable Y , that has a distribution in the
exponential family, can be de�ned as,

(2.1) fY (y; θ, φ) = exp{a(φ)−1[yθ − ψ(θ)] + c(y, φ)}

where θ is the canonical parameter and φ is the dispersion parameter. a(.), ψ(.) and
c(.) are speci�ed functions. φ may be known or unknown. Mean and variance are given
respectively by,

E(Y ) = µ = ψ
′
(θ)

Var(Y ) = σ2 = a(φ)ψ
′′

(θ)

where ψ
′′

(θ) is called the variance function and regarded as a function of µ, ν(µ). a(φ)
is generally in the form of a(φ) = φ/w where w is a known prior weight [20].

On an individual basis, let Yi be the dependent variable of the ith individual for
i = 1, · · · ,K. Yi are assumed to be independent. Linear predictor is a linear function of
covariates:

ηi = xi1β1 + xi2β2 + · · ·+ xipβp

and the mean function is de�ned as,

µi = h−1(ηi) = h−1(x
′
iβ)

where xi = (xi1, xi2, · · · , xip)
′
is the p-dimensional vector of covariates and β is the cor-

responding vector of regression coe�cients [2]. h(.) is the link function that speci�es the
relation between the linear predictor and the dependent variable. Regression parameters
are usually estimated using maximum likelihood (ML) estimation method.
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2.1.1. Models for claim frequency. Poisson and negative binomial models are the
basic models for the claim frequency data. In recent years zero-in�ated models and hurdle
models are also preferable to accommodate excess zero counts. In zero-in�ated models,
zero counts may arise from both the point mass and the count component. Hurdle
models assume that zeros come from the point mass and the hurdle component models
zero versus positive counts [32]. These models are brie�y de�ned as follows.

Poisson model. Let ni be the observed number of claims of policyholder i. Given
xi, probability function of Poisson random variable can be de�ned as,

P (Ni = ni) =
exp(−µi)µni

i

Γ(1 + ni)
.

For the logarithmic link function, the mean parameter is de�ned as,

E(Ni | xi) = µi = exp(x
′
iβ).

Negative Binomial model. Negative binomial distribution is a mixture of Poisson
and gamma distributions. Probability function with dispersion parameter α and mean
parameter µi is given by,

P (Ni = ni) =
Γ(α−1 + ni)

Γ(α−1)Γ(ni + 1)

(
α−1

α−1 + µi

)α−1 (
µi

α−1 + µi

)ni

.

Zero-in�ated models. Probability function of zero-in�ated distribution is de�ned
as,

P (Ni = ni) =

{
πi + (1− πi)f2(0) if ni = 0

(1− πi)f2(ni) if ni > 0

where f2(ni) is the base count density of a distribution such as negative binomial and
Poisson. πi is the component that in�ates the probability of a zero and can be estimated

by probit or logit model. For the logistic regression, πi =
exp(x

′
iβ)

1 + exp(x
′
iβ)

.

Hurdle models. Probability function of hurdle distribution is de�ned as,

P (Ni = ni) =

f1(0) if ni = 0
1− f1(0)

1− f2(0)
f2(ni) if ni > 0

where f2(ni) is the count density function and f1(0) is the probability of observing a
count of zero. f1(0) and 1− f1(0) may be estimated by probit or logit model ([4],[7]).

2.1.2. Models for claim severity. Claim severity data is generally positive-valued
and has a right skewed distribution. Generally there are two options to model these
variables; using GLM with a distribution such as gamma, inverse Gaussian or transform-
ing the data for normality and using normal linear model for the transformed data with
lognormal distribution assumption [8]. The distribution function and the mean function
for gamma distribution is given below [3],

f(y) =
1

Γ(α)
βαyα−1e−βy, E(Y ) =

α

β
= exp(x

′
β).

2.2. Generalized linear mixed model. Generalized linear mixed model is an exten-
sion of GLMs to longitudinal, clustered or repeated measures data that includes subject-
speci�c regression parameters (bi) in the linear predictor. Within-subject association
between the repeated measures of the same subject is taken into account by the intro-
duction of random e�ects. Regression coe�cients in GLMM (β) have subject-speci�c
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interpretation because they represent the impact of covariates on an individuals trans-
formed mean response.

For i = 1, 2, · · · ,K and j = 1, 2, · · · , ni let Yij be the jth outcome measured for
cluster (individual) i. Yi = (Yi1, Yi2, · · · , Yini)

′
is the response vector for individual i.

Probability (density) function of Yij from exponential family distribution is given by,

fi(yij | bi,β, φ) = exp{φ−1[yijθij − ψ(θij)] + c(yij , φ)}
and the mean function is de�ned as,

(2.2) h(E(Yij | bi)) = ηij = x
′
ijβ + z

′
ijbi

where h(.) is a known link function, ηij is the linear predictor, xij be the px1 dimen-
sional vector of �xed covariates at measurement occasion j and zij be the qx1 vector of
covariates corresponding to qx1 vector of random e�ects bi. bi is assumed to be indepen-
dent Gaussian vector with mean 0 and covariance matrix D and Yijs are assumed to be
independent conditional on bi ([21], [31]). LMM is a special case of GLMM where the
link function is the identity link function and the distribution of responses is assumed to
be normal [11].

Conditional mean and variance are de�ned as [3],

E[Yij | bi] = uij = ψ
′
(θij)

Var[Yij | bi] = φψ
′′

(θij) = φν(uij).

Marginal mean in GLMM can be obtained by averaging conditional mean over the
distribution of random e�ects as follows,

(2.3)

E(Yij) = µij = E{E(Yij | bi)}

= E{h−1(x
′
ijβ + z

′
ijbi)}

=

∫ +∞

−∞
h−1(x

′
ijβ + z

′
ijbi)f(bi)dbi

where f(bi) is the probability density function of bi ([11], [31]). Generally this expres-
sion has no closed-form solution. Zeger et al. [31] approximated the expression for the
marginal mean in Eq. (2.3) for standard link functions when the distribution of ran-
dom e�ects is Gaussian with mean 0 and covariance matrix D. For the logarithmic link
function marginal mean is expressed as,

µij = exp(x
′
ijβ + z

′
ijDzij/2).

ML estimation of parameters in GLMMs is generally computationally infeasible because
of the multiple integral that has no closed-form expression. To approximate the like-
lihood, various methods are suggested such as penalized quasi-likelihood (PQL) [5],
Laplace approximation [26] and Gaussian quadrature methods [25].

2.3. Marginal models and generalized estimating equations. Another extension
of GLMs to longitudinal data is the marginal model. Marginal models are also referred
as population-averaged models since the inferences are for the population instead of
subjects. Mean depends on covariates not on random e�ects and previous responses.
The parameters of marginal model are estimated by the method of generalized estimating
equations. Using the notations of previous subsection, a marginal model can be speci�ed
in three parts:

• Relation between the conditional expectation of Yij and the covariates is de�ned
as,

h(E(Yij | Xij)) = h(µij) = ηij = x
′
ijβ.
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• Given the covariates conditional variance of Yij is de�ned as,

Var(Yij) = φν(µij)

where ν(µij) is the known variance function and φ is the scale parameter.
• It is assumed that the within�subject association is a function of association
parameters in addition to mean function (µij) [11]

Liang and Zeger [19] introduced generalized estimating equation as an extension of
GLMs to analyse longitudinal data. Rather than specifying the multivariate distribution
of an individuals observations, GEE requires only specifying the �rst two moments.
Estimates of regression parameters can be obtained by solving the GEE de�ned as,

(2.4) Sβ(β,α) =

K∑
i=1

(
∂µi
∂β

)′
Var(Yi)

−1(yi − µi) = 0

where µi is the mean response function and Sβ(β,α) is similar to the quasi-score func-
tion proposed by Wedderburn [29] with additional association parameters (α) [9]. Here
V ar(Yi) = Vi(α) depends not only on β but also on α as de�ned below,

Vi = A
1/2
i Ri(α)A

1/2
i

whereRi(α) is the working correlation matrix andAi is a diagonal matrix with Var(Yij) =
φν(µij) along the diagonal [11]. Covariance structure across time is nuisance in this
method and consistency of �xed regression parameters estimates depends only on cor-
rect speci�cation of the mean not on the correct choice of working correlation matrix
[19].

3. Prediction of Total Claim Amount

In this section, proposed predictive models is described and the closed-form predictor
of total claim amount is formulated. Alternative predictive models are also given in this
section.

3.1. Proposed predictive model. The objective is to obtain marginal predictions of
annual total claim amounts by taking into account heterogeneity among policyholders
and to model claim amounts in original scale for the avoidance of retransformation issues.
Accordingly, GLMM with logarithmic link function is used for the amounts of loss per
claim of policyholders. Dependency between the frequency and severity components is
allowed by using claim count as an explanatory variable in GLMM. Marginal mean under
GLMM is obtained by averaging conditional mean over the distribution of random e�ects.
Closed�form predictor of the total claim amount is obtained by using the estimated
distribution of the claim count variable.

Let Yij denotes the jth claim amount of policyholder i. Using GLMM description
given in Eq. (2.2) and conditional on number of claims, random e�ects and �xed e�ects,
mean of the response Yij is de�ned as,

(3.1) E(Yij | Ni > 0,Xi,Zi, bi) = exp(x
′
ijβ +NiβN + z

′
ijbi)

where bi ∼ N(0,D), Xi is the matrix of explanatory variables associated with the �xed
e�ects, Zi is the matrix of explanatory variables associated with the random e�ects and
βN is the regression coe�cient related to the claim number. Conditional mean de�ned in
Eq. (3.1) is marginalized by averaging over the distribution of random e�ects to express
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marginal mean ([15], [31]),

(3.2)

Ebi [E(Yij | Ni,Xi,Zi, bi)] = E(Yij | Ni,Xi,Zi)

= exp
(
x

′
ijβ +NiβN +

1

2
z

′
ijDzij

)
.

It follows that the expected total claim amount becomes,

(3.3)

E(Si |Xi) = E[NiE(Yij | Ni,Xi,Zi) |Xi]

= E[Niexp(x
′
ijβ)exp(NiβN )exp

(
1

2
z

′
ijDzij

)
|Xi]

= exp(ηij)exp
(

1

2
z

′
ijDzij

)
E[Niexp(NiβN ) |Xi]

= exp(ηij)exp
(

1

2
z

′
ijDzij

)
E[

∂

∂βN
exp(NiβN ) |Xi]

= exp(ηij)exp
(

1

2
z

′
ijDzij

)
∂

∂βN
E[exp(NiβN ) |Xi]

= exp(ηij)exp
(

1

2
z

′
ijDzij

)
∂

∂βN
MNi|Xi

(βN )

where ηij = x
′
ijβ is the �xed e�ects part of GLMM and MNi|Xi

(βN ) is the moment
generating function of count variable evaluated at βN . When the parameter estimates
are replaced into Eq. (3.3) the predictor for total claim amount becomes,

(3.4) Ŝi = exp(η̂ij)exp
(

1

2
z

′
ijD̂zij

)
∂

∂β̂N
MNi|Xi

(β̂N ).

In this study only random intercepts are used to take into account heterogeneity.
Therefore, zij = 1. Random intercepts (bi) are assumed to be normally distributed with
mean 0 and variance σ2

b . Then the predictor in Eq. (3.4) reduces to,

(3.5) Ŝi = exp(η̂ij)exp
(

1

2
σ̂2
b

)
∂

∂β̂N
MNi|Xi

(β̂N )

where exp
(

1

2
σ̂2
b

)
is the impact of heterogeneity on expected total claim amount.

As indicated in [15], relation between the regression coe�cients of marginalized GLMM
and GLMM depends on the components of covariance matrix (D). When there is just
random intercept term as random e�ects in the model, intercept parameter of marginal

model increase by
(

1

2
σ̂2
b

)
while all other regression coe�cients remain unchanged.

3.2. Alternative models. When the marginal model (GEE) with logarithmic link
function is used for the amounts of loss per claim and observed number of claims is
included as an explanatory variable in the model, expected total claim amount becomes,

(3.6)

E(Si |Xi) = E[NiE(Yij | Ni,Xi) |Xi]

= E[Niexp(x
′
ijβ +NiβN ) |Xi]

= exp(ηij)E[Niexp(NiβN ) |Xi]

= exp(ηij)E

[
∂

∂βN
exp(NiβN ) |Xi

]
= exp(ηij)

∂

∂βN
MNi|Xi

(βN ).
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Eq. (3.6) is similar to mean aggregate loss cost equation derived by Schulz [28] that
models both mean claim amount and claim count by GLM. Di�erence is that GLM is
for cross-sectional data and GEE is for repeated measures data. According to Eq. (3.6)
predictor for total claim amount becomes,

(3.7) Ŝi = exp(η̂ij)
∂

∂β̂N
MNi|Xi

(β̂N ).

Lastly, the predictor of Frees et al. [13] that used LMM for ln(yij) is given. yij is
de�ned as the amount of inpatient or outpatient expenditure in j th event of individual
i. Frees et al. [13] introduced the predictor of annual expenditures as,

(3.8) Ŝi = exp(b̂i + x
′
2iβ̂2)M

′
Ni

(β̂N )

where Ni is the number of events for either inpatient stays or outpatient visits, x2i is a
vector of individual level explanatory variables, bi ∼ N(0, σ2

b ) are the random e�ects and
M
′
Ni

(β̂N ) is the derivative of moment generating function of Ni at β̂N [13].
For the prediction of total claim amount, moment generating function of the claim

count variable is necessary according to Eq. (3.5), Eq. (3.7) and Eq. (3.8). Moment
generating function of the negative binomial distribution, Poisson distribution and zero-
in�ated distribution can be found in [13], [28] and [10], respectively. Moment generating
function of hurdle distribution can be de�ned as in the following,

(3.9)

MN (t) = E(etN ) =

∞∑
k=0

etkP (N = k)

= e0P (N = 0) +

∞∑
k=1

etkP (N = k)

= f1(0) +

∞∑
k=1

etk
1− f1(0)

1− f2(0)
f2(k)

= f1(0) +
1− f1(0)

1− f2(0)

[
∞∑
k=1

etkf2(k) + e0f2(0)− e0f2(0)

]

= f1(0) +
1− f1(0)

1− f2(0)

[
∞∑
k=0

etkf2(k)− e0f2(0)

]

= f1(0) +
1− f1(0)

1− f2(0)

[
M2(t)− e0f2(0)

]
= f1(0) +

1− f1(0)

1− f2(0)
[M2(t)− f2(0)]

where M2(t) is the moment generating function of the count variable [1].

4. Application

4.1. About the data. Empirical studies have been done with a private health insurance
(yearly renewable) data set that belongs to a major insurance company in Turkey. The
models are �tted using claims data of year 2010 and predictive accuracy of the models is
assessed using year 2011 data. There are 21496 and 22057 policies that have started or
are renewed in 2010 and 2011, respectively. All policy numbers belong to year 2010 are
di�erent from year 2011 policies. The term 'claim amount' stands for the amount paid
to the policyholder under the terms of policy in return for the reported claim. Note that
the deductibles and policy limits are ignored in this study.
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Sample consists of individuals whose ages are between 18�70. Each policyholder has
one year of exposure. Explanatory variables are age, gender, marital status, policy
package of policyholder and the province in which the policyholder lives. All explanatory
variables are categorical except age. Provinces are categorized according to the policy
numbers. Policy packages are categorized according to the economical properties and
bene�t types. For the claim severity models, number of claims are also used as an
explanatory variable. Table 1 shows the description of categorical explanatory variables.

Table 1. Categorical explanatory variables

Factor Variable Description

Policy package

Eco, only inpatient 3
Eco, inpatient and outpatient 2

Not eco, only inpatient 1
Not eco, inpatient and outpatient 0

Province

Other 4
Kocaeli,Bursa,Mu§la,Antalya,Adana,Tekirda§ 3

�zmir 2
Ankara 1
�stanbul 0

Gender
Female 1
Male 0

Marital status
Married 1

Single / widowed 0

4.2. Modeling claim frequency. Claim numbers of 2010 policyholders range between
0-113 with a mean value of 3.803. 44% of 2010 policyholders have zero claims. In order to
accommodate excess zero counts, zero-in�ated and hurdle models are used for the annual
number of claims in addition to Poisson and negative binomial models. According to
the Pearson dispersion statistic (7.22>1), Poisson model is overdispersed. Due to the
overdispersion problem, negative binomial model is used for the count part of zero-
in�ated model and hurdle models. Logarithmic link function is used for Poisson GLM,
NB GLM, count parts of zero-in�ated negative binomial (ZINB) and hurdle NB models.
Logit model is preferred for the zero components of ZINB and hurdle NB models.

Table 2 shows the results of count data models that are �tted to 2010 number of claims.
According to the Akaike information criterion (AIC) values, Poisson model provides
worst �t whereas zero-in�ated negative binomial model provides best �t to the number of
claims. Zero-augmented models (ZINB, hurdle NB) provide better �t than the traditional
Poisson and NB models.

Based on the count parts of zero-augmented models, Poisson and NB model, param-
eter estimates have close values in general. Province, age and gender are statistically
signi�cant determinants of claim counts in all models. Although mean functions of four
models are similar for count parts, zero-augmented models expand the mean function by
altering the likelihood of zero counts.

Parameter estimates for zero parts of ZINB and hurdle NB model are quite di�erent.
The reason is that zero hurdle component estimates the probability of observing positive
claim while zero-in�ation component estimates the probability of observing a zero claim
from the point mass [32]. According to the zero part results of ZINB, coe�cients for
Ankara, �zmir provinces and marriage are statistically signi�cant. For the zero part of
hurdle NB model, coe�cients for the economical packages that provide both inpatient
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Table 2. Parameter estimates of regression models for claim frequency data

Parameter
Estimate (Std. Error)

Poisson NB
ZINB Hurdle NB

Count part Zero part Count part Zero part

Intercept
1.217

(0.016)*
1.038

(0.049)*
1.356

(0.041)*
-1.056
(0.098)*

1.460
(0.041)*

0.278
(0.065)*

Not eco, inpatient
-2.334
(0.023)*

-2.379
(0.035)*

-2.400
(0.048)*

-0.092
(0.146)

-2.365
(0.047)*

-1.510
(0.039)*

Eco, inpatient&outpatient
-0.033
(0.012)*

-0.021
(0.037)

-0.025
(0.030)

-0.021
(0.064)

-0.040
(0.030)

0.035
(0.050)

Eco, inpatient
-2.785
(0.103)*

-2.803
(0.131)*

-2.993
(0.237)*

-0.849
(1.325)

-2.890
(0.232)*

-1.869
(0.136)*

Ankara
-0.225
(0.013)*

-0.236
(0.039)*

-0.149
(0.032)*

0.279
(0.066)*

-0.137
(0.033)*

-0.295
(0.051)*

�zmir
-0.305
(0.018)*

-0.334
(0.050)*

-0.280
(0.042)*

0.184
(0.090)*

-0.254
(0.043)*

-0.298
(0.064)*

Prov. category 3
-0.125
(0.014)*

-0.139
(0.042)*

-0.127
(0.034)*

0.043
(0.077)

-0.107
(0.035)*

-0.126
(0.055)*

Prov. category 4
-0.319
(0.024)*

-0.305
(0.066)*

-0.320
(0.056)*

-0.011
(0.129)

-0.317
(0.057)*

-0.156
(0.083)

Age
0.005

(0.000)*
0.009

(0.001)*
0.009

(0.001)*
-0.001
(0.002)

0.006
(0.001)*

0.009
(0.001)*

Female
0.336

(0.007)*
0.364

(0.022)*
0.351

(0.018)*
-0.040
(0.041)

0.328
(0.019)*

0.210
(0.030)*

Married
0.024

(0.007)*
0.005
(0.023)

0.109
(0.018)*

0.360
(0.042)*

0.126
(0.019)*

-0.250
(0.030)*

AIC 168824 94331 92928 92965

*Statistically signi�cant at 5% level

and outpatient bene�ts and the category 4 of provinces are not statistically signi�cant
(see Table 2).

Considering the results, Poisson model is not used for the prediction of year 2011 total
claim costs due to the overdispersion problem and poor goodness-of-�t.

4.3. Modeling claim severity. Claim amounts per claim of 2010 policyholders range
between 1-108268 Turkish lira. Mean, median and standard deviation is 330, 101 and
1620 respectively. Because of right skewed distribution of claim amounts, GLM for mean
claim amounts; GLMM and GEE for the amounts of loss per claim are used with gamma
distribution assumption. Number of claims is included as a weight in GLM for mean
claim amounts. Logarithmic transformation is also applied to the amounts of loss per
claim and LMM is used with normality assumption. Exchangeable correlation structure
is assumed for GEE and the parameters of GLMM is estimated by PQL method. Results
of GLM, GLMM and GEE �ts to 2010 claim severity data are given in Table 3.

Table 3 shows that the parameter estimates of three models have close values in gen-
eral. Number of claims is statistically signi�cant in all models and it has a positive e�ect
on claim severity. While package, age and marital status are statistically signi�cant
determinants of claim severity, province factors except category 4 are not statistically
signi�cant in all models. Estimate of correlation parameter is 0.0619 and 0.0793 ac-
cording to GEE and GLMM, respectively. The correlation among the claim amounts of
policyholders is very low for this data set. Estimate of variance component for random
e�ects in GLMM (σ̂2

b ) is 0.2943.

4.4. Prediction results. Point predictions for the total claim amounts of 2011 policy-
holders are obtained in this part. 36% of 22057 policyholders had zero claims in 2011.
External model validation method is used to compare the predictive accuracy of proposed
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Table 3. Parameter estimates of regression models for claim severity data

Parameter
Estimate (Std. Error)

GLM GEE-Exc. GLMM

Intercept 4.866 (0.073)* 4.831 (0.080)* 4.622 (0.041)*
Claim number 0.014 (0.001)* 0.013 (0.002)* 0.013 (0.001)*

Not eco, inpatient 1.964 (0.106)* 1.944 (0.067)* 1.975 (0.049)*
Eco, inpatient&outpatient -0.288 (0.052)* -0.281 (0.045)* -0.234 (0.029)*

Eco, inpatient 2.093 (0.463)* 2.072 (0.260)* 2.077 (0.203)*
Ankara -0.113 (0.059) -0.091 (0.049) -0.001 (0.033)
�zmir -0.072 (0.080) -0.054 (0.094) -0.046 (0.043)

Prov. category 3 -0.001 (0.063) 0.049 (0.079) -0.039 (0.035)
Prov. category 4 0.253 (0.109)* 0.296 (0.112)* 0.213 (0.059)*

Age 0.015 (0.002)* 0.016 (0.002)* 0.011 (0.001)*
Female -0.124 (0.033)* -0.087 (0.036)* -0.002 (0.018)
Married 0.070 (0.032)* 0.074 (0.035)* 0.041 (0.018)*

*Statistically signi�cant at 5% level

predictive model with the alternative models. Parameter estimates obtained from the
models �t to 2010 data and the information of 2011 policyholders are used to obtain point
predictions. Two criteria are used to compare the models, namely root mean squared
error (RMSE) and mean absolute error (MAE) that are de�ned respectively,

RMSE =

√√√√ 1

K

K∑
i=1

(Si − Ŝi)2

MAE =
1

K

K∑
i=1

| Si − Ŝi | .

For the predictive model in which LMM is used for the log-transformed claim amounts,
only negative binomial model is used for the number of claims. The predictors of random
intercepts in LMM are assumed zero as all policy numbers of 2010 are di�erent from policy
numbers of 2011. Results are given in Table 4.

Table 4 shows that the two predictive models using GLM for mean claim amounts
and zero-augmented models for the number of claims have the lowest RMSE. Two GEE
models follow these models. In terms of MAE, proposed predictive models that take into
account between-individual heterogeneity perform the best. Especially in terms of MAE,
predictive models that use zero-augmented models for the number of claims perform
better than the models that use traditional NB model. Predictive model that uses LMM
for log-transformed claim amounts per claim and NB model for the number of claims
performs worst in terms of both RMSE and MAE. The predictive models that use GEE
and GLM for claim severity have close RMSE and MAE values in accordance with the
model �t results.

5. Conclusion

This study suggests an alternative predictor for the total claim amount by using
marginalized GLMM for the amount of loss per claim of policyholders. Suggested predic-
tive model is useful where insureds have a tendency to have multiple claim events within
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Table 4. Comparison of predictive models

Predictive Model RMSE MAE

Y i GLM+Ni NB 5728.490 1735.818

Y i GLM+Ni ZINB 5726.671 1704.296

Y i GLM+Ni Hurdle NB 5726.702 1704.875

ln (Yij) LMM+Ni NB 5797.197 2197.447

Yij GEE+Ni NB 5728.624 1732.412

Yij GEE+Ni ZINB 5727.021 1705.120

Yij GEE+Ni Hurdle NB 5727.039 1705.644

Yij GLMM+Ni NB 5738.657 1607.140

Yij GLMM+Ni ZINB 5739.528 1587.891

Yij GLMM+Ni Hurlde NB 5739.819 1588.590

one policy period and when the interest is on obtaining the marginal predictions by taking
into account heterogeneity among individuals. With the proposed model, heterogeneity
is introduced as a nuisance parameter that changes the interpretation and predictions.

Number of claims is used as an explanatory variable in claim severity models in order
to model the dependence between two components of aggregate loss. According to the
analysis results of the application study, number of claims has a signi�cant positive e�ect
on claim severity.

Zero-in�ated models and hurdle models accommodate the excess zeros for claim fre-
quency data. Analysis and prediction results show that zero-augmented models improve
model �t for the annual number of claims and predictions of total claim amounts.

Using MAE and RMSE criteria, predictive accuracy of proposed model is compared
with alternative models. In terms of MAE, suggested predictive model performs best
among the competing models. As a result, by taking into account both between-individual
heterogeneity and excess zero counts, pricing process will be ful�lled e�ciently without
ignoring important characteristics of insurance claims data.
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