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Abstract

Direct detection of gene activity is often not possible because new pro-
teins from an individual activation event are masked by proteins re-
maining from previous events. Thus, researchers determine gene activa-
tion or inactivation by observing messenger RNA (mRNA) production
instead. Typically, mRNA transcription occurs in short rapid bursts
when the gene is in its on-state, and no transcriptions during its o�-
state. This burstiness of mRNA production is not well modeled by
a Poisson process. We propose the Conway-Maxwell-Poisson (COM-
Poisson) distribution as a potential alternative to the more common
negative binomial (NB) distribution. We use the generalized linear
model version of these models to incorporate covariate information.
We also consider zero in�ation to model excess zero counts. We use
data from E. coli bacteria and mammalian cells to illustrate our pro-
posed methods. We �nd that when there is a biophysically derived
distribution, this distribution performs well. We also show that in the
absence of such biophysical knowledge, the COM-Poisson is competi-
tive with the NB. Both the COM-Poisson and NB arise in queueing
theory, suggesting that further application of that framework to study
mRNA dynamics would be useful.
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1. Introduction

Variations in the nature of the biochemistry of gene expression lead to variations in
protein levels. These variations in turn lead to variations in cell function, even among
cells of similar genotype. The consequences of such variations that lead to phenotypic
heterogeneity are discussed in [6]. These variations appear to have a stochastic com-
ponent, so it is of interest to understand their nature. Direct measures of gene activity
using measurements of proteins are di�cult because of masking from previous events [16].
However, an indirect measure is available through the protein's precursor called messen-
ger RNA (mRNA), a molecule that is a transcription (copy) of a segment of DNA known
as the promoter. Variations in protein synthesis have been attributed to variations in
mRNA transcription. Measurement of mRNA is feasible and less susceptible to masking.
It also serves as an indirect indicator of gene activity; thus, there is considerable interest
in the study of mRNA counts [5]. Quanti�cation of mRNAs is done through the use
of �uorescence in situ hybridization (FISH), with mRNA molecules in each cell being
counted by identifying individual �uorescent spots of 3-dimensional images [16, 24, 25].

Two prominent models proposed for mRNA transcription are Markovian: the Poisson
and the telegraph processes, both of which are commonly used in queueing theory [5, 8,
27]. The telegraph model is a two-state Markov process with the two states representing
the active and inactive phases of the promoter. A notable feature of mRNA transcription
is its burstiness, which appears to lend more support to the telegraph model [14, 24]. It
also suggests that counts would be overdispersed � that is, the variance is larger than the
mean � relative to the Poisson model: see the Appendix. However, there are attempts to
explain the burstiness under both models. In addition, it appears that the protein bursts
themselves do not uniquely identify mRNA burst distributions.

There have been several studies of mRNA transcription and other biological network
processes from a queueing theory perspective [1, 5]. The analogy with queueing theory
is as follows: the times of mRNA transcriptions correspond to arrival times of customers
whose waiting times in the queue correspond to the time to degradation of the mRNA
molecule. This analogy allows the considerably large body of research from queueing the-
ory into this context. For example, see [5] for an application of Little's law, which relates
the burst and steady state means of mRNA production. However, such investigations are
still incomplete: although in certain circumstances master equations are known which
lead to models that �t well (see Section 3.2 below), in many other cases models based on
such detailed knowledge are not available. Thus, further studies which could lead to a
better understanding of commonalities across a wide range of mRNA transcription data
are necessary. Earlier studies [20, 24] have modeled the count distribution using the neg-
ative binomial (NB) distribution as an alternative to the Poisson distribution. However,
the Conway-Maxwell Poisson distribution (COM-Poisson, [4, 17, 21]) has not yet been
applied to mRNA counts. We expect that the COM-Poisson will be a good candidate
to model the mRNA transcription's burstiness because it allows overdispersion; also, it
o�ers an another queueing model to consider.

The details of the experiments involving mRNA counts are important. Thus, the count
models should be extended so that they allow the estimation of the e�ects of experimental
conditions through appropriate covariates. In short, regression models for the counts are
necessary. GLM methods for mRNA counts were suggested by Zhang, et al. [28], but
they do not appear to have been studied systematically. Thus, our aim in this paper is to
apply COM-Poisson regression models [3, 9, 11, 19] to overdispersed mRNA count data
and to compare their performance with other well known models for count data. We also
use the zero-in�ated COM-Poisson (ZICOM-Poisson) regression model [2, 18] to handle
excessive number of zeroes when they occur.
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In Section 2, we present our notation for the NB, Poisson, a biophysically based model
(discretized gamma), and the COM-Poisson distribution. We also use their GLM versions
and their zero-in�ated versions. Because the NB and Poisson models are well known, we
only present our notation for them. In Section 3, we apply the proposed models to E.

coli and mammalian cell mRNA count data under di�erent experimental conditions. We
then compare the model �ts using the Bayes information criterion (BIC) and provide a
few parameter estimates and model diagnostics as illustrative examples. In Section 4, we
conclude with a discussion of the implications of our work and possible avenues for the
future. Finally, in the Appendix, we use a doubly stochastic point process to show how
bursty behavior can lead to overdispersion.

2. Regression models for count data

The regression models that we consider are the COM-Poisson, Poisson, NB, and a
biophysically based model. We call the probability mass function (pmf) of this biophysical
model a discretized gamma because it resembles a gamma density. Developments for the
COM-Poisson are relatively recent, so we give a brief account of it and key references.
Although the Poisson is a special case of COM-Poisson, we present results for it separately
because it is a widely used regression model for count data. The NB is also well known,
so we just present our notation for it.

2.1. COM-Poisson regression model. The COM-Poisson was introduced by Conway
and Maxwell [4] for modeling queues and service rates. It has recently been shown to be
useful in many other applications, especially by Shmueli, Sellers, and their colleagues
[17, 21]. This distribution is a two-parameter discerete distribution on {0, 1, 2, . . .}.
Its parameters λ and ν model the intensity and the dispersion, respectively. For k =
0, 1, 2, . . . , its pmf is

P (X = k|λ, ν) = Z(λ, ν)−1 λk

(k!)ν
, where Z(λ, ν) =

∞∑
k=0

λk

(k!)ν
,

and its parameter space is

Θ = {(λ, ν) : λ > 0, 0 < ν ≤ ∞} ∪ {(λ, ν) : 0 < λ < 1, ν = 0}.

The normalizing constant Z(λ, ν) does not have an easy closed form expression. Thus,
there have been several recent studies of approximations for it [7, 12, 15, 22, 23]. The
distribution is overdispersed (underdispersed) if 0 ≤ ν < 1 (ν > 1) [21].

It also has several nice statistical properties. First, it forms an exponential family.
Second, it is more �exible than the Poisson because it handles both overdispersion and
underdispersion. And third, the COM-Poisson has as special cases the following well-
known distributions: the geometric, Poisson, and binomial correspond to ν = 0, 1, and∞,
respectively. There are also several connections between the COM-Poisson and NB. First,
the geometric is a special case of both; and of course, the sum of independent geometric
variates is NB. Next, Imoto [10] proposed a three-parameter generalized COM-Poisson
distribution in order to include the NB distribution as a special case of it.

2.1.1. COM-Poisson regression with (α, ν) parametrization. Guikema and Go�elt [9] de-
veloped a COM-Poisson generalized linear model (GLM) using a di�erent parametriza-

tion, (α = λ1/ν , ν). This new parametrization was introduced because α is good approxi-
mation of the mean when ν ≤ 1 or α > 10 [21]. Thus, it acts as an approximate centering
parameter [9]. They used a Bayesian approach for this GLM setting. It was later used to
analyze motor vehicle crashes [11]. Barriga and Louzada [2] constructed a zero-in�ated
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COM-Poisson (ZICOM-Poisson) regression model and applied it to apple cultivar data
using a Bayesian approach.

The pmf of the COM-Poisson based on (α, ν) is then (with slight abuse of notation)

P (X = k|α, ν) = Z(α, ν)−1

(
αk

k!

)ν
, where Z(α, ν) =

∞∑
k=0

(
αk

k!

)ν
.

The general form of the COM-Poisson GLM is then [9]

(2.1) ln(α) = β0 +

p∑
i=1

βiUi and ln(ν) = γ0 +

q∑
j=1

γjVj

where Ui and Vj are covariates for i = 1, . . . , p, and j = 1, . . . , q: p (q) covariates are
related to the centering (dispersion) link function. In some previous studies [9, 12, 17, 19],
no covariates were assigned to the dispersion, in which case (2.1) reduces to

(2.2) ln(α) = β0 +

p∑
i=1

βiUi and ln(ν) = γ0.

2.1.2. COM-Poisson regression with (λ, ν) parametrization. Sellers and Shmueli [19]
used a COM-Poisson regression formulation based on the (λ, ν) parametrization by choos-
ing a log-link function for both parameters. They extended the GLM formulation to the
COM-Poisson case and indirectly modeled the relationship between the count X and the
predictors U via E(X). They also used maximum likelihood (ML) to obtain parameter
estimates. Moreover, they discussed model estimation, inference, and diagnostics of this
regression model, using several data sets as illustrations.

In this paper, we use this parametrization of the COM-Poisson distribution when
�tting the COM-Poisson regression model to mRNA counts. We �rst assign covariates
to both the centering and dispersion link functions as in (2.1), and then we compare
its performance with no covariates assigned for the dispersion link function as in (2.2).
The resulting likelihood function of the COM-Poisson GLM is not analytically tractable,
so we use iterative numerical procedures to compute MLEs of the parameters and their
standard errors. Computational details are given in Section 2.3.

We use a zero-in�ated COM-Poisson (ZICOM-Poisson) regression model to handle
excessive numbers of zeroes when they occur. We use a standard construction, so the
pmf is:

(2.3) P (X = k|λ, ν, ζ) =

{
ζ + (1− ζ)Z(λ, ν)−1 if k = 0

(1− ζ)Z(λ, ν)−1
(
λk

k!

)ν
if k = 1, 2, . . .,

where ζ ∈ [0, 1] models the excess-zero probability, and (λ, ν) are as before. For the
GLM case, the parameters λ, ν, ζ could depend on the covariates. In this paper, we
�rst assign a covariate to only (λ, ζ); we then assign a covariate to all three (λ, ν, ζ).
The ZICOM-Poisson model with logistic link function and normal link function have also
been studied [2] using a Bayesian approach. Recently, Sellers and Raim [18] studied the
ZICOM-Poisson regression model also using ML.

2.2. The other models. We present the other well-known models here only to establish
our notation. The NB is a gamma-Poisson mixture: if X|τ ∼ Poisson(τ) and τ has a
gamma distribution with shape parameter r > 0 and scale parameter µ/r, then the
unconditional pmf of X is

P (X = k|µ, r) =
Γ(k + r)

Γ(k + 1)Γ(r)

(
r

r + µ

)r (
µ

r + µ

)k
for k = 0, 1, 2, . . .,
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so that X has mean µ. For a �xed r, the NB likelihood can be expressed as a GLM
form with a log link function: µ = exp[U ′β]. The zero-in�ated Poisson (ZIP) and NB
(ZINB) can be constructed as in (2.3). Once again, we use the log link as we did for the
COM-Poisson. (One referee suggested that we consider a two-link function for NB in
order to make comparison of NB with COM-Poisson with two-link more fair. However,
we found no previous work using a two-link NB GLM.)

Our last model is biophysically based. It arises as the steady-state mRNA density of
coupled ordinary di�erential equations of certain chemical master equations for mRNA
dynamics: see the supplement to [16]. The resulting pmf has the form

(2.4) P (X = k|θ, µ) ∝ 1

µΓ(θ)

(
k

µ

)θ−1

e−k/µ for k = 0, 1, 2, . . .,

where θ and µ are functions of the rate of gene activation and inactivation, the rate of
mRNA transcription, and the rate of mRNA decay. This time, for �xed θ, we use the
reciprocal link: µ = (U ′β)−1.

2.3. Computation. We �t all models above using PROC COUNTREG procedure in
SAS. Among several options, we chose the Newton-Raphson method to compute MLEs
of the parameters and their standard errors. For the COM-Poisson and ZICOM-Poisson
this procedure allows us to specify either the (λ, ν) or (α, ν) parametrization; in Section
3, we present summaries using the original (λ, ν) parametrization. We did encounter
some computational di�culties with this procedure when �tting COM-Poisson regression
because some parameter ranges led to slower run times. In addition, the procedure had
di�culty in computing the Hessian matrix in a few cases. For NB and Poisson models,
the running times were shorter than that of the COM-Poisson regression models. Once
again, we encountered di�culty in computing the Hessian matrix in a few cases for these
models.

We also used the R package to validate our computations. We used the zeroin�

function in the pscl package in R for the ZINB and ZIP. To �t COM-Poisson models, we
used the glm.comp function in the CompGLM package in R. For ZICMP models, we used
the same R code used in [18], which will be soon released by the authors.

3. mRNA count data analysis

In this section, we apply the models above to mRNA count data from So, et al. [24]
and Raj, et al. [16]. We brie�y describe the experimental conditions and the resulting
mRNA data. We also provide some descriptive summary statistics to provide insight into
these data sets. We then compare the performance of the �ts of those models described
in Section 2.

3.1. Comparing E. coli expression levels for di�erent promoters. So, et al. [24]
measured the expression levels of di�erent promoters and under di�erent conditions by
conducting 20 experiments. They recorded the mRNA counts produced under each
experimental condition. The aim of these experiments was to achieve di�erent expression
levels from the Plac promoter. By using these expression levels, they compared mRNA
lifetimes for the same transcript at di�erent expression levels and growth rates. For
illustration, we present mRNA counts of �ve of these experiments, in which di�erent
expression levels from di�erent promoters are used to obtain the mRNA counts. In these
�ve experiments, a bacterial strain, TK310, was grown with 0 to 1 millimolar (mM)
of a reagent called IPTG or 0 to 10 mM of second messengers, which are intracellular
signaling molecules called cAMP. More biophysical details about these experiments are
in the supplementary material for [24].
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In Experiment 1, the bacterial strain TK310, was grown with .1 mM of cAMP and
seven di�erent levels of IPTG: 0, 3, 10, 30, 100, 300, 1000 micromolar (µM). In Experi-
ment 2, strain TK310 was grown with 1mM of IPTG and six di�erent levels of cAMP: 0,
3, 10, 30, 100, 300 µM. Experiment 3 is similar to the Experiment 2, but allows higher
levels of cAMP. Strain TK310 was grown with 1mM of IPTG and nine di�erent levels of
cAMP: 0, 3, 10, 30, 100, 300, 1000, 3000, 10000 µM. In Experiment 5, strain TK310 was
grown with 1mM of IPTG and with seven di�erent levels of cAMP: 0, 30, 100, 300, 1000,
3000, 10000 µM. Experiment 9 is similar to the Experiment 1; it uses 10 mM of cAMP
with the same levels of IPTG as in Experiment 1. Basic descriptive statistics of these
experiments are in Table 1, which clearly illustrates that the counts are considerably
overdispersed in all experiments. Also, there are considerable numbers of zero mRNA
counts. We will see below that there is rather strong evidence for excess zeroes.

Table 1. Summaries that suggest overdispersion and excessive zeroes.

Experiment Mean Variance Zero counts Sample size

1 1.50 11.66 4298 6092
2 12.99 232.55 1808 6492
3 13.00 338.42 4567 13464
5 11.96 307.44 2417 7852
9 19.40 771.02 3976 8960

To illustrate the usefulness of the COM-Poisson regression to modeling mRNA counts,
we compare its performance to the Poisson and NB regression models. The COM-Poisson
is �rst �t with no covariate assigned to the dispersion link (CMP1) then �t by assigning
the same covariate to both link functions (CMP2). Later, we consider zero-in�ated
versions of the COM-Poisson, NB, and Poisson due to the excessive numbers of the zeroes
in the data sets. For each data set, we compare these �ts by assigning the corresponding
covariate for each experiment. For Experiments 1 and 9, IPTG is the covariate because
the cAMP is �xed. For Experiments 2, 3, and 5, cAMP is the covariate because IPTG is
�xed. We note that, in the future, it would be better to do experiments in which both the
cAMP and IPTG values are varied systematically so that a response-surface approach
could examine both main e�ects and possible interactions.

The e�ects of the covariates are not of interest in this paper because our main purpose
is model comparison. We �rst compare the model �ts using the BIC, the values of which
are in Table 2. For CMP2, we assign the same covariates to both link functions. It is
clear that assigning a covariate to the dispersion link function improves the �t of the
COM-Poisson model considerably. In all but one case, the COM-Poisson GLM with a
covariate assigned to both link functions performs better than the NB. Further, we see
that the COM-Poisson models and NB outperform the Poisson model by a wide margin.
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Table 2. BIC of each model �t of COM-Poisson with no covariates
assigned to dispersion link function (CMP1), COM-Poisson with co-
variates assigned to both link functions (CMP2), Negative Binomial
(NB), and Poisson.

CMP1 CMP2 NB Poisson

experiment 1 13064 12131 11853 15061
experiment 2 40833 37609 38060 63169
experiment 3 72265 65885 66812 103424
experiment 5 42504 38736 38869 63182
experiment 9 57424 47442 47770 113196

Next, we used Vuong's closeness test [26] to support our conclusion made based on the
BIC goodness-of-�t measure. This likelihood-ratio-based test for model selection uses an
estimate of the Kullback-Leibler divergence. In all of these experiments, Vuong's test
suggests that both COM-Poisson and the NB models are signi�cant improvements over
the Poisson model (p < 0.001 for all comparisons).

Table 3. BIC of each model �t of zero-in�ated COM-Poisson with
no covariates assigned to dispersion link function (ZICMP1), zero-
in�ated COM-Poisson with covariates assigned to both link functions
(ZICMP2), zero-in�ated Negative Binomial (ZINB), and zero-in�ated
Poisson (ZIP) models, respectively.

ZICMP1 ZICMP2 ZINB ZIP

experiment 1 11318 11323 11268 12967
experiment 2 36038 35877 35651 53470
experiment 3 67274 65467 66158 97014
experiment 5 40081 38610 38887 57106
experiment 9 57443 47448 45101 89044

Because of the excessive number of zeroes, we next consider zero-in�ated versions of
the NB (ZINB) and COM-Poisson (ZICMP). BICs for these models are presented in
Table 3. It is clear that the models which account for zero-in�ation are better than those
without it. Among the zero-in�ated models, the COM-Poisson with covariates assigned
to both link functions is the best for all but one case. Note also that the use of covariates
for both links in both the ZICMP and COM-Poisson models is substantially better than
not using covariates for the dispersion link. Vuong's closeness test shows that ZICOM-
Poisson models and ZINB model are highly signi�cant improvements over the ZIP model
(p < 0.001 for all comparisons).

3.1.1. Summary of the model �ts and diagnostics for Experiment 1. For illustrative pur-
poses, we present further details for Experiment 1. These include parameter estimates
and their standard errors for the models. Also, we show some residual diagnostic plots.
Similar results hold for the other experiments, so we omit them.

Fits of models without excess zeroes: In Table 4, the estimated model parameters
and their standard errors are provided for each model. In this table, all the parameter
estimates are highly signi�cant. The slope estimates for IPTG are all positive, so in-
creasing the IPTG level increases the mRNA counts. The Poisson and CMP1 models
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appear to underestimate the uncertainty in the parameter estimates relative to the NB
and CMP2. Following a referee's suggestion, we also �t the two COM-Poisson models
using a Bayesian approach: the parameter estimates were very close to the MLEs pre-
sented here, so we omit them; this is not surprising because of the rather large sample
size.

Table 4. Estimated model parameters and their standard errors given
in parenthesis of COM-Poisson with no covariates assigned to disper-
sion link function (CMP1), COM-Poisson with covariates assigned to
both link functions (CMP2), Negative Binomial (NB), and Poisson
models, respectively.

CMP1 CMP2 NB Poisson

For mean link
Intercept -3.47 (.071) -5.18 (.816) -7.23 (.121) -5.66 (.073)
IPTG .48 (.063) .74 (.098) 1.21 (.178) 0.97 (.010)

For dispersion link
Intercept -13.27 (.102)
IPTG 1.54 (.016)

Estimates of the dispersion parameters are of interest to us because they provide
useful information about the direction of the dispersion. For CMP1, ν̂ = .18; for CMP2,
ν̂ ranges from .00 to .39; and for NB, r̂ = 1.16. Thus, mRNA count data in experiment 1
is strongly overdispersed, as is also clear from Table 2. This conclusion is also supported
by using the likelihood ratio test (LRT) of H0 : ν = 1 vs. H1 : ν 6= 1. For CMP1
−2 log Λ = 2006 and the p-value < 0.001), so it is not equidispersed. The results for
CMP2 is similar.

The Poisson model performs poorly with respect to the zero counts. Its estimate of
the proportion of zero mRNA counts is 0.61, which is well below the observed proportion
(0.71). The NB more closely estimates the proportion of zeros (0.69). The CMP1 and
CMP2 also estimates the proportion of zeros (0.64 and 0.67, respectively) better than
Poisson model, but they still underestimate the observed proportion. Among all the mod-
els considered in this section, we can see that Poisson model explains the data very poorly.

Fits of zero-in�ated models: The estimated parameters and their standard errors are
provided for each zero-in�ated model in Table 5. All the parameter estimates in this table
are highly signi�cant. In all of these zero-in�ated models, IPTG is always a statistically
signi�cant variable, and provides a positive slope. On the other hand, the IPTG e�ect
on the zero component implies that zero mRNA counts are less likely as IPTG increases.
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Figure 1. Diagnostic plots for the ZICMP1 model

Table 5. Estimated model parameters (and standard errors) of zero-
in�ated COM-Poisson with no covariates assigned to dispersion link
function (ZICMP1), zero-in�ated COM-Poisson with covariates as-
signed to both link functions (ZICMP2), zero-in�ated Negative Bino-
mial (ZINB), and zero-in�ated Poisson (ZIP), respectively.

ZICMP1 ZICMP2 ZINB ZIP

Count component

For mean link
Intercept -1.15 (.062) -1.12 (.0.562) -2.34 (.181) -1.85 (.104)
IPTG .17 (.009) .15 (.006) .54 (.025) .48 (.014)

For dispersion link
Intercept -1.45 (.247)
IPTG 0.06 (.032)

Zero component

Intercept 14.34 (.677) 14.20 (.597) 13.64 (.589) 11.43 (0.375)
IPTG -2.55 (.125) -2.53 (.107) -2.42 (.104) -1.95 (.063)

We next present several diagnostic plots for ZICMP1 model. In Figure 1, we see that the
Q-Q plot of the Pearson residuals indicate an excellent �t over a wide range of quantiles.
The histogram and boxplots of the residuals appear to be symmetric around zero, and
there is no relationship between the residuals and �tted values. In short, we conclude
that the ZIMCP1 model �ts the data quite well.
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Since ν̂ = .15 in ZICMP1, ν̂ ranges from .25 to .38 in ZICMP2, and r̂ = 2.06 in NB,
mRNA count data in experiment 1 is overdispersed. The LRT to test ZICMP model
against the ZIP model (H0 : ν = 1 vs. H1 : ν 6= 1) was also highly signi�cant (p-value
< 0.001) for each of these data sets; so we conclude that data sets are not equidispersed.
We also used the LRT to compare both ZICMP2 and ZINB with ZIP for each experiment.
Once again, the LRT for these comparisons are all highly statistically signi�cant, so we
do not present the details.

In Experiment 1, all the models used in this section (ZIP, ZINB, ZICMP1, and
ZICMP2) estimate the proportion of zero mRNA counts as 0.71 which is the observed
proportion. Similar conclusions were reached for the other experiments. Thus, we see
that the zero-in�ated models estimates the proportion of zeros much closer to the ob-
served proportion than NB, Poisson, and COM-Poisson models.

3.1.2. Summary of all 20 experiments. The results of the 20 experiments are in general
consistent with the results of Experiment 1 summarized above. For COM-Poisson models,
the estimates of ν are all between 0 and 1, indicating overdispersion in all data sets.
We have the same conclusion with the NB, which is not surprising because that model
only allows for overdispersion. The zero-in�ated models yield estimated proportion of
zeroes that are closer to the observed proportions. Almost all estimates of the regression
model parameters are highly signi�cant. We also did similar model comparisons for the
experiments not included in Tables 2 or 3. Below is a brief summary of our �ndings.

• In 18 experiments, the COM-Poisson with a covariate assigned to both link
functions performs considerably better than the COM-Poisson with no covariate
assigned to dispersion link. A similar conclusion holds for the zero-in�ated case.

• In 9 experiments, the COM-Poisson with a covariate assigned to both link func-
tions performs better than the NB; in 2 experiments, their performance is similar,
with the di�erence in BIC is less than 10. Here again, the same conclusion holds
for the zero-in�ated cases of these models.

• In the majority of the experiments, the performance of COM-Poisson with with
no covariate assigned to dispersion link and its zero-in�ated version are much
poorer than the NB and ZINB, respectively.

The Poisson model performs poorly in all experiments. Also, the COM-Poisson with
a covariate assigned to both link functions performs similar to the NB. This is plausible
because COM-Poisson with small values of ν are close to a geometric distribution, a
special case of the NB.

3.2. Comparing di�erent doxycycline levels in mammalian cells. Cells from a
homogeneous population can express di�erent numbers of molecules of speci�c proteins.
Raj et al. [16] has studied these variations by counting individual molecules of mRNA
produced from a reporter gene. They considered two cell lines: E-YFP-M1-1x and E-
YFP-M1-7x, which we call gene line 1 and gene line 7, respectively. They found that
the variability across the population remained constant for all doxycycline concentration
levels for gene line 1, but that it varied non-monotonically for gene line 7.

In their experiments, they varied the doxycycline concentration levels in units of
nanograms per milliliter (ng/ml) thus: 0, 0.02, 0.04, 0.08, 0.16, 0.32. Then they mea-
sured the number of mRNA molecules per cell. There are 614 records collected from
gene-line 1 with mRNA counts ranging from 0 to 313; and there are 608 records collected
from gene-line 7 with counts from 0 to 1031. From detailed biophysical considerations,
they derived a model for the count distribution, which they then approximated by a pmf
that resembles a gamma density (2.4). Here, we compare the GLM associated with this



1345

biophysically derived pmf with the others, as in Table 2. The �ts are summarized in
Table 6.

Table 6. BIC of each model �t of COM-Poisson with no covariates
assigned to dispersion link function (CMP1), COM-Poisson with co-
variates assigned to both link functions (CMP2), Negative Binomial
(NB), biophysical model (2.4), and Poisson for mammalian cells.

CMP1 CMP2 NB (2.4) Poisson

gene line 1 5287 5284 5292 5197 16271
gene line 7 5386 5331 5006 4560 52170

combined 10680 10609 10554 9947 69561

From Table 6, it is clear that the �t of COM-Poisson improves when we introduce
in the dispersion link function; however, neither COM-Poisson or NB is as good as the
discrete gamma �t (2.4). Among all these models, the Poisson performs very poorly. We
also ran the regression models with two covariates: one for the the doxycycline levels
and the other for the two gene lines. The �ts are summarized in the last row of Table 6.
Once again, the biophysical model has the best �t among these models.

We did �nd that the mRNA counts are signi�cantly di�erent for doxycycline concen-
tration levels. However, we omit the the parameter estimates. We include this example
primarily to emphasize the importance of using a model that is derived from biophysical
considerations, which in this case outperforms the other models commonly used for count
data.

4. Discussion

Modeling biological phenomena can be complicated because there are many factors
that a�ect outcomes and that are hard to control. In the experimental data that we study
here, the variation between genes which are from the same population makes it unlikely
that a single model is best universally. Our aims in this paper are to introduce the
COM-Poisson distribution, to model zero in�ation, and to consider regression methods
on mRNA count data under di�erent experimental conditions. In particular, we show
that the use of covariates in both link functions for the COM-Poisson or ZICMP GLM
is much better than assigning no covariate to the dispersion link. We compare these
regression models with the more commonly used Poisson, ZIP, NB and ZINB GLM. For
E. coli data, we see that the ZICMP GLM is as good as the ZINB GLM. COM-Poisson
models perform much better than Poisson and as good as NB models.

In the absence of detailed biophysical knowledge, the COM-Poisson regression model
is often a good candidate for �tting over dispersed mRNA count data. And when we do
know more about the biophysics (as for the mammalian cell data), this analysis can help
to con�rm the adequacy of the approximations to probability distributions derived from
master equations. The COM-Poisson model was �rst proposed in the queueing theory
context [4]. Queueing models have also been considered for gene expression and mRNA
transcription [5]. Given the good �ts of the COM-Poisson regression model and its
variants above, we suggest that it is worthwhile to pursue this connection with queueing
theory to describe mRNA dynamics. One possible direction is to do a closer study of the
biophysical models to possibly use biophysical considerations to propose other Markov
processes that are variants of the telegraph model that may lead to better �ts to mRNA
counts.
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Appendix: A model for burstiness that leads to overdispersion.

There is a relatively simple model that connects burstiness with overdispersion. As
stated in the introduction, the two prominent models proposed for mRNA transcription
are Markovian: the Poisson and the telegraph processes [5, 8, 27]. The telegraph model
is a two-state Markov process with the two states representing the active and inactive
phases of the promoter.

For t ≥ 0, consider a two-state Markov process λ(t) with two states, 0 ≤ a < b. Here,
a (b) corresponds to the o�-state (on-state) when there is very little or no (large) mRNA
production. Next, let the counting process {Nt : t ≥ 0} be a doubly stochastic Poisson
process with random intensity λ(t). For any �nite T > 0, let

Λ(T ) =

∫ T

0

λ(t) dt

be the cumulative intensity. Then, the �rst two moments of Nt are

E[NT ] = EE[NT |Λ(T )] = E[Λ(T )]

and

var[NT ] = E(var[NT |Λ(T )]) + var(E[NT |Λ(T )]) = E[Λ(T )] + var[Λ(T )].

Because var[Λ(T )] > 0 the variance of the count is larger than the mean of the count,
and we have overdispersed counts. Moreover, the Fano factor (the ratio of the variance
to the mean) is greater than 1. For an example of a more detailed biophysical model
that leads to Fano factor greater than 1 see [13].
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