Uludag University Journal of The Faculty of Engineering, Vol. 23, No. 2, 2018 RESEARCH

DOI: 10.17482/uumfd.315108

EFFECTS OF ELASTIC SUPPORTS ON NONLINEAR
VIBRATIONS OF A SLIGHTLY CURVED BEAM

Murat SARIGUL

Received: 20.05.2017; revised: 06.04.2018; accepted: 02.07.2018

Abstract: In this study, nonlinear vibrations of a slightly curved beam having arbitrary rising function are
handled. The beam is restricted in longitudinal direction using elastic supports on both ends. Sag-to-span
ratio of the beam, which is assumed to have sinusoidal curvature function at the beginning, is taken as
1/10. Beam being of Euler-Bernoulli type rests on Winkler elastic foundation and carries an arbitrarily
placed concentrated mass. Equations of motion are obtained by using Hamilton Principle. Cubic and
quadratic nonlinear terms have been aroused at the mathematical model because of the foundation and the
beam'’s elongation. The Method of Multiple Scales (MMS), a perturbation technique, is used to solve the
equations of motion analytically. The primary resonance case is taken into account during steady-state
vibrations. The natural frequencies are obtained exactly for different control parameters such as supports'
types, locations of the masses and linear coefficient of foundation. Frequency-amplitude and frequency-
response graphs are drawn by using amplitude-phase modulation equations.
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Elastik Mesnetlerin Hafifce Egri Bir Kirisin Nonlineer Titresimlerine Etkileri

Oz: Bu ¢alismada, keyfi baslangi¢ fonksiyonuna sahip hafifce egri bir kirisin lineer olmayan titresimleri
ele alinmaktadir. Her iki ucundan elastik mesnetler kullanilarak kirig, boyuna yoniinde kisitlanmustir.
Baslangigta siniisoidal egrilik fonksiyonuna sahip oldugu varsayilan kiris icin, ulasilan egrilik
yiiksekliginin izdiisiime orant 1/10 alinmaktadir. Euler-Bernoulli tipinde olan kiris Winkler elastik zemini
iizerine oturmakta ve iizerinde keyfi olarak yerlestirilmis kiitleler tasimaktadir. Hamilton prensibi
kullanilarak hareket denklemleri elde edilmistir. Zeminden ve kiris uzamasindan dolayr matematiksel
modelde kiibik ve quadratik lineer olmayan terimler ortaya ¢ikmaktadir. Hareket denklemlerini analitik
olarak ¢dziimlemek icin bir Pertiirbasyon teknigi olan Cok Olgekli Metod(MMS) kullanilmaktadir.
Gegici-durum titresimleri siiresince baskin rezonans durumu dikkate alinmaktadir. Mesnetlerin tipleri,
kiitlelerin konumlar1 ve zeminin lineer bileseni gibi farkli mukayese parametreleri i¢in dogal frekanslar
elde edilmektedir. Genlik-faz modiilasyon denklemleri kullanmlarak frekans-genlik ve frekans-cevap
grafikleri ¢izilmistir.

Anahtar Kelimeler: Lineer olmayan titresimler, Hafif¢ce egri kiris, Elastik mesnetler, Elastik zemin.

1. INTRODUCTION

Beam structures are encountered in many different areas such as defense, aviation and the
transportation fields. Due to their intense usage, a considerable amount of text books have been
published on static and dynamic analysis of the beams [Ugural(2010); Carrera, Giunta and
Petrolo(2011); Leissa and Qatu(2011); Librescu and Song(2006); Rao(2007);
Sathyamoorthy(1997)]. Curved beams are preferred in many engineering fields for their
improved strength over the straight beam structures. Therefore, many researchers have analyzed
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the dynamic responses of the curved beams by using simple models. Matter considered in these
models, which have nonlinear behavior in means of system's response, is the case of being in
resonance. If the system comes to the resonance state, the amplitudes of vibration increase
dangerously, which is unwanted case. The models' nonlinear problems must be examined in
order to prevent these cases which may be occur in any time during vibration. Before browsing
the studies on the subject, it sounds good to mention from some research studies; Nayfeh and
Mook reviewed and presented relevant works to the field up to 1979 in their book Nonlinear
Oscillations. Considering in-plane, out-of-plane and coupled vibrations, Chidamparam and
Leissa (1993) summarized the published literature on the vibrations of curved bars, beams, rings
and arches of arbitrary shape. Focusing on the last two decades of research (1989-2012) done on
vibration analysis, Hajianmaleki and Qatu (2013) published a research paper for the static and
free vibration behaviors of the straight and curved beams. They reviewed various beam theories
such as thin (or classical), thick (or shear deformation), layerwise beam theories, and different
methods for solving equations of motion, such as the transfer matrix method and the finite
element method.

Following studies can be seen as a background to the beams in means of the beam's
curvature, any attachments to the beam and elastic/spring foundation of the beam. Rehfield
(1974) derived the equations of motion of a shallow arch with an arbitrary rise function and
studied the free vibrations. By adding the effects of transverse shear and rotary inertia, Singh
and Ali (1975) studied a moderately thick clamped beam with a sinusoidal rise function. Tien et
al.(1994) studied the dynamics of a shallow arch subjected to harmonic excitation. They
investigated the bifurcation behavior of the shallow arch system in the presence of both external
and 1:1 internal resonance. Nayfeh et al.(1999) studied to construct the nonlinear normal modes
of a fixed-fixed buckled beam about its first post-buckling mode. They used MMS in order to
investigate the internal resonances. Under the action of a moving load, Wu and Chiang(2004)
investigated the radial (in-plane) bending-vibration responses of a uniform circular arch by
means of the arch (curved beam) elements. They discussed influence of the moving speed,
centrifugal force and frictional force on the dynamic behaviors of the circular arch. Lacarbonara
et al.(2005) investigated the non-linear one-to-one interactions excited by an external primary-
resonance base acceleration of a hinged-hinged imperfect beam with a torsional spring at one
end and possessing veering between the frequencies of the lowest two modes. Lee et al.(2006)
studied a clamped-clamped curved beam subjected to the transverse sinusoidal loads. Using the
equations of motion, they determined the effect of parametric excitation near the symmetric
mode resonance frequency. Huang and Chen (2007) studied structures with multiple
attachments that were subjected to axial forces and oscillations. They examined the remaining
model with the pure buckling problem, the free vibration problem, and the general eigenvalue
problem. Ecsedi and Dluhi (2005) studied a non-homogeneous curved beam formulated in
cylindrical coordinates and examined the static and dynamic analysis of the beam. Xiuchang et
al.(2013) proposed a wave approach to investigate the wave propagation in the structural
waveguides with the curved beam components. In order to predict the out-of-plane vibration of
the horizontally curved beams in the mid- and high-frequency range, Kil et al.(2014) used the
energy flow models. Reis and lida (2014) studied on how to design elastic curved beams for
stable hopping locomotion and the control method by using an unconventional actuation. By
making use of free vibration of an elastic curved beams, a design strategy of hopping robots has
been determined. Considering three shapes of beam (circular, parabolic, and sinusoidal) and
three kinds of taper type (circular, parabolic, and sinusoidal), Lee et al.(2014) investigated the
free vibrations of horizontally curved beams. A solid regular polygon cross section has been
selected. Bayat et al.(2015) studied a laminated curved beam with the embedded
magnetostrictive layers under simply-supported boundary conditions. They examined the effects
of material properties, radius of the curvature and magnetostrictive layers on the vibration
suppression. Wang et al.(2016) investigated the in-plane vibrations of a sinusoidal phononic
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crystal curved beam. They depicted the characteristic curve for wavenumber versus frequency.
Kumar and Patel (2016) studied the internal resonances between the first symmetric and anti-
symmetric modes of the fixed-fixed curved beams. They conducted some experiments through
the direct excitation of the modes under a concentrated harmonic force excitation. Adessi et
al.(2005) studied the regime of high pre-stressed beams. They examined post-buckling
configurations of the beam considering a lumped mass that is rigidly clamped to the beam at an
arbitrary point along its span and assuming different boundary conditions. By assuming the
sinusoidal rising function, Erdogan et al. studied the nonlinear vibrations of the curved beams
carrying a concentrated mass (2009) and the multiple concentrated masses (2010). For a general
state of non-uniform initial stress, Chen and Shen (1998) derived the virtual work expressions of
the initially stressed curved beams. They investigated the influence of the arc segment angles,
elastic foundations, and initial stresses on the natural frequencies. Oz et al.(1998) examined a
simply supported slightly curved beam resting on an elastic foundation. Considering the free-
undamped and forced-damped vibrations, they analyzed the effects of elastic foundation, axial
stretching and curvature on the vibrations of the beams. Abe (2006) studied the validity of
nonlinear vibration analysis of the continuous systems with the quadratic and cubic
nonlinearities. He treated the non-linear responses of a hinged-hinged Euler-Bernoulli beam
resting on an elastic foundation. Kelly and Srinivas (2009) investigated the elastically connected
axially-loaded beams, which may be attached to a Winkler foundation. Motaghian et al.(2011)
proposed an exact solution to the free vibration problem of the beams having mixed boundary
conditions. They solved the governing differential equations of the beams having some
underlying elastic springs, which occupied a particular length of the beam. Wang et al.(2013)
studied the nonlinear interaction of an inextensional beam on an elastic foundation with a three-
to-one internal resonance. Sato et al.(2008) presented a mathematical hypothesis that a beam on
equidistant elastic supports can be considered as a beam on the elastic foundation. They
examined the relationship between them in the cases of static and free vibration. Ozkaya et
al.(2016) investigated the dynamic behavior of a slightly curved beam resting on multiple
springs. In simply supported case, the linear and nonlinear frequencies of the system were
analyzed in detail. Ozyigit et al.(2017) analyzed the free out-of-plane vibrations of the curved
beams which are symmetrically and nonsymmetrically tapered. They also investigated the out-
of-plane free vibrations of the curved uniform and tapered beams with additional mass.

Some studies considering the effects of the boundary conditions are such that; Ozkaya et
al.(1997) studied the nonlinear vibrations of a beam-mass system under the different boundary
conditions. For different boundary conditions, locations and magnitude of the masses, he
examined the effects of the mid-plane stretching on vibrations of the beam. Applying the
coupled displacement field method, Rao et al.(2006) investigated the large amplitude free
vibrations of the uniform shear flexible hinged-hinged and clamped-clamped beams. The effect
of the concentrated mass on the vibrations was investigated. Wiedemann (2007) studied the
Euler-Bernoulli beams interconnected by arbitrary joints and confined to arbitrary boundary
conditions. Then, he presented an analytical solution for natural frequencies, modes shapes and
orthogonality conditions on the system. Assuming the beam has a combination condition of
clamped, free, pinned, and sliding, Goncalves et al.(2007) presented a numerical study on the
vibration modes of the beam by means of a compact mode shape. For with various classical (or
non-classical) boundary conditions, Wu and Chen (2008) examined the free vibrations of the
beams carriying multiple sets of concentrated elements with each set consisting of a point mass,
a translational and rotational spring. For arbitrary boundary conditions, Kiani (2010) examined
the effects of slenderness ratio of the nanotube, small scale effect, initial axial load and stiffness
of the elastic matrix on the natural frequencies of the single-walled nanotubes. Using a
systematic theoretical procedure, Lin (1998) presented a static analysis of the extensional
circular-curved Timoshenko beams with general nonhomogeneous elastic boundary conditions
and found the generalized Green function of the differential equations. Lestari and
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Hanagud(2001) found some closed form exact solutions to the problem of nonlinear vibrations
of the buckled beams. They assumed their model with axial spring in spite of general supports
conditions. Ghayesh (2012) investigated the free and forced vibrations of a Kelving-Voigt
viscoelastic beam supported by a nonlinear spring. Linear and nonlinear frequencies of the
system were analyzed by considering the nonlinear spring effect. In order to investigate the
static pull-in instability of beam-type nano-electromechanical systems, Tadi Beni et al.(2011)
considered the effect of Casimir attraction and elastic boundary conditions. They utilized
through the rotational springs. Sari and Pakdemirli (2013) studied the dynamic behavior of a
slightly curved microbeam having nonideal boundary conditions. They also presented
references for the choice of resonable resonant conditions, design applications, and industrial
applications of such systems. Jin et al.(2017) studied the vibration analysis of the 2-D curved
beams with variable curvatures and general boundary conditions. They used the 2-D elasticity
theory which not requires any assumptions on the deformations and stresses along the thickness
direction. Shi et al.(2017) presented a unified method for modeling of functionally graded
carbon-nanotube-reinforced composite (FG-CNTRC) beams based on first-order shear
deformation elasticity theory. Using arbitrary boundary conditions, including various classical
boundary conditions and elastic supports, they investigated free-vibration analysis of FG-
CNTRC beams. In this work, nonlinear vibrations of curved beams restricted by elastic supports
on both ends were investigated. The elastic supports were converted to the translational and
rotational springs. The boundary conditions were idealized by means of suitable springs'
coefficients. The mathematical models of the system were derived. In order to seek analytical
solutions, the Method of Multiple Scales (MMS), a perturbation technique, was used. The
amplitude and phase modulation equations weree obtained by considering primary resonance
case. Assuming the curvature of the beam was a sinusoidal function, the numerical solutions
were obtained for the steady-state phase of the vibrations.

2. DERIVATION OF MATHEMATICAL MODEL

rot

L

Figure 1
. Curved Beam resting on elastic foundation, which was restricted at both end with elastic
supports.

In Fig.(1), a curved beam-mass system is restricted on both ends with the elastic supports. It
is assumed that the supports are made of the translational(k) and rotational(k.) springs. For the
Winkler elastic foundation, let us assume that the foundation comprises of the
springs'coefficients of linear(k;) and nonlinear(k,). wy, and u, denote the transversal and
longitudinal displacements, respectively. Assuming that ratio of the maximum amplitude of the
beam to its projected lenght L is equal 1/10, let us keep in mind that the beam’s curvature
function is of an arbitrarily arising function Y,. Additionaly, there is a concentrated mass M
attached at arbitrarily point(x=x) of the beam.
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In order to obtain the equations of motion of the system and its conditions, we use the
Hamilton Principle defined as below:

L

5 J (T-U).dt=0 )

where T is the system's kinetic energy and consists of the tranverse motion of the beam and
concentrated mass. U is the system's potential energy and consists of the stretching and bending
of the beam, the elastic foundation, the end springs.

In order to analyze the equations of motion within this system, U and T are written as
follows;

1 i A 1Y 1 ¢ ‘
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In Eqg. (2), E is the young modulus, p is the density, A is the cross sectional area of the beam,
and | is the moment of inertia of the beam cross-section with respect to the neutral axis. (') and
(") denote differentiations with respect to the time t and the spatial variable x, respectively.

For the depicted system, let us derive the mathematical models. Inserting Eq. (1) into Eq.
(2), one obtains one and double folded integrals. One folded integrals correspond to the
boundary and continuity conditions. Double folded integrals correspond to the equations of
motion. By invoking the necessary calculations, the longitudinal displacement term (u,,) could
be eliminated from the equations of motion in the tranverse direction. Finally, one obtains
following the equations of motion and the boundary and continuity conditions as follows:

X X4

p AW +ETWY  +k, W, +K, -erm:E- I{YJ .wl'+1.wl'2}.dx+ I {Yo’ W) +l.w;2}.dx (Yg+wr )

L 3 2 5, 2
m 1 ” 1 ’ " 2 " 2 !

(E. Ly +k 'Wl]x:o =0, (E.I w—k& 'WlLo =0, (E.I Wy —k? w, ]X:L =0, (E.l Wy +k? .WZ]X:L =0

"

Wllx:xS :W2|x:x5 ! Wl’|x:xs :Wélx:xs ’ Wl”l X=Xg :Wg X=Xs ' (E'I w—El W;"X X=X =M 'Wl|x:xS (3-4)

where x, =0 and x,,,=L, m=01..s.

S+1

The equations of the motion and the conditions were dependent on the size of the system
and the materials used. In order to make them independent from the dimensional parameters, the
following definitions must be made:

~ W » Yo . X » 1 |EI 2 X
W=—, Y, =, X=—, t=——m. —.t, |=r .A, :—S, :O, =n, :11
ro 0T L L2 \} p.A 7 L o = e
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-V kel kLl o kPl o kel o
AL WEED VTEA AT Remg ! 12 (5)

where r is the radius of gyration of the beam’s cross section,« is the mass ratio between the
concentrated mass and the beam's mass, # is the dimensionless distance of the mass from left
hand-side support, y; and y, are the dimensionless linear and nonlinear coefficients of the elastic
foundation, & and x are the dimensionless translational and rotational springs'coefficients,
respectively.

Making necessary simplifications after non-dimensionalization, the equations of motion via
the boundary and continuity conditions can be rewritten as follows:

1 77r+1 1
~ Y ~ roag "
Wm+1 +Wm+1 +yl 'Wm+1 +y2 m+l _Z J‘ {Y W E r+1 } dX (Y +Wm+1)

r=0 n,
A T B R IR S (A
Ulgoy =2 g, M 1o, T2 fon, T s, T2 (sey, 1 2 Ny, P
& oWl Zo (W k@ -0 (W +c@w | =
(Wl + Ky Wl] =0, (Wl — Ky Wy JH =0, (W2 —Ky .WZJ)H—O, (W2 + Kol Wzl . =0 (6)

3. ANALYTICAL SOLUTIONS

In order to search approximate solutions to the problem, the method of multiple scales
(MMS)[Nayfeh (1973), (1981)] will be applied to the partial differential equations and the
corresponding boundary conditions directly. First of all, the sign of dimensionless (*) must be
removed so that the equations and conditions come into a view easily understand. Adding
dimensionless damping u and external forcing F.cos(Q.t), where £ is excitation frequency, one
has following equation;

1 Mri1
Wiy +Wen'og 91 Wy +7, -Wgnl +2 MW, :z I {Y W+ ; Wi } dx (Y wr )+ F .COS(.Q.'[) (7)

r=0 m

Eqg. (7) is assumed to have an expansion solution as follows:

3

w, (x.t;e)= ZS j Wi (XTo Ty To). (8)

j=L
where ¢ is a small bookkeeping parameter artificially inserted into the equations, Tgp=t is the fast
time scale, and T1=e.z and Tp=¢".t are the slow time scales in MMS,

Derivatives with respect to time are defined as D,=0/0T,, and written as:
2

d d
<= +£.D;+6%.Dy+..., d_22002+2.g.D0 D, +¢%.(D,*+2.D,.D,)+... 9)
t

In this analysis, the beam's curvature function is assumed as Yg=~0(1). In order to counter the

effects of the nonlinear terms via the same order of damping and forcing, the forcing and
damping terms are reordered as follows:

260



Uludag University Journal of The Faculty of Engineering, Vol. 23, No. 2, 2018

u=e° 1 Fou =* .IEp+1 (10)

Inserting Egs. (8-10) into Eq. (7) and separating the terms of each order, one finds the following
equations:

Order &'
1 raa
2 v ror ”
Do Wiy + Wim-ap +Y1-W(m-ap = Z IYo-W(r+1)1-dX AN (11)
r=0 un
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r=0 77 r=0 77 r=0 77
r r r
1 Mra 1 M 13
Z IW(r+1)1 AX (o, gy + Z IY Wi gy AX - Wi )0 (13)
r=0 77[’ r=0 ’7I’

One requires some conditions for solving the Egs. (11) to (13). They are given for j=1, 2, 3 as
below:

&) - " @ - 2) - @ -
(W11+Ktr W1]1 =0, (wlj—zcmt.wquzo_o, (WZJ_Ktr WZJ] =0, (sz-i-l(mt szLl_O,
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=W21 -

’ W]_J
n

(W —wj; L” =at (D wy+2.D5 Dy Wy 4y +(DF +2.05.D; Jwy 5|

Eq. (11) from order €' corresponds to the linear problem of the system and other orders in
Egs.(12) and (13) to the nonlinear problem. These cases are investigated seperately while
solving these equations. Let us assume that the linear problem accepts the following solution:

W m+1)1 X.ToT, [A gm0 +cclYm+l(x) (15)
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In Eq. (15), w is the natural frequency, cc is the complex conjugate of the preceding terms, and
Ym+1 i the function describing the mode shape. By inserting Eg. (15) into Egs. (11) and (14)
while taking as j=1, one obtains the following differential equations and corresponding
conditions:

1 Trs1
YlV

" _ 4/ 2
i1~ B Yma = Z J.YO r+1- dx 'YO’ B=yo"—n
r=0 m

(e y) =0, (@] =0, (-x®Y,] =0, (+xy;] =0

1|

Y

=Ys|,.» Wil =Yal,., (Yl—Y2+a.a) .Y1] =0 (16)

Y. |
1
X=17,

X=n :Y2|x:77 ! X=n
To be able to find the solutions at the order ¢* of the perturbation series, an assumption of
A=A(T,) must be provided. This means that there is no dependence of this order on T;. By

inserting Eq. (15) into Eq. (12), the following solution is suitable at this order:
Wimi1)2 = [Az .Ez'i'w'TO + CC].¢(m+1)1<X)+ 2.A. K-¢(m+1)2 (X) (17)

Substituting Eq.(17) into both Eqg.(12) and (14) while keeping in mind that j=2, yields the
following equations and conditions:

1 Trs1 1 M 1 M
¢(l'¥1+1)1_r4'¢(m+1)1_ Z j.YO,'¢(r+1)1'dX Yy = Z J‘Yr’fl dx .Y, + Z IYO ro - OX P Y
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%y X=1 =g x=n' #g X: =g x=1 By xen (9=1,2)
-+ 400 ¢M] =0;  (g7D), - ¢%),_, =0 (@=2) (18)

where 7 and  are defined as follows:

= 4\/4-0’2 —h, w= \/Z (19)

By substituting Egs. (15) and (17) into both Egs. (13) and (14) while keeping in mind j=3, the
solutions at the last order of the perturbation series are assumed in the following form;

Wim-+1)3 (X To T, ) = (Pm+1(x P )-ei'wATO +Wm+1(x T )+ cc (20)

where Wp.1(X,T,) corresponds to the solutions for the non-secular terms, and cc is referred to the
complex conjugate of the preceding terms.
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By means of a detuning parameter ¢ showing closeness of the natural frequency to the
external excitation frequency, one take the excitation frequency as below:

Q=w+e.0 (21)

By inserting Egs. (20) and (21) into Egs. (13) and (14), taking in mind j=3, and eliminating the
secular terms, one obtains the following differential equations and conditions:

1 M1 ~
i A F :
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+A Al: 3V2 m+1 + Z J.Yr+1 dX+Z J-YO'¢(lr+l)1‘dX+2'z J.Y0'¢(,r+1)2 dX 'Ym+1
r=0 7, r=0 un r=0 ,
1 77r+l 1 77r+1 1 77r+1
+z _[Yo Y/ X <¢ m+l)l+2 ¢ m+1)2 Z er+1 ¢(r+1)1 dx+2. Z J.le ¢(r+1)2 X £Yy
r=0 n r=0 n r=0 n
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In order to have a solution for this nonhomogenous equation, that is Eq.(22), a
solvability condition must be satisfied (see details in Refs. Nayfeh (1973), (1981)). Applying
the solvability conditions for Eq. (22), one obtains following equations:

1 M1 'UTz My
2iaoAY,| =-2io(AruA)Y J'Yr+l ax+E I F/L Y, dx+ A2 AA (23)
X:
r=0 7, r=0 n,

where the term A is defined in the following simplification;
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1 Tra 1 T 1 T
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7y Ty

The solvability condition for Eq.(23) can be written in the simplest form as;

o.T

2iw(fi. A+ Ak AA? ./K:%.e" 2 (25)

where following assumption and definitions have been done;
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1 Tra 1 Tra1
2 IYril dx=l f=), I Fla¥ladx, k=l+aY?| - (26)
r=0 n, r=0 1,

Table 1. First five frequencies for different 5 values and boundary conditions(a =1; y;=10)

Support Status n w1 w> w3 w4 ws

0.1 | 23.1680 | 53.9122 | 89.8957 |151.9954 | 243.1009
0.2 | 19.2681 | 41.1794 | 93.3816 | 177.8843|290.2148
Fixed - Fixed 0.3 | 15.1251 | 44.5907 |112.6047 | 195.5009 | 254.3961
0.4 | 13.0624 | 53.7090 | 114.6737|167.6918 | 297.2954
0.5 | 12,4611 | 61.7538 | 95.9110 | 199.8845 | 253.7448
0.1 | 11.3480 | 30.0731 | 66.1445 | 127.2535 | 213.3666
0.2 | 9.3262 | 27.3386 | 73.5943 | 149.4332 | 246.7603
Simple - Simple | 0.3 | 8.0173 | 30.1287 | 86.7908 |143.2702 | 209.4037
0.4 | 7.3696 | 35.4771 | 80.0713 |132.7141 | 246.7604
0.5 | 7.1759 | 39.6049 | 68.0582 | 157.9453 | 206.8256
0.1 | 7.6883 | 34.8236 | 83.6314 | 155.4432 | 246.7604
0.2 | 8.1917 | 39.0212 | 85.7896 |130.1341|211.7512
Slide - Slide 0.3 | 8.9790 | 38.2560 | 68.2106 |141.5396 | 246.7604
0.4 | 9.8897 | 30.6979 | 76.2983 | 154.2519 | 207.5597
0.5 | 10.3638 | 27.5815 | 88.8827 | 127.7736 | 246.7604
0.1 | 16.9934 | 45.6683 | 79.3775 | 133.5016 | 217.8755
0.3 | 12.5730 | 33.2960 | 92.3016 |178.1188 | 234.6121
Fixed - Simple | 0.5 | 9.6613 | 47.3951 | 84.8363 | 172.7774|236.1612
0.7 | 9.8902 | 41.5105 |104.1212|153.4841 | 237.9464
0.9 | 14.6967 | 37.2315 | 78.9924 |146.4840 | 238.6910
0.1 | 6.5371 | 29.9657 | 62.0504 |102.3515 | 172.2847
0.3 | 6.1365 | 18.9717 | 58.1058 |134.4783 | 208.7653
Fixed - Slide 0.5 | 4.9853 | 21.1236 | 71.6700 |115.2555|216.3558
0.7 | 3.9972 | 30.8668 | 58.2935 |118.8226 | 220.5116
0.9 | 3.4641 | 26.4638 | 69.1366 | 135.4792 | 222.4510
0.1 | 4.8464 | 18.8487 | 45.4439 | 93.4789 | 167.2645
0.3 | 4.2425 | 14.3552 | 54.7628 | 120.1071 | 166.6047
Simple - Slide 0.5 | 3.5620 | 18.2264 | 53.0809 |107.6990 | 181.7691
0.7 | 3.0557 | 22.9572 | 50.9188 | 98.7196 |193.1136
0.9 | 2.7610 | 19.2220 | 56.1067 | 116.8304 | 199.0220

The polar forms are written as follows:
AT)=tae? AT)-lae g-0fT) 27)

where the complex amplitude A consists of the real amplitude a and phase 6. Inserting Eq. (27)
into Eq.(26), and separating the real and imaginary parts, one obtains following amplitude-phase
modulation equations:

ou .a+a).k.a:%.siny, —w.k.a.é+§.a3:%.cosy ,y=01,-0 (28)

264



Uludag University Journal of The Faculty of Engineering, Vol. 23, No. 2, 2018

where y denotes the phase between forcing and responce of the system.

Table 2. Nonlinearity values()) for different #, y, and boundary conditions(a =1; y;=10)

Support Status n | v2=0 | v.=10 | v,=50 | y,=100

0.1| 0.8833 | 1.1684 | 2.3088 | 3.7343
0.2| 0.5610 | 0.7732 | 1.6221 | 2.6832
Fixed-Fixed 0.3| 0.5520 | 0.7227 | 1.4057 | 2.2595
0.4| 0.5256 | 0.6857 | 1.3260 | 2.1263
0.5] 0.5168 | 0.6747 | 1.3062 | 2.0956
0.1|-0.8102 | -0.4131 | 1.1756 | 3.1615
0.2 |-0.7744 | -0.4608 | 0.7933 | 2.3610
Simple-Simple 0.3|-0.7510 | -0.4746 | 0.6312 | 2.0133
0.4 |-0.7641 | -0.5005 | 0.5539 | 1.8720
0.5|-0.7730 | -0.5125 | 0.5297 | 1.8324
0.1| 0.7490 | 1.5679 | 4.8437 | 8.9385
0.2| 0.9508 | 1.7303 | 4.8481 | 8.7454
Slide - Slide 0.3| 1.2474 | 1.9540 | 4.7804 | 8.3134
0.4 1.5819 | 2.1876 | 4.6104 | 7.6389
0.5] 1.6825 | 2.1993 | 4.2665 | 6.8506
0.1| 0.6728 | 1.0372 | 2.4948 | 4.3168
0.3| 0.3182 | 0.5582 | 1.5181 | 2.7180
Fixed-Simple 0.5| 0.3312 | 0.5382 | 1.3664 | 2.4016
0.7| 0.4114 | 0.6221 | 1.4649 | 2.5184
0.9 0.6037 | 0.9083 | 2.1268 | 3.6499
0.1| 0.2032 | 1.2640 | 5.5075 |10.8118
0.3| 0.1780 | 1.1145 | 4.8602 | 9.5424
Fixed- Slide 0.5| 0.1325 | 0.8616 | 3.7781 | 7.4237
0.7| 0.1089 | 0.7487 | 3.3079 | 6.5068
0.9 0.1072 | 0.6979 | 3.0610 | 6.0147
0.1|-0.1263 | 0.9857 | 5.4334 |10.9931
0.3]-0.3962 | 0.4844 | 4.0067 | 8.4096
Simple- Slide 0.5|-0.8222 | -0.0623 | 2.9770 | 6.7762
0.7{-1.0980 | -0.3776 | 2.5041 | 6.1063
0.9]-1.1666 | -0.4704 | 1.9129 | 5.5278

In undamped free vibrations, the terms f, z, and o were taken as zero. For the steady-state

solutions, it is assumed that a=0. This indicates that the amplitude of vibration is constant, that
is a=a, . In this case, the following definition can be derived from Eq. (28)

. 2 A
0:/1.a0 s //’u:m (29)

where 1 is defined as nonlinearity effects and gives corrections from the natural frequencies to
the nonlinear frequencies. Thus, the nonlinear frequency is defined as:

wn|:w+9=w+ﬂ.a02 : (30)
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In damped-forced vibrations for the steady-state region, & andy can be taken as zero and denote

no change in amplitude and phase with time. Thus, eliminating y from Eq. (28), one can obtain
following detuning parameter (o).

0'2/1.3.02 i\/(ﬁJ —[%j . (31)

4. NUMERICAL RESULTS

In order to find the approximate solutions to the mathematical model, the rise function of
the curved beam are assumed to have sinusoidal variation as Yy=sin(w.x). The limit values for
the translational and rotational springs' coefficients can be kept as zero or infinity in the
calculations. For example, some supporting cases are arranged as fixed support; ky—>o0, Kyr—>0,
simply support; ky—>0, K—0, sliding support; ky—0, K—>c0. Thus, the nonlinear problem
arising from supports can be taken into consideration. For this purpose, Eg. (16), which
corresponds to the linear part of the problem, was solved first. Then, nonlinearity coefficients
(A) were obtained by using Eq. (29).

In order to reach a good conclusion on the supporting, two cases have been presented
symmetric and asymmetric in means of geometric constraints. For obtaining the case of
symmetric supporting, the beam's both ends are restricted with the same supports, that is, fixed-
fixed, simple-simple, slide-slide. Because of having similar properties according to its middle
point throughout beam length, the mass positionings () are regarded as 0.1, 0.2, 0.3, 0.4, 0.5.
On the other hand, the cases of asymmetrical supportings are fixed-simple, fixed-slide, simple-
slide. Thus, mass locations () are regarded as 0.1, 0.3, 0.5, 0.7, 0.9 from left hand support to
the right. Additionally, the dimensionless mass ratio and the linear coefficient of elastic
foundation are selected as a=1 and y,=10, respectively. For the different mass positions (1) and
the supporting cases in every configurations, the first five natural frequencies are given in Table
1. The first mode frequencies seems to decrease with increasing # that is, positioning the mass
close to the beam's mid points instead of end points. However, for the supporting case of slide-
slide, the frequencies seem to increase with increasing . For the non-symmetric supporting
cases, the mass is arbitrarily positioned from left hand side end to right throughout the beam
length. In the supporting cases of fixed-slide and simple-slide, the first mode frequencies
decrease with increasing #. These frequencies first decrease and then increase while #s increase
for the case of fixed-simple supporting.

Nonlinearities (1) of the first mode in the cases of nonlinear foundation coefficients are
given in Table 2. As seen on these tables for all the fixed parameters, the nonlinearities have
positive and negative signs according to the locations of the mass and the supporting cases. If
so, by means of these parameters, the hardening or softening behaviors of the system may
occur. The nonlinearities (1) seem to increase with increasing y,. If the mass locations are
replaced from the left simple(or fixed) support to the right slide support, the nonlinearities
decrease. But the nonlinearities firstly decrease and then increase for the case of fixed-simple.

Undamped-free vibration behavior of the system is best seen in the nonlinear frequency-
amplitude curves. The nonlinear frequencies have a parabolic relationship with the maximum
amplitude of the vibration as given in Eq. (30). These relations are drawn using curves for the
first mode of vibrations in Figs. (2) to (5). The effects of elastic supports and masses' locations
to the vibrations are determined through these curves. While doing so, some system parameters
are fixed as =1, y;=10 and y,=10.
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Figure 2.
Nonlinear frequency-amplitude curves for symmetric supporting cases.

3

In Fig. (2), the nonlinear frequency-amplitude curves are drawn for the beams restricted
symmetrically. By placing the mass in different locations from the support of left hand side to
the beam's middle point, the effects of masses'locations on the nonlinear frequency-amplitude
curves are drawn. For the fixed-fixed and simple-simple supporting cases, the increasing in #
results in a system of lower linear frequencies. Additionally, it is seen that the frequencies
become much more close to each other with the increasing #. In the case of slide-slide
supporting, the increasing in # results in the higher linear frequencies. As seen from the fixed-
fixed and slide-slide supporting cases, the nonlinear frequencies increase with amplitude for all
the configurations of the mass's location. However, the nonlinear frequencies decrease for the
case of simple-simple supporting.

For the curved beams restricted asymmetrically, the nonlinear frequency-amplitude curves
are drawn in Fig. (3). In the case of fixed-simple supporting, the nonlinear frequencies increase
with increasing amplitude for each curves. Replacing the mass in the beam's middle point, the
smallest frequencies can be obtained. Furthermore, higher natural frequencies are obtained in
the case of mass being placed in neighborhood of the beam's fixed end instead of the simple
supported end. The more close the mass to the slide support is, the smallest values of
frequencies can be obtained for the fixed-slide supporting case. For the case of simple-slide
supporting, the frequencies increase with the increasing amplitudes in #’s 0.1, 0.3 values and
decreases in #’s 0.5, 0.7, 0.9 values.
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Nonlinear frequency-amplitude curves for asymmetric supporting cases.
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Figure 4.
Nonlinear frequency-amplitude curves for different boundary conditions (a=1, y1=10, y,=10, n
=0.5).
(1-Fixed-Fixed, 11-Simple-Simple, I11-Slide-Slide, 1V- Fixed-Simple, V- Fixed-Slide, VI- Simple-
Slide).
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By taking as #=0.5, the nonlinear frequency-amplitude curves for the different supporting
cases; fixed-fixed(l), simple-simple(ll), slide-slide(lIl), fixed-simple(IV), fixed-slide(V),
simple-slide(V1) are plotted in Fig.4. As seen in these curves, the frequencies corresponding to
the cases of I, Ill, IV and V increase as the amplitudes increase. However, the frequencies
corresponding to the cases of Il and VI decrease. Also, the highest values of the frequencies are
observed in case of | and the smallest in case of VI.

Considering the case where there is damping and external excitation, the nonlinear vibration
behavior of the system can be understood via forcing frequency-response curves. When f=1 and
£ =0.2, some curves in Figs. (5) to (7) are drawn by means of Eq.(31). In these figures, only

first modes of the tranverse vibrations are dealed. Some parameters of the system are fixed as
7,=10, y,=10, o=1 for the detailed investigations to be done on the supports. By assigning
different values of the springs, the symmetrical and asymmetrical cases are obtained.

fixed-fixed simple-simple
0.35 v

03f
0.25}

02}
ap 0o 015;

0.1

0.05

-8.5 —O.éS 0 0.r25 0.5 —8.5 -O.éS 0 O.r25 0.5
o . .
slide-slide

Qo

0.05

-8.5 -0.25 0 0.25 0.5
O

Figure 5.
Forcing frequency-response curves for symmetric supporting cases.

The effects of these cases on the curves are investigated in the figures. The cases of
symmetric supporting are taken into account in Fig. (5). In these graphs, different masses'
locations have been considered for the comparison. As seen in the curves of the fixed-fixed and
simple-simple supporting cases, the maximum amplitudes of the vibrations increase with
increasing #; in other means, one obtains the maximum amplitudes for this mass configuration
taking place in the beam's middle point of instead of its ends. For the case of slide-slide
supporting, the maximum amplitudes decrease with the increasing #.
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Figure 6.
Forcing frequency-response curves for asymmetric supporting cases.
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Figure 7.

Forcing frequency-response curves for different boundary conditions at o=1, y1=10,y,=10, 5

=0.5.

The cases of asymmetric supporting are taken into account in Fig. (6). In these graphs,
closeness of the mass to the supports have been considered. As seen in the case of fixed-simple
supporting, the amplitudes are more higher while being in close to the fixed support than the
case of simple supporting. As of the fixed-slide supporting case, the maximum amplitudes
increase and the jumping regions expand with the increasing #». For the case of simple-slide
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supporting, somethings seem to happen in the unsimilar way as # increase. A transition occurs
from the hardening behavior to softening one. The maximum amplitudes increase as # increase.

By taking as n =0.5, the forcing frequency-response curves are plotted in Fig. (7). The
supporting cases have been considered as fixed-fixed(l), simple-simple(ll), slide-slide(lll),
fixed-simple(1V), fixed-slide(V), simple-slide(V1). In these curves, the maximum amplitudes
can be ranked from the smallest ones to the big ones as; fixed-fixed(l), slide-slide(ll), fixed-
simple(1V), simple-simple(ll), fixed-slide(V), simple-slide(VI). The softening behaviors are
seen for the cases of Il and V1.

5. CONCLUSIONS

In this study, nonlinear vibrations of a curved beam restricted by elastic supports on both
ends are investigated. Beam carrying one concentrated mass rests on Winkler elastic foundation.
The beam's ends are immovable at horizontal direction. Elastic supports have been changed to
linear springs by using suitable parameters. To solve the equations of motion, the method of
multiple scales is used. For the solutions being thought as perturbation series, first order of the
solutions is defined as a linear problem. Assumption of the beam's curvature being occured at
the series' first orders has been done in analytical solutions. For numerical analysis, the rise
function of the beam has been accepted as sinusoidal type. In numerical calculations, some
parameters are fixed such as; the dimensionless mass ratio is a=1, the dimensionless
coefficients of the linear and nonlinear elastic foundation are y;=10 , v,=10, respectively.

Natural frequencies are obtained for the different supporting cases as well as the masses'
locations. For every mass positioning #, only one result is calculated. For the symmetric
supporting cases such as fixed-fixed and simple-simple, the mass is replaced at different
locations between the beam's mid and end points. The first mode frequencies seems to decrease
with increasing 7 that is, positioning the mass close to the beam's mid points instead of its end
points. However, for the supporting case of slide-slide, frequencies seem to increase with
increasing #. For the non-symmetric supporting cases, the mass is arbitrarily positioned from
left hand side end to right throughout the beam length. In the supporting cases of fixed-slide and
simple-slide, the first mode frequencies decrease with increasing . For the supporting case of
fixed-simple, these frequencies first decrease with increasing #, and then increase. In the case of
primary resonance, the nonlinearity effects of the curved beam-mass system have both positive
and negative signs. Adjusting the springs' magnitude and types restricting the beam, one can
make the system to have softening behavior. For different supporting cases and locations of the
mass, the nonlinear frequencies-amplitude curves and the forcing frequency-response curves are
drawn for comparisons. From the frequencies-amplitude curves, one can conclude that both the
slide and fixed supporting cases have some raising effects on the nonlinear frequencies; while
the simple supporting cases tend to reduce the frequencies. Also, for mass positionings at
regions close to the slide supports, lower frequencies occurs. From the forcing frequency-
response curves, it is seen that the simple supports have softening behavior while the slides have
hardening behavior. The fixed supports have neither hardening behavior nor softening. For mass
positioning at regions close to the slide supports, the maximum amplitudes tend to increase with
increasing detuning parameter. If the mass is positioned at close regions to the beam's mid point
instead of its end points, the maximum amplitudes tend to increase with increasing detuning
parameter for the cases of simple and fixed supportings.

In future, new studies on the cases of internal resonance will contribute further distinctions
to the current studies. By means of an adjustment in the translational and rotational springs'
coefficients, possible internal resonances may be analyzed.
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