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Abstract: In this study, nonlinear vibrations of a slightly curved beam having arbitrary rising function are 

handled. The beam is restricted in longitudinal direction using elastic supports on both ends. Sag-to-span 

ratio of the beam, which is assumed to have sinusoidal curvature function at the beginning, is taken as 

1/10. Beam being of Euler-Bernoulli type rests on Winkler elastic foundation and carries an arbitrarily 

placed concentrated mass. Equations of motion are obtained by using Hamilton Principle. Cubic and 

quadratic nonlinear terms have been aroused at the mathematical model because of the foundation and the 

beam's elongation. The Method of Multiple Scales (MMS), a perturbation technique, is used to solve the 

equations of motion analytically. The primary resonance case is taken into account during steady-state 

vibrations. The natural frequencies are obtained exactly for different control parameters such as supports' 

types, locations of the masses and linear coefficient of foundation. Frequency-amplitude and frequency-

response graphs are drawn by using amplitude-phase modulation equations. 

 

Keywords: Nonlinear vibrations, Slightly curved beam, Elastic supports, Elastic foundation. 

 

Elastik Mesnetlerin Hafifçe Eğri Bir Kirişin Nonlineer Titreşimlerine Etkileri 

 

Öz: Bu çalışmada, keyfi başlangıç fonksiyonuna sahip hafifçe eğri bir kirişin lineer olmayan titreşimleri 

ele alınmaktadır. Her iki ucundan elastik mesnetler kullanılarak kiriş, boyuna yönünde kısıtlanmıştır. 

Başlangıçta sinüsoidal eğrilik fonksiyonuna sahip olduğu varsayılan kiriş için, ulaşılan eğrilik 

yüksekliğinin izdüşüme oranı 1/10 alınmaktadır. Euler-Bernoulli tipinde olan kiriş Winkler elastik zemini 

üzerine oturmakta ve üzerinde keyfi olarak yerleştirilmiş kütleler taşımaktadır. Hamilton prensibi 

kullanılarak hareket denklemleri elde edilmiştir. Zeminden ve kiriş uzamasından dolayı matematiksel 

modelde kübik ve quadratik lineer olmayan terimler ortaya çıkmaktadır. Hareket denklemlerini analitik 

olarak çözümlemek için bir Pertürbasyon tekniği olan Çok Ölçekli Metod(MMS) kullanılmaktadır. 

Geçici-durum titreşimleri süresince baskın rezonans durumu dikkate alınmaktadır. Mesnetlerin tipleri, 

kütlelerin konumları ve zeminin lineer bileşeni gibi farklı mukayese parametreleri için doğal frekanslar 

elde edilmektedir. Genlik-faz modülasyon denklemleri kullanılarak frekans-genlik ve frekans-cevap 

grafikleri çizilmiştir.  

 

Anahtar Kelimeler: Lineer olmayan titreşimler, Hafifçe eğri kiriş, Elastik mesnetler, Elastik zemin. 
 

1. INTRODUCTİON 

Beam structures are encountered in many different areas such as defense, aviation and the 

transportation fields. Due to their intense usage, a considerable amount of text books have been 

published on static and dynamic analysis of the beams [Ugural(2010); Carrera, Giunta and 

Petrolo(2011); Leissa and Qatu(2011); Librescu and Song(2006); Rao(2007); 

Sathyamoorthy(1997)]. Curved beams are preferred in many engineering fields for their 

improved strength over the straight beam structures. Therefore, many researchers have analyzed 
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the dynamic responses of the curved beams by using simple models. Matter considered in these 

models, which have nonlinear behavior in means of system's response, is the case of being in 

resonance. If the system comes to the resonance state, the amplitudes of vibration increase 

dangerously, which is unwanted case. The models' nonlinear problems must be examined in 

order to prevent these cases which may be occur in any time during vibration. Before browsing 

the studies on the subject, it sounds good to mention from some research studies; Nayfeh and 

Mook reviewed and presented relevant works to the field up to 1979 in their book Nonlinear 

Oscillations. Considering in-plane, out-of-plane and coupled vibrations, Chidamparam and 

Leissa (1993) summarized the published literature on the vibrations of curved bars, beams, rings 

and arches of arbitrary shape. Focusing on the last two decades of research (1989-2012) done on 

vibration analysis, Hajianmaleki and Qatu (2013) published a research paper for the static and 

free vibration behaviors of the straight and curved beams. They reviewed various beam theories 

such as thin (or classical), thick (or shear deformation), layerwise beam theories, and different 

methods for solving equations of motion, such as the transfer matrix method and the finite 

element method.  

Following studies can be seen as a background to the beams in means of the beam's 

curvature, any attachments to the beam and elastic/spring foundation of the beam. Rehfield 

(1974) derived the equations of motion of a shallow arch with an arbitrary rise function and 

studied the free vibrations. By adding the effects of transverse shear and rotary inertia, Singh 

and Ali (1975) studied a moderately thick clamped beam with a sinusoidal rise function. Tien et 

al.(1994) studied the dynamics of a shallow arch subjected to harmonic excitation. They 

investigated the bifurcation behavior of the shallow arch system in the presence of both external 

and 1:1 internal resonance. Nayfeh et al.(1999) studied to construct the nonlinear normal modes 

of a fixed-fixed buckled beam about its first post-buckling mode. They used MMS in order to 

investigate the internal resonances. Under the action of a moving load, Wu and Chiang(2004) 

investigated the radial (in-plane) bending-vibration responses of a uniform circular arch by 

means of the arch (curved beam) elements. They discussed influence of the moving speed, 

centrifugal force and frictional force on the dynamic behaviors of the circular arch. Lacarbonara 

et al.(2005) investigated the non-linear one-to-one interactions excited by an external primary-

resonance base acceleration of a hinged-hinged imperfect beam with a torsional spring at one 

end and possessing veering between the frequencies of the lowest two modes. Lee et al.(2006) 

studied a clamped-clamped curved beam subjected to the transverse sinusoidal loads. Using the 

equations of motion, they determined the effect of parametric excitation near the symmetric 

mode resonance frequency. Huang and Chen (2007) studied structures with multiple 

attachments that were subjected to axial forces and oscillations. They examined the remaining 

model with the pure buckling problem, the free vibration problem, and the general eigenvalue 

problem. Ecsedi and Dluhi (2005) studied a non-homogeneous curved beam formulated in 

cylindrical coordinates and examined the static and dynamic analysis of the beam. Xiuchang et 

al.(2013) proposed a wave approach to investigate the wave propagation in the structural 

waveguides with the curved beam components. In order to predict the out-of-plane vibration of 

the horizontally curved beams in the mid- and high-frequency range, Kil et al.(2014) used the 

energy flow models. Reis and Iida (2014) studied on how to design elastic curved beams for 

stable hopping locomotion and the control method by using an unconventional actuation. By 

making use of free vibration of an elastic curved beams, a design strategy of hopping robots has 

been determined. Considering three shapes of beam (circular, parabolic, and sinusoidal) and 

three kinds of taper type (circular, parabolic, and sinusoidal), Lee et al.(2014) investigated the 

free vibrations of horizontally curved beams. A solid regular polygon cross section has been 

selected. Bayat et al.(2015) studied a laminated curved beam with the embedded 

magnetostrictive layers under simply-supported boundary conditions. They examined the effects 

of material properties, radius of the curvature and magnetostrictive layers on the vibration 

suppression. Wang et al.(2016) investigated the in-plane vibrations of a sinusoidal phononic 
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crystal curved beam. They depicted the characteristic curve for wavenumber versus frequency. 

Kumar and Patel (2016) studied the internal resonances between the first symmetric and anti-

symmetric modes of the fixed-fixed curved beams. They conducted some experiments through 

the direct excitation of the modes under a concentrated harmonic force excitation. Adessi et 

al.(2005) studied the regime of high pre-stressed beams. They examined post-buckling 

configurations of the beam considering a lumped mass that is rigidly clamped to the beam at an 

arbitrary point along its span and assuming different boundary conditions. By assuming the 

sinusoidal rising function, Erdogan et al. studied the nonlinear vibrations of the curved beams 

carrying a concentrated mass (2009) and the multiple concentrated masses (2010). For a general 

state of non-uniform initial stress, Chen and Shen (1998) derived the virtual work expressions of 

the initially stressed curved beams. They investigated the influence of the arc segment angles, 

elastic foundations, and initial stresses on the natural frequencies. Oz et al.(1998) examined a 

simply supported slightly curved beam resting on an elastic foundation. Considering the free-

undamped and forced-damped vibrations, they analyzed the effects of elastic foundation, axial 

stretching and curvature on the vibrations of the beams. Abe (2006) studied the validity of 

nonlinear vibration analysis of the continuous systems with the quadratic and cubic 

nonlinearities. He treated the non-linear responses of a hinged-hinged Euler-Bernoulli beam 

resting on an elastic foundation. Kelly and Srinivas (2009) investigated the elastically connected 

axially-loaded beams, which may be attached to a Winkler foundation. Motaghian et al.(2011) 

proposed an exact solution to the free vibration problem of the beams having mixed boundary 

conditions. They solved the governing differential equations of the beams having some 

underlying elastic springs, which occupied a particular length of the beam. Wang et al.(2013) 

studied the nonlinear interaction of an inextensional beam on an elastic foundation with a three-

to-one internal resonance. Sato et al.(2008) presented a mathematical hypothesis that a beam on 

equidistant elastic supports can be considered as a beam on the elastic foundation. They 

examined the relationship between them in the cases of static and free vibration. Ozkaya et 

al.(2016) investigated the dynamic behavior of a slightly curved beam resting on multiple 

springs. In simply supported case, the linear and nonlinear frequencies of the system were 

analyzed in detail. Ozyigit et al.(2017) analyzed the free out-of-plane vibrations of the curved 

beams which are symmetrically and nonsymmetrically tapered. They also investigated the out-

of-plane free vibrations of the curved uniform and tapered beams with additional mass. 

Some studies considering the effects of the boundary conditions are such that; Ozkaya et 

al.(1997) studied the nonlinear vibrations of a beam-mass system under the different boundary 

conditions. For different boundary conditions, locations and magnitude of the masses, he 

examined the effects of the mid-plane stretching on vibrations of the beam. Applying the 

coupled displacement field method, Rao et al.(2006) investigated the large amplitude free 

vibrations of the uniform shear flexible hinged-hinged and clamped-clamped beams. The effect 

of the concentrated mass on the vibrations was investigated. Wiedemann (2007) studied the 

Euler-Bernoulli beams interconnected by arbitrary joints and confined to arbitrary boundary 

conditions. Then, he presented an analytical solution for natural frequencies, modes shapes and 

orthogonality conditions on the system. Assuming the beam has a combination condition of 

clamped, free, pinned, and sliding, Goncalves et al.(2007) presented a numerical study on the 

vibration modes of the beam by means of a compact mode shape. For with various classical (or 

non-classical) boundary conditions, Wu and Chen (2008) examined the free vibrations of the 

beams carriying multiple sets of concentrated elements with each set consisting of a point mass, 

a translational and rotational spring. For arbitrary boundary conditions, Kiani (2010) examined 

the effects of slenderness ratio of the nanotube, small scale effect, initial axial load and stiffness 

of the elastic matrix on the natural frequencies of the single-walled nanotubes. Using a 

systematic theoretical procedure, Lin (1998) presented a static analysis of the extensional 

circular-curved Timoshenko beams with general nonhomogeneous elastic boundary conditions 

and found the generalized Green function of the differential equations. Lestari and 
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Hanagud(2001) found some closed form exact solutions to the problem of nonlinear vibrations 

of the buckled beams. They assumed their model with axial spring in spite of general supports 

conditions. Ghayesh (2012) investigated the free and forced vibrations of a Kelving-Voigt 

viscoelastic beam supported by a nonlinear spring. Linear and nonlinear frequencies of the 

system were analyzed by considering the nonlinear spring effect. In order to investigate the 

static pull-in instability of beam-type nano-electromechanical systems, Tadi Beni et al.(2011) 

considered the effect of Casimir attraction and elastic boundary conditions. They utilized 

through the rotational springs. Sari and Pakdemirli (2013) studied the dynamic behavior of a 

slightly curved microbeam having nonideal boundary conditions. They also presented 

references for the choice of resonable resonant conditions, design applications, and industrial 

applications of such systems. Jin et al.(2017) studied the vibration analysis of the 2-D curved 

beams with variable curvatures and general boundary conditions. They used the 2-D elasticity 

theory which not requires any assumptions on the deformations and stresses along the thickness 

direction. Shi et al.(2017) presented a unified method for modeling of functionally graded 

carbon-nanotube-reinforced composite (FG-CNTRC) beams based on first-order shear 

deformation elasticity theory. Using arbitrary boundary conditions, including various classical 

boundary conditions and elastic supports, they investigated free-vibration analysis of FG-

CNTRC beams. In this work, nonlinear vibrations of curved beams restricted by elastic supports 

on both ends were investigated. The elastic supports were converted to the translational and 

rotational springs. The boundary conditions were idealized by means of suitable springs' 

coefficients. The mathematical models of the system were derived. In order to seek analytical 

solutions, the Method of Multiple Scales (MMS), a perturbation technique, was used. The 

amplitude and phase modulation equations weree obtained by considering primary resonance 

case. Assuming the curvature of the beam was a sinusoidal function, the numerical solutions 

were obtained for the steady-state phase of the vibrations.     

   

2. DERIVATION OF MATHEMATICAL MODEL 

  
Figure 1 

. Curved Beam resting on elastic foundation, which was restricted at both end with elastic 

supports. 

 

In Fig.(1), a curved beam-mass system is restricted on both ends with the elastic supports. It 

is assumed that the supports are made of the translational(ktr) and rotational(krot) springs. For the 

Winkler elastic foundation, let us assume that the foundation comprises of the 

springs'coefficients of linear(k1) and nonlinear(k2). wm and um denote the transversal and 

longitudinal displacements, respectively. Assuming that ratio of the maximum amplitude of the 

beam to its projected lenght L is equal 1/10, let us keep in mind that the beam’s curvature 

function is of an arbitrarily arising function Y0. Additionaly, there is a concentrated mass M 

attached at arbitrarily point(x=xs) of the beam. 
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In order to obtain the equations of motion of the system and its conditions, we use the 

Hamilton Principle defined as below:  

 

  0.  dtUTδ

2

1

t

t

                           (1) 

 

where T is the system's kinetic energy and consists of the tranverse motion of the beam and 

concentrated mass. U is the system's potential energy and consists of the stretching and bending 

of the beam, the elastic foundation, the end springs.  

In order to analyze the equations of motion within this system, U and T are written as 

follows; 
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In Eq. (2), E is the young modulus, ρ is the density, A is the cross sectional area of the beam, 

and I is the moment of inertia of the beam cross-section with respect to the neutral axis. (˙) and 

(') denote differentiations with respect to the time t and the spatial variable x, respectively. 

For the depicted system, let us derive the mathematical models. Inserting Eq. (1) into Eq. 

(2), one obtains one and double folded integrals. One folded integrals correspond to the 

boundary and continuity conditions. Double folded integrals correspond to the equations of 

motion. By invoking the necessary calculations, the longitudinal displacement term (um) could 

be eliminated from the equations of motion in the tranverse direction. Finally, one obtains 

following the equations of motion and the boundary and continuity conditions as follows: 
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where 00 x  and Lxs 1
,  sm ,...1,0 . 

 

The equations of the motion and the conditions were dependent on the size of the system 

and the materials used. In order to make them independent from the dimensional parameters, the 

following definitions must be made: 
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where r is the radius of gyration of the beam’s cross section, is the mass ratio between the 

concentrated mass and the beam's mass, η is the dimensionless distance of the mass from left 

hand-side support, 1 and 2 are the dimensionless linear and nonlinear coefficients of the elastic 

foundation, tr and rot are the dimensionless translational and rotational springs'coefficients, 

respectively. 

Making necessary simplifications after non-dimensionalization, the equations of motion via 

the boundary and continuity conditions can be rewritten as follows: 
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3. ANALYTICAL SOLUTIONS 

In order to search approximate solutions to the problem, the method of multiple scales 

(MMS)[Nayfeh (1973), (1981)] will be applied to the partial differential equations and the 

corresponding boundary conditions directly. First of all, the sign of dimensionless (^) must be 

removed so that the equations and conditions come into a view easily understand. Adding 

dimensionless damping μ and external forcing F.cos(Ω.t), where Ω is excitation frequency, one 

has following equation; 
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Eq. (7) is assumed to have an expansion solution as follows: 
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where ε is a small bookkeeping parameter artificially inserted into the equations, T0=t is the fast 

time scale, and T1=ε.t and T2=ε
2
.t are the slow time scales in MMS.  

 

Derivatives with respect to time are defined as Dn≡∂/∂Tn, and written as: 
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In this analysis, the beam's curvature function is assumed as Y0=0(1). In order to counter the 

effects of the nonlinear terms via the same order of damping and forcing, the forcing and 

damping terms are reordered as follows: 
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Inserting Eqs. (8-10) into Eq. (7) and separating the terms of each order, one finds the following 

equations: 
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Order ε
3
: 
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One requires some conditions for solving the Eqs. (11) to (13). They are given for j=1, 2, 3 as 

below: 
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Eq. (11) from order ε
1
 corresponds to the linear problem of the system and other orders in 

Eqs.(12) and (13) to the nonlinear problem. These cases are investigated seperately while 

solving these equations. Let us assume that the linear problem accepts the following solution: 
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(13) 



Sarıgül M.: Effects of Elastic Supports on Nonlinear Vibrations of A Slightly Curved Beam 

262 

In Eq. (15), ω is the natural frequency, cc is the complex conjugate of the preceding terms, and 

Ym+1 is the function describing the mode shape. By inserting Eq. (15) into Eqs. (11) and (14) 

while taking as j=1, one obtains the following differential equations and corresponding 

conditions: 
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To be able to find the solutions at the order ε
2
 of the perturbation series, an assumption of 

A=A(T2) must be provided. This means that there is no dependence of this order on T1. By 

inserting Eq. (15) into Eq. (12), the following solution is suitable at this order: 
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Substituting Eq.(17) into both Eq.(12) and (14) while keeping in mind that j=2, yields the 

following equations and conditions: 
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where τ and ψ are defined as follows: 

 

4
1

24 γ.ω  , 4
1γψ                                                                                      (19) 

 

By substituting Eqs. (15) and (17) into both Eqs. (13) and (14) while keeping in mind j=3, the 

solutions at the last order of the perturbation series are assumed in the following form; 
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where Wm+1(x,T2) corresponds to the solutions for the non-secular terms, and cc is referred to the 

complex conjugate of the preceding terms.  
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By means of a detuning parameter σ showing closeness of the natural frequency to the 

external excitation frequency, one take the excitation frequency as below: 

 

ζ2εωΩ .                                                                          (21) 

 

By inserting Eqs. (20) and (21) into Eqs. (13) and (14), taking in mind j=3, and eliminating the 

secular terms, one obtains the following differential equations and conditions:          
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 In order to have a solution for this nonhomogenous equation, that is Eq.(22), a 

solvability condition must be satisfied (see details in Refs. Nayfeh (1973), (1981)). Applying 

the solvability conditions for Eq. (22), one obtains following equations: 
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where the term Λ is defined in the following simplification; 
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The solvability condition for Eq.(23) can be written in the simplest form as;  

 

  2
..i2

2

~i2
T

e.A.A.k.AA.μ.ω..
f 

                                                                           (25) 

 

where following assumption and definitions have been done; 
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Table 1. First five frequencies for different η values and boundary conditions(α =1; γ1=10) 

Support Status η ω 1 ω2 ω3 ω 4 ω 5 

Fixed - Fixed 

0.1 

0.2 

0.3 

0.4 

0.5 

23.1680 

19.2681 

15.1251 

13.0624 

12.4611 

53.9122 

41.1794 

44.5907 

53.7090 

61.7538 

89.8957 

93.3816 

112.6047 

114.6737 

95.9110 

151.9954 

177.8843 

195.5009 

167.6918 

199.8845 

243.1009 

290.2148 

254.3961 

297.2954 

253.7448 

Simple - Simple 

0.1 

0.2 

0.3 

0.4 

0.5 

11.3480 

9.3262 

8.0173 

7.3696 

7.1759 

30.0731 

27.3386 

30.1287 

35.4771 

39.6049 

66.1445 

73.5943 

86.7908 

80.0713 

68.0582 

127.2535 

149.4332 

143.2702 

132.7141 

157.9453 

213.3666 

246.7603 

209.4037 

246.7604 

206.8256 

Slide - Slide 

0.1 

0.2 

0.3 

0.4 

0.5 

7.6883 

8.1917 

8.9790 

9.8897 

10.3638 

34.8236 

39.0212 

38.2560 

30.6979 

27.5815 

83.6314 

85.7896 

68.2106 

76.2983 

88.8827 

155.4432 

130.1341 

141.5396 

154.2519 

127.7736 

246.7604 

211.7512 

246.7604 

207.5597 

246.7604 

Fixed - Simple 

0.1 

0.3 

0.5 

0.7 

0.9 

16.9934 

12.5730 

9.6613 

9.8902 

14.6967 

45.6683 

33.2960 

47.3951 

41.5105 

37.2315 

79.3775 

92.3016 

84.8363 

104.1212 

78.9924 

133.5016 

178.1188 

172.7774 

153.4841 

146.4840 

217.8755 

234.6121 

236.1612 

237.9464 

238.6910 

Fixed - Slide 

0.1 

0.3 

0.5 

0.7 

0.9 

6.5371 

6.1365 

4.9853 

3.9972 

3.4641 

29.9657 

18.9717 

21.1236 

30.8668 

26.4638 

62.0504 

58.1058 

71.6700 

58.2935 

69.1366 

102.3515 

134.4783 

115.2555 

118.8226 

135.4792 

172.2847 

208.7653 

216.3558 

220.5116 

222.4510 

Simple - Slide 

0.1 

0.3 

0.5 

0.7 

0.9 

4.8464 

4.2425 

3.5620 

3.0557 

2.7610 

18.8487 

14.3552 

18.2264 

22.9572 

19.2220 

45.4439 

54.7628 

53.0809 

50.9188 

56.1067 

93.4789 

120.1071 

107.6990 

98.7196 

116.8304 

167.2645 

166.6047 

181.7691 

193.1136 

199.0220 

 

The polar forms are written as follows: 

 

     2,
i

2,
i

2
2

1

2

1
TTT ..

e.a.Ae.a.A 





                                                                    (27)     

 

where the complex amplitude A consists of the real amplitude a and phase θ. Inserting Eq. (27) 

into Eq.(26), and separating the real and imaginary parts, one obtains following amplitude-phase 

modulation equations: 

 

θT.cos.
f

a.
Λ

θ.a.k.ωsin.
f

a.k.ωa.μ.ω 2

3 ζγγγ  ,,
282

~ 
                   

                               (28) 



Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 2, 2018                            

265 

where γ denotes the phase between forcing and responce of the system.  

 

Table 2. Nonlinearity values(λ) for different η, γ2 and boundary conditions(α =1; γ1=10) 

Support Status η γ2=0 γ2=10 γ2=50 γ2=100 

Fixed-Fixed 

0.1 

0.2 

0.3 

0.4 

0.5 

0.8833 

0.5610 

0.5520 

0.5256 

0.5168 

1.1684 

0.7732 

0.7227 

0.6857 

0.6747 

2.3088 

1.6221 

1.4057 

1.3260 

1.3062 

3.7343 

2.6832 

2.2595 

2.1263 

2.0956 

Simple-Simple 

0.1 

0.2 

0.3 

0.4 

0.5 

-0.8102 

-0.7744 

-0.7510 

-0.7641 

-0.7730 

-0.4131 

-0.4608 

-0.4746 

-0.5005 

-0.5125 

1.1756 

0.7933 

0.6312 

0.5539 

0.5297 

3.1615 

2.3610 

2.0133 

1.8720 

1.8324 

Slide - Slide 

0.1 

0.2 

0.3 

0.4 

0.5 

0.7490 

0.9508 

1.2474 

1.5819 

1.6825 

1.5679 

1.7303 

1.9540 

2.1876 

2.1993 

4.8437 

4.8481 

4.7804 

4.6104 

4.2665 

8.9385 

8.7454 

8.3134 

7.6389 

6.8506 

Fixed-Simple 

0.1 

0.3 

0.5 

0.7 

0.9 

0.6728 

0.3182 

0.3312 

0.4114 

0.6037 

1.0372 

0.5582 

0.5382 

0.6221 

0.9083 

2.4948 

1.5181 

1.3664 

1.4649 

2.1268 

4.3168 

2.7180 

2.4016 

2.5184 

3.6499 

Fixed- Slide 

0.1 

0.3 

0.5 

0.7 

0.9 

0.2032 

0.1780 

0.1325 

0.1089 

0.1072 

1.2640 

1.1145 

0.8616 

0.7487 

0.6979 

5.5075 

4.8602 

3.7781 

3.3079 

3.0610 

10.8118 

9.5424 

7.4237 

6.5068 

6.0147 

Simple- Slide 

0.1 

0.3 

0.5 

0.7 

0.9 

-0.1263 

-0.3962 

-0.8222 

-1.0980 

-1.1666 

0.9857 

0.4844 

-0.0623 

-0.3776 

-0.4704 

5.4334 

4.0067 

2.9770 

2.5041 

1.9129 

10.9931 

8.4096 

6.7762 

6.1063 

5.5278 

 

In undamped free vibrations, the terms f, ~ , and σ were taken as zero. For the steady-state 

solutions, it is assumed that 0a . This indicates that the amplitude of vibration is constant, that 

is 0aa . In this case, the following definition can be derived from Eq. (28) 

 

k8
,

2

0
.ω.

Λ
a.θ  

                                                                       (29)  

 

where λ is defined as nonlinearity effects and gives corrections from the natural frequencies to 

the nonlinear frequencies. Thus, the nonlinear frequency is defined as: 

 
2

0a.ωθωωnl  
.                                                                                                           (30)  
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In damped-forced vibrations for the steady-state region, a  and 
 
can be taken as zero and denote 

no change in amplitude and phase with time. Thus, eliminating γ from Eq. (28), one can obtain 

following detuning parameter (σ). 

 

22

2

0

~

2

















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k

μ

k.ω.a.

f
a.λζ .                                                                         (31) 

 

4. NUMERICAL RESULTS 

 In order to find the approximate solutions to the mathematical model, the rise function of 

the curved beam are assumed to have sinusoidal variation as Y0=sin(π.x). The limit values for 

the translational and rotational springs' coefficients can be kept as zero or infinity in the 

calculations. For example, some supporting cases are arranged as fixed support; tr, rot,  

simply support; tr, rot0, sliding support; tr0, rot. Thus, the nonlinear problem 

arising from supports can be taken into consideration. For this purpose, Eq. (16), which 

corresponds to the linear part of the problem, was solved first. Then, nonlinearity coefficients 

(λ) were obtained by using Eq. (29).  

 In order to reach a good conclusion on the supporting, two cases have been presented 

symmetric and asymmetric in means of geometric constraints. For obtaining the case of 

symmetric supporting, the beam's both ends are restricted with the same supports, that is, fixed-

fixed, simple-simple, slide-slide. Because of having similar properties according to its middle 

point throughout beam length, the mass positionings (η) are regarded as 0.1, 0.2, 0.3, 0.4, 0.5. 

On the other hand, the cases of asymmetrical supportings are fixed-simple, fixed-slide, simple-

slide. Thus, mass locations (η) are regarded as 0.1, 0.3, 0.5, 0.7, 0.9 from left hand support to 

the right. Additionally, the dimensionless mass ratio and the linear coefficient of elastic 

foundation are selected as α=1 and γ1=10, respectively. For the different mass positions (η) and 

the supporting cases in every configurations, the first five natural frequencies are given in Table 

1. The first mode frequencies seems to decrease with increasing η that is, positioning the mass 

close to the beam's mid points instead of end points. However, for the supporting case of slide-

slide, the frequencies seem to increase with increasing η. For the non-symmetric supporting 

cases, the mass is arbitrarily positioned from left hand side end to right throughout the beam 

length. In the supporting cases of fixed-slide and simple-slide, the first mode frequencies 

decrease with increasing η. These frequencies first decrease and then increase while ηs increase 

for the case of fixed-simple supporting. 

 Nonlinearities (λ) of the first mode in the cases of nonlinear foundation coefficients are 

given in Table 2. As seen on these tables for all the fixed parameters, the nonlinearities have 

positive and negative signs according to the locations of the mass and the supporting cases. If 

so, by means of these parameters, the hardening or softening behaviors of the system may 

occur. The nonlinearities (λ) seem to increase with increasing γ2. If the mass locations are 

replaced from the left simple(or fixed) support to the right slide support, the nonlinearities 

decrease. But the nonlinearities firstly decrease and then increase for the case of fixed-simple. 

 Undamped-free vibration behavior of the system is best seen in the nonlinear frequency-

amplitude curves. The nonlinear frequencies have a parabolic relationship with the maximum 

amplitude of the vibration as given in Eq. (30). These relations are drawn using curves for the 

first mode of vibrations in Figs. (2) to (5). The effects of elastic supports and masses' locations 

to the vibrations are determined through these curves. While doing so, some system parameters 

are fixed as α=1, γ1=10 and γ2=10.   
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Figure 2.  

Nonlinear frequency-amplitude curves for symmetric supporting cases. 

 

In Fig. (2), the nonlinear frequency-amplitude curves are drawn for the beams restricted 

symmetrically. By placing the mass in different locations from the support of left hand side to 

the beam's middle point, the effects of masses'locations on the nonlinear frequency-amplitude 

curves are drawn. For the fixed-fixed and simple-simple supporting cases, the increasing in η 

results in a system of lower linear frequencies. Additionally, it is seen that the frequencies 

become much more close to each other with the increasing η. In the case of slide-slide 

supporting, the increasing in η results in the higher linear frequencies. As seen from the fixed-

fixed and slide-slide supporting cases, the nonlinear frequencies increase with amplitude for all 

the configurations of the mass's location. However, the nonlinear frequencies decrease for the 

case of simple-simple supporting. 

For the curved beams restricted asymmetrically, the nonlinear frequency-amplitude curves 

are drawn in Fig. (3). In the case of fixed-simple supporting, the nonlinear frequencies increase 

with increasing amplitude for each curves. Replacing the mass in the beam's middle point, the 

smallest frequencies can be obtained. Furthermore, higher natural frequencies are obtained in 

the case of mass being placed in neighborhood of the beam's fixed end instead of the simple 

supported end. The more close the mass to the slide support is, the smallest values of 

frequencies can be obtained for the fixed-slide supporting case. For the case of simple-slide 

supporting, the frequencies increase with the increasing amplitudes in η’s 0.1, 0.3 values and 

decreases in η’s 0.5, 0.7, 0.9 values.  
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Figure 3.  

Nonlinear frequency-amplitude curves for asymmetric supporting cases. 

 

  

 
Figure 4.  

Nonlinear frequency-amplitude curves for different boundary conditions (α=1, γ1=10 , γ2=10, η 

=0.5). 

(I-Fixed-Fixed, II-Simple-Simple, III-Slide-Slide, IV- Fixed-Simple, V- Fixed-Slide, VI- Simple-

Slide). 
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By taking as η=0.5, the nonlinear frequency-amplitude curves for the different supporting 

cases; fixed-fixed(I), simple-simple(II), slide-slide(III), fixed-simple(IV), fixed-slide(V), 

simple-slide(VI) are plotted in Fig.4. As seen in these curves, the frequencies corresponding to 

the cases of I, III, IV and V increase as the amplitudes increase. However, the frequencies 

corresponding to the cases of II and VI decrease. Also, the highest values of the frequencies are 

observed in case of I and the smallest in case of VI. 

Considering the case where there is damping and external excitation, the nonlinear vibration 

behavior of the system can be understood via forcing frequency-response curves. When f=1 and 

~ =0.2, some curves in Figs. (5) to (7) are drawn by means of Eq.(31). In these figures, only 

first modes of the tranverse vibrations are dealed. Some parameters of the system are fixed as 

γ1=10, γ2=10, α=1 for the detailed investigations to be done on the supports. By assigning 

different values of the springs, the symmetrical and asymmetrical cases are obtained. 

 

 

 
Figure 5.  

Forcing frequency-response curves for symmetric supporting cases. 

 

The effects of these cases on the curves are investigated in the figures. The cases of 

symmetric supporting are taken into account in Fig. (5). In these graphs, different masses' 

locations have been considered for the comparison. As seen in the curves of the fixed-fixed and 

simple-simple supporting cases, the maximum amplitudes of the vibrations increase with 

increasing η; in other means, one obtains the maximum amplitudes for this mass configuration 

taking place in the beam's middle point of instead of its ends. For the case of slide-slide 

supporting, the maximum amplitudes decrease with the increasing η. 
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Figure 6.  

Forcing frequency-response curves for asymmetric supporting cases. 

 
Figure 7. 

 Forcing frequency-response curves for different boundary conditions at α=1, γ1=10,γ2=10, η 

=0.5. 

 

The cases of asymmetric supporting are taken into account in Fig. (6). In these graphs, 

closeness of the mass to the supports have been considered. As seen in the case of fixed-simple 

supporting, the amplitudes are more higher while being in close to the fixed support than the 

case of simple supporting. As of the fixed-slide supporting case, the maximum amplitudes 

increase and the jumping regions expand with the increasing η. For the case of simple-slide 
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supporting, somethings seem to happen in the unsimilar way as η increase. A transition occurs 

from the hardening behavior to softening one. The maximum amplitudes increase as η increase. 

By taking as η =0.5, the forcing frequency-response curves are plotted in Fig. (7). The 

supporting cases have been considered as fixed-fixed(I), simple-simple(II), slide-slide(III), 

fixed-simple(IV), fixed-slide(V), simple-slide(VI). In these curves, the maximum amplitudes 

can be ranked from the smallest ones to the big ones as;  fixed-fixed(I), slide-slide(III), fixed-

simple(IV), simple-simple(II), fixed-slide(V), simple-slide(VI). The softening behaviors are 

seen for the cases of II and VI. 

 

5. CONCLUSIONS 

  

In this study, nonlinear vibrations of a curved beam restricted by elastic supports on both 

ends are investigated. Beam carrying one concentrated mass rests on Winkler elastic foundation. 

The beam's ends are immovable at horizontal direction. Elastic supports have been changed to 

linear springs by using suitable parameters. To solve the equations of motion, the method of 

multiple scales is used. For the solutions being thought as perturbation series, first order of the 

solutions is defined as a linear problem. Assumption of the beam's curvature being occured at 

the series' first orders has been done in analytical solutions. For numerical analysis, the rise 

function of the beam has been accepted as sinusoidal type. In numerical calculations, some 

parameters are fixed such as; the dimensionless mass ratio is =1, the dimensionless 

coefficients of the linear and nonlinear elastic foundation are 1=10 , 2=10, respectively. 

Natural frequencies are obtained for the different supporting cases as well as the masses' 

locations. For every mass positioning η, only one result is calculated. For the symmetric 

supporting cases such as fixed-fixed and simple-simple, the mass is replaced at different 

locations between the beam's mid and end points. The first mode frequencies seems to decrease 

with increasing η that is, positioning the mass close to the beam's mid points instead of its end 

points. However, for the supporting case of slide-slide, frequencies seem to increase with 

increasing η. For the non-symmetric supporting cases, the mass is arbitrarily positioned from 

left hand side end to right throughout the beam length. In the supporting cases of fixed-slide and 

simple-slide, the first mode frequencies decrease with increasing η. For the supporting case of 

fixed-simple, these frequencies first decrease with increasing η, and then increase. In the case of 

primary resonance, the nonlinearity effects of the curved beam-mass system have both positive 

and negative signs. Adjusting the springs' magnitude and types restricting the beam, one can 

make the system to have softening behavior. For different supporting cases and locations of the 

mass, the nonlinear frequencies-amplitude curves and the forcing frequency-response curves are 

drawn for comparisons. From the frequencies-amplitude curves, one can conclude that both the 

slide and fixed supporting cases have some raising effects on the nonlinear frequencies; while 

the simple supporting cases tend to reduce the frequencies. Also, for mass positionings at 

regions close to the slide supports, lower frequencies occurs. From the forcing frequency-

response curves, it is seen that the simple supports have softening behavior while the slides have 

hardening behavior. The fixed supports have neither hardening behavior nor softening. For mass 

positioning at regions close to the slide supports, the maximum amplitudes tend to increase with 

increasing detuning parameter. If the mass is positioned at close regions to the beam's mid point 

instead of its end points, the maximum amplitudes tend to increase with increasing detuning 

parameter for the cases of simple and fixed supportings.  

In future, new studies on the cases of internal resonance will contribute further distinctions 

to the current studies. By means of an adjustment in the translational and rotational springs' 

coefficients, possible internal resonances may be analyzed. 
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