
Hacettepe Journal of Mathematics and Statistics
Volume 47 (5) (2018), 1394 � 1403

Modi�ed Holt's linear trend method

Guckan Yapar∗†, Sedat Capar‡, Hanife Taylan Selamlar� and Idil Yavuz¶

Abstract

Exponential smoothing models are simple, accurate and robust fore-
casting models and because of these they are widely applied in the
literature. Holt's linear trend method is a valuable extension of expo-
nential smoothing that helps deal with trending data. In this study
we propose a modi�ed version of Holt's linear trend method that elim-
inates the initialization issue faced when �tting the original model and
simpli�es the optimization process. The proposed method is compared
empirically with the most popular forecasting algorithms based on ex-
ponential smoothing and Box-Jenkins ARIMA with respect to its pre-
dictive performance on the M3-Competition data set and is shown to
outperform its competitors.
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1. Introduction

Forecasting is an essential activity in various branches of science and in many areas of
industrial, commercial and economic activity. Forecasts can be obtained by using purely
judgmental, explanatory and extrapolative methods or any combination of these three but
extrapolative methods are reliable, objective, inexpensive, quick, and easily automated.
In recent decades, numerous time series forecasting models have been proposed. A review
of the 25 year period until the year 2005 can be found in [4]. It is clear that time
series forecasting methods are still dominated by two major techniques: [2] (ARIMA)
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and exponential smoothing (ES) [3]. However, ES methods are the most widely used
techniques in forecasting due to their simplicity, robustness and accuracy as automatic
forecasting procedures [8]. An excellent review of the literature on ES can be found in
[5] which is later updated in [6] and [10]. The popularity of ES in time series analysis is
not just as a result of its simplicity but also its proven record against more sophisticated
approaches [15, 14, 11].

In ES models recent observations are given relatively more weight in forecasting than
the older observations. ES is not a single model but rather a family of models. ES models
assume that the time series has up to three underlying data components: level, trend and
seasonality. The goal of an ES model is to estimate the �nal values of the level, trend and
seasonal pattern and then to use these �nal values to construct forecasts. Each model
consists of one of the �ve types of trend (none, additive, damped additive, multiplicative,
and damped multiplicative) and one of the three types of seasonality (none, additive,
and multiplicative). [16] proposed a taxonomy of ES methods, which was extended and
modi�ed later by [7], [11], and [17]. There are 15 di�erent models, the best known of which
are SES (no trend, no seasonality), Holt's linear model (additive trend, no seasonality)
and Holt-Winters' additive model (additive trend, additive seasonality). [10] proposed
the ETS state space models to provide a solid theoretical foundation for ES. In this work
two possible innovative state space models for each of the 15 exponential smoothing
methods are de�ned, one corresponding to a model with additive errors and the other to
a model with multiplicative errors, resulting in 30 potential models.

There are many studies on the numerical and theoretical comparison of Box-Jenkins
and ES methods. For several decades, ES has been considered an ad hoc approach to
forecasting, with no proper underlying stochastic formulation. The state space framework
described by [11] brings exponential smoothing into the same class as ARIMA models. ES
is widely applicable and has a sound stochastic model behind the forecast therefore the
�ad hoc approach� argument is no longer true. [11] introduced a state space framework
that subsumes all the exponential smoothing models and allows for the computation
of prediction intervals, likelihood and model selection criteria. They also proposed an
automatic forecasting strategy based on this model framework.

However, the main competition between these two major forecasting methods is on
their post-sample forecasting accuracy. The 1001 and 3003 time series used respectively
in the M-competition [12] and the M3-competition [14] have become recognized collec-
tions of test data for the evaluation of forecasting methods. The �rst conclusion of
these competitions is that �statistically sophisticated or complex methods did not pro-
vide more accurate forecasts than simpler ones". Some standard and simple combinations
of ES methods were used in these competitions and their performances veri�ed this re-
sult. According to statements by the participants of the M-competition, the Box-Jenkins
methodology (ARIMA models) required the most time (on the average more than one
hour per series). To propose a simple, accurate, robust and automatic forecasting method
as an alternative to ES methods is not easy task after the results of [11]. In this study,
they applied an automatic forecasting strategy to the M-competition data [12] and the
M3 competition data [14]. The automatic forecasting procedure proposed in this paper
tries 24 of the 30 state space models on a given time series and selects the �best" model
using the AIC. They show that the methodology is particularly good at short term fore-
casts (up to about 6 periods ahead), and especially accurate for seasonal short-term series
(beating all other methods in the competitions).

Even though ES models are well developed, they still have some important shortcom-
ings that a�ect the quality of the forecasts obtained using them. The most important
issues faced when building ES models are related to initialization and optimization prob-
lems. For example [13] showed that even though for other exponential smoothing models
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the type of initialization and loss functions that are employed did not result in signi�cant
changes in post sample forecasting accuracies, for Holt's linear trend model they were
very in�uential especially for long term forecasting horizons. Even if this was not the case,
the fact that trying to �nd an optimal initial value both complicates and prolongs the
optimization process can not be overlooked. The modi�ed simple exponential smoothing
model proposed in [18] helps deal with these problems but still lacks the ability to deal
with possible trending behavior that may be present in the data. In this study we aim
to modify the Holt's linear trend model using the ideas in [18]. The performance of the
proposed method will be tested empirically using the M-3 competition data set that was
mentioned above.

2. Modi�ed Holt's Linear Trend Method

Modi�ed exponential smoothing (MES) methods can be adapted for each of the 30
di�erent ES models classi�ed by [10] but only one form of MES will be given in this study
which can be called modi�ed Holt's linear trend method (MHES). The goal is again to
forecast future values of a time series from its own current and past values. That is,
given a series of equally spaced observations, Xt for t = 1, 2, . . . , n on some quantity,
forecasts for h = 1, 2, . . . should be obtained. Let us �rst consider the standard Holt's
linear trend method [9], which is given in equations (2.1)-(2.3). The method estimates
the local growth, Tt, by smoothing successive di�erences, (St − St−1) of the local level,
St. The forecast function is the sum of level and projected growth:

(2.1) St = αXt + (1− α)(St−1 + Tt−1),

(2.2) Tt = β(St − St−1) + (1− β)Tt−1,

(2.3) X̂t(h) = St + hTt,

where X̂t(h) is the h-step-ahead forecast, α and β are smoothing parameters, 0 < α, β <
1. There are two smoothing parameters to estimate and starting values for both the
level and trend must be provided. An initial smoothed value can be chosen using various
techniques. The most common techniques are least squares estimation, backcasting, using
a training set, using convenient initial values (e.g. using the �rst data value to initialize
the level or the di�erence between the �rst and the second data value to initialize the
trend) and setting the initial values to zero [13]. The parameters can be estimated by
minimizing the one-step-ahead MSE, MAE, MAPE or some other criterion for measuring
in-sample forecast error.

Now, Holt's linear trend method will be modi�ed as follows:

(2.4) St =
(p
t

)
Xt +

(
t− p
t

)
(St−1 + Tt−1),

(2.5) Tt =
(q
t

)
(St − St−1) +

(
t− q
t

)
Tt−1, n ≥ p ≥ q ≥ 0,

(2.6) X̂t(h) = St + hTt,

for p ∈ {1, . . . , n} and q ∈ {0, 1, . . . , n}. Unlike other approaches, the proposed model
avoids potential initialization problems by letting St = Xt for t ≤ p, Tt = Xt −Xt−1 for
t ≤ q and T1 = 0. This model will simply be notated as MHES(p, q). Note that there
are two smoothing parameters (p and q) to estimate but no starting values are needed for
level and trend. Also notice that for q = 0 the model MHES(p, 0) de�ned by equations
(2.4)-(2.6) reduces to a modi�ed simple exponential smoothing (MSES(p)) model [18]:

S(t) =

{(
p
t

)
Xt +

(
t−p
t

)
St−1, for t > p,

Xt, for t ≤ p.
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3. Application to M3-competition Data

To test the performance of the proposed modi�cation, the method is applied to the
M3-competition data [14] since this collection is the most recent and comprehensive
time-series data collection available and its results are veri�ed. The M3-competition
data collection consists of 3003 time series data sets each of which have a pre-determined
number of data points that are used for testing the out-sample performances of the
competing methods. For example the last 6 data points for yearly data, the last 8 data
points for quarterly data and the last 18 data points for the quarterly data are not
used while estimating the smoothing parameters and the models are tested on these out-
sample points. After the smoothing parameters are estimated using the in-sample data
points in each set (as speci�ed in the M3-competition), forecasts up to 18 steps ahead
(the number of out-sample data points as speci�ed in the M3-competition) are computed.
Then, the symmetric mean absolute percentage errors (sMAPE) for all forecast horizons
are computed and averaged across all 3003 series to stay consistent with the rest of the
literature. The one-step-ahead sMAPE can be de�ned as:

sMAPE = 200×mean


∣∣∣Xt − X̂t

∣∣∣
|Xt|+

∣∣∣X̂t

∣∣∣
 ,

where Xt is the actual value and X̂t is the one-step-ahead forecasted value.
Results from four di�erent versions of the proposed modi�cation will be given here.

For all versions the data will be deseasonalized by the classical decomposition method
of the ratio-to-moving averages, if necessary. The �rst version is the modi�ed simple
exponential smoothing model MHES(p∗, 0) where p∗ is the �rst parameter optimized
by minimizing the in-sample one-step-ahead sMAPE holding q = 0.

The second version that will be considered here is the MHES(p, 1) where q = 1 and
p is optimized as before. Even though it may look like this model is simply a speci�c
parametrization of the model, this special case is of relevance since it allows for all the
trend components over time to receive equal weights which can not be achieved with
other ES methods.

For the third version we perform a simple model selection of the previous two versions
where the best, i. e. the one that yields to a smaller forecast error for each data set,
between these two is chosen and used for prediction. This version of the model will be
denoted as MHES − select in the tables that follow.

The �nal version MHES(p∗, q) is the one where both parameters are optimized in
a sequential fashion. For this version �rst the optimal value for the parameter p∗ is
obtained by minimizing the in-sample one-step-ahead sMAPE holding q = 0 and then
the optimal value for the parameter q (q ≤ p∗) is found by minimizing the in-sample
one-step-ahead sMAPE again.

Reseasonalized forecasts are produced for all versions for as many steps ahead as
required. It is worth noting that the out-sample data points in each data set are left out
while estimating the smoothing parameters and only the errors from the out-sample data
points (the forecast horizons as determined in the M3-competition) are given here. The
results from the proposed models along with results from some of the methods from the
M3-competition are given in Tables 1- 7[14]. To stay consistent with other research on
this data set, symmetric MAPEs are averaged across the series for each forecast horizon.

Table 1 contains the results for all 3003 series of the M3-competition. Here it can
be seen that MHES(p, 0) performs better than its competitor the single exponential
smoothing model for all forecasting horizons individually and averaged. MHES(p∗, q)
and MHES − select both perform better than Holt's linear trend model, Box-Jenkins
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and ETS for all forecasting horizons again individually and averaged. It is worth noting
that even the one model MHES(p, 1) outperforms both ETS and Box−Jenkins based
models for relatively short-term forecast horizons (horizons 1-8). It is also worth under-
lining the fact that the model selection for MHES− select is carried out of only the two
parameterizations of one model compared to the full parameterizations of 24 alternative
models considered in its competitor ETS. These can be seen as proofs of the strong
positive e�ect this modi�cation can have on forecasting accuracy.

The results can be studied closely as done in Tables 2 and 3 for seasonal and non-
seasonal data. From these tables it can be seen that MHES(p, 0) outperforms single
exponential smoothing for both data sets for all forecasting horizons again. MHES(p∗, q)
andMHES−select both perform better than Holt's linear trend model and Box-Jenkins
for both seasonal and non-seasonal data sets. ETS performs slightly better than the
proposed modi�cations for seasonal data due to the fact that it allows for various seasonal
components (additional and multiplicative) however for non-seasonal dataMHES(p∗, q)
and especially MHES − select outperform ETS on all forecasting horizons.

Tables 4- 7 have summaries of the results for the annual, quarterly, monthly and other
data sets respectively. MHES(p, 0) produced comparable results to single exponential
smoothing for quarterly and other data sets while single exponential smoothing performed
slightly better for annual data and MHES(p, 0) performed much better for monthly
data. For the annual data in Table 4, the MHES(p∗, q) and MHES − select both
outperformed Holt, Box-Jenkins and ETS for all forecasting horizons. The superiority
of MHES − select for annual data is not only against these three models but also for
annual data it was able to outperform all competitors of the M3-competition including
the best performing Theta method [1]. It is worth noticing that for the same annual data
sets ETS is unable to produce better forecasts than the naive approach.

For the quarterly series in Table 5MHES−select andMHES(p∗, q) produced better
forecasts compared to Holt, Box-Jenkins and ETS when the averaged sMAPE are stud-
ied for both short term and long term forecasting horizons. For monthly data the results
can be seen in Table 6. Here MHES(p∗, q) and MHES − select outperform Holt and
Box-Jenkins consistently while ETS performs slightly better for short-term horizons and
the proposed approaches perform better for long-term horizons therefore they produce
comparable results.

Finally for the other series in Table 7 the proposed modi�ed approaches MHES −
select and MHES(p∗, q) both perform better compared to Holt, Box-Jenkins and ETS
for all forecasting horizons individually and when averaged for both short and long term
horizons.
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Table 1. Average symmetric MAPE across di�erent forecast horizons:
all 3003 series

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

Naive2 10.5 11.3 13.6 15.1 15.1 15.9 14.5 16.0 19.3 20.7 12.62 13.57 13.76 14.24 14.81 15.47
Single 9.5 10.6 12.7 14.1 14.3 15.0 13.3 14.5 18.3 19.4 11.73 12.71 12.84 13.13 13.67 14.32
Holt 9.0 10.4 12.8 14.5 15.1 15.8 13.9 14.8 18.8 20.2 11.67 12.93 13.11 13.42 13.95 14.60
B-J automatic 9.2 10.4 12.2 13.9 14.0 14.6 13.0 14.1 17.8 19.3 11.42 12.39 12.52 12.78 13.33 13.99
ETS 8.8 9.8 12.0 13.5 13.9 14.7 13.0 14.1 17.6 18.9 11.04 12.13 12.32 12.66 13.14 13.77

MHES(p∗, 0) 8.9 10.0 12.1 13.7 13.9 14.7 12.8 13.9 17.3 18.9 11.16 12.21 12.34 12.64 13.13 13.77
MHES(p, 1) 8.4 9.7 11.5 12.9 13.6 14.2 12.9 15.4 18.9 20.9 10.64 11.72 11.94 12.66 13.32 14.09
MHES − select 8.7 9.6 11.5 12.9 13.1 13.7 12.1 13.7 17.3 18.7 10.69 11.58 11.69 12.09 12.64 13.28
MHES(p∗, q) 8.6 9.7 11.7 13.5 13.7 14.5 12.5 13.6 17.3 18.7 10.89 11.96 12.08 12.37 12.87 13.50

Table 2. Average symmetric MAPE across di�erent forecast horizons:
862 seasonal series

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

Naive2 8.0 8.1 9.5 9.5 9.9 11.5 12.1 11.0 14.0 15.5 8.77 9.41 10.12 10.54 10.91 11.40
Single 7.1 7.4 8.8 8.7 9.3 10.9 11.3 10.7 13.1 14.6 8.02 8.71 9.42 9.78 10.13 10.62
Holt 6.5 6.9 8.2 8.4 9.4 10.6 11.2 11.5 13.2 15.3 7.50 8.33 9.15 9.66 10.09 10.67
B-J automatic 7.1 7.4 8.0 8.8 9.2 10.3 10.5 10.5 13.3 14.5 7.82 8.46 9.03 9.31 9.79 10.37
ETS 6.2 6.4 7.7 8.2 8.9 10.2 10.6 10.1 12.0 14.0 7.12 7.93 8.67 9.01 9.35 9.87

MHES(p∗, 0) 6.5 6.9 8.0 8.3 9.2 10.9 11.1 10.7 12.3 14.2 7.45 8.30 9.09 9.44 9.75 10.22
MHES(p, 1) 6.2 7.0 7.7 8.0 9.1 10.2 10.2 10.2 12.3 14.0 7.23 8.03 8.69 9.20 9.59 10.09
MHES − select 6.5 6.9 7.8 8.0 8.7 10.2 10.0 10.3 11.7 13.5 7.28 8.01 8.64 9.15 9.51 10.02
MHES(p∗, q) 6.4 6.8 7.8 8.1 8.9 10.6 10.6 10.4 11.8 14.0 7.26 8.10 8.85 9.20 9.49 9.96



1400

Table 3. Average symmetric MAPE across di�erent forecast horizons:
2141 nonseasonal series

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

Naive2 11.5 12.6 15.3 17.3 17.1 17.5 15.9 19.2 22.8 24.1 14.17 15.22 15.32 15.97 16.73 17.54
Single 10.4 11.9 14.3 16.3 16.3 16.5 14.5 17.0 21.8 22.5 13.22 14.28 14.30 14.70 15.40 16.21
Holt 10.0 11.9 14.8 17.4 18.1 18.5 16.2 17.8 23.5 24.8 13.52 15.10 15.23 15.69 16.43 17.26
B-J automatic 10.0 11.6 13.9 15.9 16.0 16.4 14.4 16.4 20.7 22.4 12.87 13.97 14.04 14.43 15.09 15.85
ETS 9.9 11.2 13.7 15.6 15.9 16.6 14.4 16.7 21.3 22.2 12.61 13.83 13.91 14.39 15.03 15.77

MHES(p∗, 0) 9.8 11.3 13.7 15.8 15.8 16.3 13.8 16.0 20.6 21.9 12.66 13.79 13.76 14.16 14.81 15.58
MHES(p, 1) 9.3 10.8 13.1 14.9 15.4 15.8 14.4 18.4 23.2 25.4 12.02 13.21 13.36 14.30 15.17 16.15
MHES − select 9.6 10.7 13.0 14.9 14.8 15.0 13.3 15.9 21.0 22.2 12.06 13.01 13.02 13.54 14.28 15.09
MHES(p∗, q) 9.5 10.9 13.3 15.7 15.7 16.1 13.6 15.7 20.8 21.8 12.34 13.52 13.49 13.87 14.54 15.31

Table 4. Average symmetric MAPE across di�erent forecast horizons:
645 annual series

Forecasting horizons Averages

Method 1 2 3 4 5 6 1-4 1-6

Naive2 8.5 13.2 17.8 19.9 23.0 24.9 14.85 17.88
Single 8.5 13.3 17.6 19.8 22.8 24.8 14.82 17.82
Holt 8.3 13.7 19.0 22.0 25.2 27.3 15.77 19.27
B-J automatic 8.6 13.0 17.5 20.0 22.8 24.5 14.78 17.73
ETS 9.3 13.6 18.3 20.8 23.4 25.8 15.48 18.53

MHES(p∗, 0) 9.1 13.5 17.6 19.9 22.8 25.1 15.04 18.00
MHES(p, 1) 8.3 12.2 16.8 18.6 21.5 23.3 13.95 16.78
MHES − select 8.3 11.5 15.6 17.7 20.5 22.0 13.28 15.94
MHES(p∗, q) 8.3 12.4 17.0 20.0 23.1 25.1 14.40 17.62
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Table 5. Average symmetric MAPE across di�erent forecast horizons:
756 quarterly series.

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 1-4 1-6 1-8

Naive2 5.4 7.4 8.1 9.2 10.4 12.4 13.7 7.55 8.82 9.95
Single 5.3 7.2 7.8 9.2 10.2 12.0 13.4 7.38 8.63 9.72
Holt 5.0 6.9 8.3 10.4 11.5 13.1 15.6 7.67 9.21 10.67
B-J automatic 5.5 7.4 8.4 9.9 10.9 12.5 14.2 7.79 9.10 10.26
ETS 5.0 6.6 7.9 9.7 10.9 12.1 14.2 7.32 8.71 9.94

MHES(p∗, 0) 5.2 7.1 7.8 9.7 10.1 11.8 13.5 7.45 8.62 9.71
MHES(p, 1) 5.3 6.8 7.6 9.1 9.9 11.0 12.4 7.19 8.28 9.24
MHES − select 5.2 7.0 7.7 9.2 9.6 11.1 12.3 7.28 8.30 9.21
MHES(p∗, q) 5.0 6.9 7.6 9.5 10.2 11.9 13.7 7.23 8.51 9.69

Table 6. Average symmetric MAPE across di�erent forecast horizons:
1428 monthly series.

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

Naive2 15.0 13.5 15.7 17.0 14.9 14.4 15.6 16.0 19.3 20.7 15.30 15.08 15.26 15.55 16.16 16.89
Single 13.0 12.1 14.0 15.1 13.5 13.1 13.8 14.5 18.3 19.4 13.53 13.44 13.60 13.83 14.51 15.32
Holt 12.2 11.6 13.4 14.6 13.6 13.3 13.7 14.8 18.8 20.2 12.95 13.11 13.33 13.77 14.51 15.36
B-J automatic 12.3 11.7 12.8 14.3 12.7 12.3 13.0 14.1 17.8 19.3 12.78 12.70 12.86 13.19 13.95 14.80
ETS 11.5 10.6 12.3 13.4 12.3 12.3 13.2 14.1 17.6 18.9 11.93 12.05 12.43 12.96 13.64 14.45

MHES(p∗, 0) 11.5 10.8 12.6 13.8 12.6 12.5 12.9 13.9 17.3 18.9 12.20 12.33 12.78 12.98 13.67 14.49
MHES(p, 1) 11.0 10.9 12.2 13.4 12.8 12.8 13.8 15.4 18.9 20.9 11.86 12.16 13.19 14.07 15.01 15.33
MHES − select 11.6 11.0 12.6 13.8 12.4 12.3 12.7 13.7 17.3 18.7 12.22 12.26 12.65 12.84 13.53 14.31
MHES(p∗, q) 11.6 10.9 12.5 13.8 12.4 12.3 12.7 13.6 17.3 18.7 12.18 12.23 12.42 12.79 13.47 14.27
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Table 7. Average symmetric MAPE across di�erent forecast horizons:
174 other series.

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 1-4 1-6 1-8

Naive2 2.2 3.6 5.4 6.3 7.8 7.6 9.2 4.38 5.49 6.30
Single 2.1 3.6 5.4 6.3 7.8 7.6 9.2 4.36 5.48 6.29
Holt 1.9 2.9 3.9 4.7 5.8 5.6 7.2 3.32 4.13 4.81
B-J automatic 1.8 3.0 4.5 4.9 6.1 6.1 7.5 3.52 4.38 5.06
ETS 2.0 3.0 4.0 4.4 5.4 5.1 6.3 3.37 3.99 4.51

MHES(p∗, 0) 2.1 3.5 5.4 6.3 7.8 7.5 9.1 4.34 5.45 6.26
MHES(p, 1) 1.9 2.9 4.1 4.8 6.0 5.7 7.1 3.46 4.26 4.87
MHES − select 1.8 2.8 4.0 4.6 5.7 5.3 6.6 3.30 4.03 4.60
MHES(p∗, q) 1.7 2.6 3.7 4.3 5.4 4.9 6.2 3.09 3.77 4.30

4. Conclusion

The modi�cation to Holt's linear trend method proposed in this paper is a simple, fast,
computationally inexpensive and accurate alternative extrapolative forecasting method.
Four versions of the proposed model (two special parameterizations, a model selection
strategy out of these two special cases and a fully optimized version) were applied to the
M3-competition data sets and it was shown that the proposed modi�cation can perform
as well as and in most cases much better than the models that are based on the two
major forecasting approaches: Box Jenkins and exponential smoothing. An Excel �le
that contains the optimum parameter values for the proposed methods for each M3-
competition data set along with the forecasts and errors is provided as supplementary
material and can be accessed at the journal's website.

The models success can be attributed to the facts that it is less dependent on the initial
values and is more �exible. When the smoothing parameters are equal to 1, i.e. p = 1
and q = 1, the method assigns equal weights to all past observations when estimating the
level and trend which is a very intuitive starting point assuming the future is represented
by the average of the past. From the tables in Section 3 it can be clearly seen how
important it is to be able to assign equal weights to past observations which can not be
achieved by other exponential smoothing models.

Note that we have not done any preprocessing of the data, identi�cation of outliers or
level shifts, or used any other strategy designed to improve the forecasts. These results
are based on simple applications of the algorithms to the data. It should be expected
that the results from the modi�cation could be improved further if some sophisticated
data preprocessing techniques are used as done by some of the competitors in the M3
competition. It is clear that the data sets include di�erent types of trend (multiplicative,
damped, multiplicative damped) and seasonal components (additive, multiplicative) in
addition to di�erent types of errors (additive and multiplicative errors) and when these
components are incorporated in the proposed method then the forecasting performance of
proposed method will improve further. In this study, the main focus was obtaining point
forecasts only. Further study will be computation of prediction intervals and expanding
this concept for other ES models.
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