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Abstract
AlSi10Mg aluminum alloys are widely used in additive manufacturing (AM) due to their low

density, high specific gravity/strength, good castability, and favorable heat properties. Laser-
based powder bed fusion (LPBF) and directed energy deposition (DED) techniques are
considered among the most suitable methods for producing parts with complex geometries,
near-net shape, and requiring adjustable microstructure properties. This study presents a
comprehensive review of high-performance AISilOMg alloys produced by additive
manufacturing methods. The chapter covers production processes, microstructural properties,
heat treatment strategies, mechanical and fatigue behavior, current challenges, and future
research trends.
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Eklemeli Uretim Yontemiyle Uretilen AlSi10Mg Alasimlarimn Uretim
Siirecleri, Mikroyapisal Ozellikleri, Isil Islem Stratejileri, Mekanik ve
Yorulma Davranislarn

Ozet

AlSi110Mg aliiminyum alasimlari, diisiik yogunluklari, yiiksek 6zgiil agirliklari/mukavemetleri,
iyi dokiilebilirlikleri ve elverisli 1s1 6zellikleri nedeniyle eklemeli imalatta (AM) yaygin olarak
kullanilmaktadir. Lazer tabanli toz yatakli fiizyon (LPBF) ve yonlendirilmis enerji biriktirme
(DED) teknikleri, karmasik geometrilere, neredeyse nihai sekle sahip ve ayarlanabilir
mikroyapi 6zelliklerine ihtiya¢ duyan pargalarin iiretimi icin en uygun yontemler arasinda kabul
edilmektedir. Bu ¢alisma, eklemeli imalat ydntemleriyle iiretilen yiiksek performansh
AlISi10Mg alasimlarinin kapsamli bir incelemesini sunmaktadir. Boliim, {liretim siireclerini,
mikroyap1 Ozelliklerini, 1s1l islem stratejilerini, mekanik ve yorulma davranigini, mevcut
zorluklar1 ve gelecekteki arastirma egilimlerini kapsamaktadir.

Anahtar Kelimeler: AlSi10Mg, Lazer toz yatakli eritme (LPBM), Katmanli imalat (AM), Is1l
islem, Mikro yap1 ve Mekanik 6zellikler
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1. INTRODUCTION

Al-Si cast alloys are widely used in the aerospace and automotive industries due to their
superior strength-to-weight ratio, good castability, and good thermal and mechanical properties
[1-4, 34]. Additive manufacturing has transformed the production of metallic components by
enabling layer-by-layer fabrication directly from digital models. Compared to conventional
casting or wrought processing, AM offers significant advantages such as design freedom,
material efficiency, and the ability to manufacture lightweight structures with complex internal
geometries. Among aluminum alloys, AlSi10Mg has gained particular attention because of its
good weldability, low cracking susceptibility, and suitability for rapid solidification conditions
inherent to AM processes [5-6]. Using a high-energy laser beam, LPBF (Laser Powder Bed
Fusion) selectively melts and fuses powder particles on a bed. It is among the best methods for
creating intricate components with few flaws, which are frequently found in conventional
casting procedures [7—11]. Because of its superior flow properties and low susceptibility to
solidification cracking, AISi10Mg is especially well suited for LPBF [12]. The distinctive
microstructures created by AM's high cooling speeds are very different from those made using
conventional manufacturing techniques. AlISi1l0Mg alloys can reach excellent strength-to-
weight ratios thanks to their microstructural characteristics and post-processing techniques,
which makes them appealing for use in energy, automotive, and aerospace applications [13-24,
33]. Particularly when utilized as engine cylinders, AISi10Mg alloys are susceptible to low-
cycle stress and fatigue from millions of combustion cycles. Therefore, before utilizing
AlSi10Mg alloy in end-use applications, it is imperative to improve its fatigue behavior [25].
As illustrated in Figure Table 2 [29], aluminum alloys can also be classified as heat-treatable
or non-heat-treatable based on whether the alloy reacts to heat treatment via precipitation
hardening.

Table 1. Mechanical Properties of AlISi1l0Mg Alloys Produced by Additive Manufacturing (Literature Review)

Yield Tensile Elongation Hardness References
Strength Strength (%) (HV)
Manufacturing (MPa) (MPa)
Condition
As-built (LPBF) | 230-280 380-460 3-6 110-130 [17, 18, 22]
Stress relieved 200-250 340-420 6-10 95-115 [19, 21]
T6-like heat | 240-300 360-430 8-12 100-120 [18, 23]
treatment
HIP+ Heat | 220-280 350-420 10-14 95-115 [19]
treatment




Table 2. Processed aluminum alloys are colored green if they are not heat-treatable, and red if they are heat-
treatable.

Fe Al-Fe-Si
Al-Cu (Si, Mn)
Cu Al-Cu-Mg
Al-Cu-Li
Si Al-Si
Al Al-Mg
Mg Al-Mg-Mn
Al-Mg-Mn
Mn Al-Mn
Al-Zn
Zn Al-Zn-Mg
Al-Zn-Mg-Cu

2. ADDITIVE MANUFACTURING METHODS FOR ALSI10MG
2.1. Laser Powder Bed Fusion (LPBF)

The most popular AM method for processing AlSilOMg is LPBF. In this procedure, a high-
energy laser selectively melts thin layers of metallic powder in accordance with a predetermined
scanning technique. Strong metallurgical bonding between layers and fine cellular and dendritic
microstructures are the results of rapid melting and solidification. Laser power, scanning speed,
hatch spacing, layer thickness, and build orientation are important process variables that affect
part quality. To reduce flaws such porosity, lack of fusion, and residual stress, these parameters
must be optimized [27-28].

2.2. Directed Energy Deposition (DED)

DED processes utilize a focused energy source (see in Figure 2), typically a laser, to melt
powder or wire feedstock as it is deposited onto a substrate. Compared to LPBF, DED allows
higher deposition rates and is suitable for large-scale components and repair applications.
However, the resulting microstructures are generally coarser due to lower cooling rates.
Directed energy deposition is a popular 3D printing technique for producing gradient-structured
metals and alloys. This technique uses a laser or electric arc to melt metals into wires or granules
[31]. This allows for the precise manipulation of the structure of metallic materials, including
the formation of gradient structures. For large-scale printing with high deposition rates, directed
energy deposition is a cost-effective production method.
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Figure 1. The process of laser powder bed fusion (LPBF) [26].
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Figure 2. Schematic representation of Directed Energy Deposition [30].
2.3. AM-produced AISi10Mg Comparison with Conventional Manufacturing

Unlike casting, where micro segregation and porosity are common issues, AM-produced

AISi10Mg can achieve refined microstructures and improved homogeneity. Compared to
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wrought alloys, AM parts exhibit anisotropy that must be carefully controlled through
processing and heat treatment. In summary, Additively Manufactured (AM) AISi10Mg has
clear benefits over its conventionally manufactured counterparts, especially when it comes to
mechanical, tribological, and microstructural characteristics [32-35].

3. MICROSTRUCTURAL CHARACTERISTICS

3.1. As-built Microstructure

The as-built microstructure of LPBF-fabricated AlISi1l0Mg typically consists of a fine cellular
aluminum matrix surrounded by a silicon-rich network. This structure forms due to rapid
solidification and solute trapping. Melt pool boundaries and epitaxial grain growth are
commonly observed, leading to a characteristic layered morphology.

3.2. Defects and Porosity

Porosity in AM AISil0Mg may originate from gas entrapment, keyhole instability, or
insufficient melting. Mechanical and fatigue qualities are strongly influenced by the size,
distribution, and shape of pores. Advanced parameter optimization and in-situ monitoring
techniques are increasingly employed to reduce defect formation.

3.3. Anisotropy and Texture

The layer-wise fabrication process introduces anisotropy in mechanical behavior. Columnar
grains aligned with the build direction and crystallographic texture influence strength, ductility,
and fatigue resistance. Understanding and controlling anisotropy is essential for reliable
structural applications.

4. HEAT TREATMENT AND POST-PROCESSING
4.1. Stress Relief Treatments

Residual stress generated during AM can lead to distortion and reduced fatigue life. Stress relief
heat treatments at relatively low temperatures are commonly applied to reduce internal stress
while preserving the fine microstructure.

4.2. Solution Treatment and Aging

Conventional T6 heat treatment, widely used for cast AISi10Mg, may not always be optimal
for AM parts. Solution treatment dissolves the silicon network, while artificial aging promotes
precipitation hardening. Modified heat treatment cycles have been developed to balance
strength and ductility in AM-fabricated components.

4.3. Hot Isostatic Pressing (HIP)

HIP is an effective post-processing technique for reducing internal porosity and improving
fatigue performance. By applying high temperature and isostatic pressure, HIP enhances
densification and mechanical reliability, particularly for safety-critical components.



5. MECHANICAL PROPERTIES
5.1. Tensile Properties

According to reports in the literature, as-built AISi10Mg alloys made using the LPBF technique
have yield strengths of roughly 230-280 MPa and tensile strengths of 380-460 MPa [17,18,22].
The silicon network structure and tiny cellular microstructure are responsible for these high
strength values [13]. However, ductility is often restricted to the range of 3—6% in the as-built
condition [18]. According to reports, stress reduction or T6-like heat treatments can cause
elongation values to reach 8-12% [19,23].

5.2. Hardness and Wear Behavior of ALSi10Mg alloy

The presence of a silicon-rich network contributes to relatively high hardness and good wear
resistance. Post-processing treatments may alter hardness depending on microstructural
evolution and precipitation behavior [18-21]. The sliding wear behavior of AlSi10Mg alloy
made by gravity casting and LPBF in both its as produced and T6 heat-treated states was
compared by Tonolini et al. While no abrasive wear was found, all examined materials
displayed adhesive and tribo-oxidative wear mechanisms. Because of a considerable increase
in porosity and a drop in hardness, the heat-treated sample had the weakest wear resistance,
whereas the as-produced sample had the greatest [36].

5.3. Fatigue Behavior

Fatigue performance is a critical consideration for AM AlSi10Mg. Surface roughness, porosity,
and residual stresses play dominant roles in fatigue crack initiation. Post-processing methods
such as machining, surface polishing, and HIP significantly enhance fatigue life. Due to surface,
internal, and residual stresses, LPBF AlSi10Mg's fatigue performance is quite poor in its as-
fabricated state. By successfully resolving important problems such residual stresses, surface
roughness, and porosity, post-processing treatments enhance fatigue performance. Heat
treatment works best for items with complicated geometries because mechanical surface
treatments are difficult. [1, 17-23,].

6. APPLICATIONS OF AM ALSI10MG ALLOYS

High-performance AlSi10Mg alloys produced by additive manufacturing are increasingly used
in lightweight structural components, heat exchangers, aerospace brackets, automotive parts,
and tooling inserts with conformal cooling channels. The ability to integrate complex
geometries and functional features provides a significant competitive advantage over
conventional manufacturing routes.

7. CHALLENGES AND FUTURE PERSPECTIVES

Despite significant progress, several challenges remain in the widespread adoption of AM
AISi10Mg alloys. These include process reproducibility, standardization, anisotropy control,
and long-term performance under service conditions. Future research is expected to focus on



advanced process monitoring, data-driven optimization, alloy modification, and hybrid
manufacturing approaches.

8. CONCLUSIONS

This chapter has presented a comprehensive investigation of high-performance AISil0Mg
aluminum alloys produced by additive manufacturing methods. The unique microstructures
generated by AM processes enable enhanced mechanical properties, while appropriate post-
processing treatments further improve performance and reliability. Continued research and
technological development will expand the application potential of AM AISi10Mg alloys in
high-performance engineering systems.
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