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SOFT STRUCTURES DERIVED FROM GROUPS

MUSTAFA BURÇ KANDEMİR

Abstract. In this paper, we get soft structures what we call cyclicizer soft

set, centralizer soft set, normalizer soft set, cosetial soft set, orbital soft set

and stabilizer soft set using some group concepts such as cyclic, centralizer and
normalizer of an element, coset and group action, in any given group. At the

same time, we mentioned that they are a soft group. We discuss their soft set

theoretic properties and give some theorems for groups. We proposed some
necessary and sufficient conditions for two groups to be isomorphic using the

soft set theory. We give relation between similarity of soft sets and groups.

1. Introduction

Group theory is at the center of the abstract algebra, and is almost as old as
mathematics. As in mathematics, groups have applications in many other fields,
such as physics and engineering. We know that a group is an algebraic structure
that defines a binary operation on it and provides certain axioms, such as associativ-
ity, existence of unit and inverse elements. In addition to this, a group isomorphism
is a bijective function which maintain group operations from one group to another.
In group theory, the place of group isomorphism is very important. Because, iso-
morphic groups have the same properties and are indistinguishable from each other.
For the foundation of group theory, we recommend Fraleigh’s legendary book [4].

On the other hand, soft set theory is built by Molodtsov to model uncertainties
in science and real life, mathematically, in 1999 [10]. Molodtsov described a soft
set as a parametrization of subsets of any universal set. He also applied the soft
set theory in many areas, such as analysis, game theory etc. The basic properties
of the soft set theory are examined in [8, 3, 9, 5, 6, 7]. We briefly mention these
informations in the preliminaries section. In [12], Pei and Miao showed that every
soft set is an information system and vice versa. In this way, the applicability of soft
sets to operations research and humanities is demonstrated. Aktaş and Çağman
defined the concept of soft group over any given group in [1]. They defined a soft
group over any given group as a parametrization of subgroups of a group sticking
to Molodtsov’s sense. They investigated fundamental properties of soft groups [1].
In [2], the concept of cyclic soft groups and their some applications on groups was
given.
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In this paper, we give some specific soft sets derived from group concepts such
as cyclic, centralizer, normalizer, coset, group action in any given group. We study
basic soft set theoretic properties. We give some necessary and sufficient conditions
for two groups to be isomorphic using the similarities of soft sets in soft set theory.

2. Preliminaries

As the preliminary information, which is necessary to study, give some definitions
and properties.

2.1. Soft Set Theory. Let U be an initial universe, E be a set of parameters,
P(U) be the power set of U , and A ⊆ E. Molodtsov [10] defined the soft set in the
following manner:

Definition 2.1. [10] A pair (F,A) is called a soft set over U where F is a mapping
given by F : A→ P(U).

Some set-theoretic operations defined by [8, 12]

Definition 2.2. [12] For two soft sets (F,A) and (G,B) over a common universe
U , we say that (F,A) is a soft subset of (G,B) and is denoted by (F,A)⊂̃(G,B) if

(i) A ⊂ B and,
(ii) ∀a ∈ A, F (a) ⊂ G(a).

Definition 2.3. [12] Two soft sets (F,A) and (G,B) over a common universe U
are said soft equal if (F,A) is a soft subset of (G,B), and (G,B) is a soft subset
of (F,A).

Definition 2.4. [12] Let (F,A) and (G,B) be two soft sets over a common universe
U such that A ∩ B 6= ∅. The soft intersection of (F,A) and (G,B) is denoted by
(F,A)∩̃(G,B), and is defined as (F,A)∩̃(G,B) = (H,C), where C = A ∩ B and
for all c ∈ C, H(c) = F (c) ∩G(c).

Definition 2.5. [8] The soft union of two soft sets (F,A) and (G,B) over a com-
mon universe U is the soft set (H,C) , denoted by (F,A)∪̃(G,B) = (H,C), where
C = A ∪B, and ∀c ∈ C,

H(c) =

 F (c) , if c ∈ A−B
G(c) , if c ∈ B −A
F (c) ∪G(c) , if c ∈ A ∩B

Definition 2.6. [3] Let U be an initial universe set, E be the universe set of
parameters, and A ⊂ E.

(i) (F,A) is called a relative null soft set (with respect to the parameter set A),
denoted by ΦA, if F (a) = ∅ for all a ∈ A.

(ii) (F,A) called a relative whole soft set (with respect to the parameter set A),
denoted by UA, if F (a) = U for all a ∈ A.

The relative whole soft set UE with respect to the universe set of parameters E
is called the absolute soft set over U .

Definition 2.7. [8] Let (F,A) and (G,B) be two soft sets over the common universe
U . Then the operation AND between (F,A) and (G,B) denoted by (F,A)∧ (G,B)
and is defined by (F,A) ∧ (G,B) = (H,A×B) where H((a, b)) = F (a) ∩G(b), for
all (a, b) ∈ A×B.
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Definition 2.8. [8] Let (F,A) and (G,B) be two soft sets over the common universe
U . Then the operation OR between (F,A) and (G,B) denoted by (F,A) ∨ (G,B)
and is defined by (F,A) ∨ (G,B) = (H,A×B) where H((a, b)) = F (a) ∪G(b), for
all (a, b) ∈ A×B.

Definition 2.9. [12] The soft complement of a soft set (F,A) is denoted by (F,A)c

and is defined by (F,A)c = (F c, A), where F c : A → P(U) is a mapping given by
F c(a) = U − F (a) for all a ∈ A.

Definition 2.10. [12] Let (F,A) be a soft set over U . We say that (F,A) is a
partition-type soft set over U if

(i) For all a ∈ A, F (a) 6= ∅.
(ii)

⋃
a∈A F (a) = U .

(iii) For any two parameters ai, aj ∈ A, F (ai) 6= F (aj)⇒ F (ai) ∩ F (aj) = ∅.

Moreover, we say that (F,A) is a covering-type soft set over U if

(i) For all a ∈ A, F (a) 6= ∅.
(ii)

⋃
a∈A F (a) = U .

In [7], Kim and Min defined the concept of a full soft set as is follows,

Definition 2.11. [7] Let (F,A) be a soft set over U . We say that (F,A) is a full
soft set if

⋃
a∈A F (a) = U .

Note that, every partition-type soft set is a covering-type soft set and every
covering-type soft set is a full soft set.

In [9], Min has introduced the concept of similarity between soft sets and inves-
tigated some properties. He defined the concept of similarity between soft sets as
follows:

Definition 2.12. [9] Let (F,A) and (G,B) be soft sets over a common universe
set U . Then (F,A) is similar to (G,B) (simply (F,A) ∼= (G,B)) if there exists a
bijective function φ : A → B such that F (x) = (G ◦ φ)(x) for every x ∈ A, where
(G ◦ φ)(x) = G(φ(x)).

In [6], we have generalized form of similarity relation on soft sets as follows.

Definition 2.13. [6] Let E be a set of parameters, U and V be two universes and
(F,A) and (G,B) be soft sets over U and V respectively, where A,B ⊆ E. We
called that (F,A) is similar to (G,B) if there exist bijective functions f : U → V
and φ : A→ B such that (f ◦ F )(α) = (G ◦ φ)(α) for every α ∈ A.

2.2. Soft Groups. In [1], Aktaş and Çağman defined the concept of soft group as
follows;

Definition 2.14. [1] Let G be a group, (F,A) be a soft set over G. Then (F,A) is
said to be a soft group over G if and only if F (a) is a subgroup of G for all a ∈ A.

Example 2.15. Let A = {♣,♦,♥,♠} and G = (R,+) be a group of real numbers
with addition.

(F,A) = {♣ = Z,♦ = Q,♥ = R,♠ = {0}}
is a soft set over R, and so (F,A) is a soft group over R.

Definition 2.16. [1] Let (F,A) be a soft group over G. Then,
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(1) (F,A) is said to be an identity soft group over G if F (a) = {eG} for all
a ∈ A, where eG is the identity element of G.

(2) (F,A) is said to be an absolute soft group over G if F (a) = G for all a ∈ A.

Definition 2.17. [1] Let (F,A) and (H,B) be to soft set over G. Then (H,B) is
a soft subgroup of (F,A), written (H,B)<̃(F,A), if

(1) B ⊆ A,
(2) H(b) < F (b) for all b ∈ B.

Definition 2.18. [1] Let (F,A) be a soft group over G and (H,B) be a soft subgroup
of (F,A). Then we say that (H,B) is a normal soft subgroup of (F,A), written
(H,B)/̃(F,A), if H(b) is a normal subgroup of F (b) for all b ∈ B.

Definition 2.19. [1] Let (F,A) and (H,B) be two soft groups over G1 and G2,
respectively. The product of soft groups (F,A) and (H,B) is defined as (F,A) ×
(H,B) = (K,A×B), where K(x, y) = F (a)×H(b) for all (a, b) ∈ A×B.

2.3. A Brief Overview Some Concepts in Group Theory.

Definition 2.20. Let G be a group and S be a subgroup of G.

Cyclic Subgroup: [4] The cyclic subgroup of G generated by an element
x ∈ G is defined to be

〈x〉 = {xn | n ∈ Z},
where Z is the set of integers.

Centralizer: [11] The centralizer of an element x ∈ G is defined to be

C(x) = {y ∈ G | xy = yx}.
Normalizer: [11] The normalizer of an element x ∈ G is defined to be

N(x) = {y ∈ G | y−1xy ∈ 〈x〉}.
Left - Right Coset: [4] The left coset of S in G is defined to be

xS = {xy | y ∈ S},
and the right coset of S in G is defined to be

Sx = {yx | y ∈ S},
where x ∈ G.

Definition 2.21. [4] Let G be a group and X be a non-empty set. It is called that
∗ : G×X → X is a group action of G on X that satisfies the following two axioms;

(a) e ∗ x = x, for all x ∈ X and e ∈ G is an identity element of G.
(b) (gh) ∗ x = g ∗ (h ∗ x), for all g, h ∈ G and for all x ∈ X.

It is called that X is G-set if G is acting on X.

Definition 2.22. [4] Let G be a group acting on a set X. The orbit of an element
x ∈ X is defined as

Orb(x) = {y ∈ X | ∃g ∈ G, y = g ∗ x}.
That is Orb(x) = G ∗ x.

At the same time, for given x ∈ X, its stabilizer is defined as

Stab(x) = {g ∈ G | g ∗ x = x}
which is subset of G.
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Note that, for each x ∈ X, Stab(x) is a subgroup of G. It is called a stabilizer
subgroup of G or isotropy subgroup of x.

Definition 2.23. [4] Let X and Y be two G-sets, and f : X → Y be a function.
It is called that f is a morphism of G-sets or G-function, if f(g ∗ x) = g ∗ f(x)
for all g ∈ G and x ∈ X. If f is a bijective G-function then we call that f is an
isomorphism.

Definition 2.24. [4] Let G be a group. For any g ∈ G, the element aga−1 is
called conjugate of g with respect to a. The automorphism f : G → G such that
f(x) = axa−1 is called conjugation.

LetG be a group. If we define the operation · : G×G→ G such that g·x = gxg−1,
then we have an action ·, and G acts on itself. We call that · is conjugation action.

3. Soft Structures in Groups

In this section, we will give some specific soft set definitions on a group using
the group theoretic concepts mentioned in the previous section.

Definition 3.1. Let G be a group. If we define the mapping c : G → P(G) such
that c(x) = C(x) for all x ∈ G, then we called that (c, G) is a centralizer soft set
over G.

Definition 3.2. Let G be a group. We define the mapping n : G → P(G) such
that n(x) = N(x) for all x ∈ G, then we called that (n, G) is a normalizer soft set
over G.

Definition 3.3. Let G be a group and S be a subgroup of G. We define the mapping
kL : G→ P(G) such that kL(x) = xS for all x ∈ G, then we called that (kL, G) is
a left cosetial soft set over G with respect to S.

Dually, if kR : G → P(G) such that kR(x) = Sx for all x ∈ G, then (kR, G) is
a right cosetial soft set over G with respect to S.

Definition 3.4. Let G be a group. We define the mapping cy : G → P(G) such
that cy(x) = 〈x〉 for all x ∈ G, then we called that (cy, G) is a cyclicizer soft set
over G.

Example 3.5. Let X = R − {0, 1}. Suppose that G = {f, g, h, i, j, k} such that

f, g, h, i, j, k : X → X and defined by f(x) =
1

1− x
, g(x) =

x− 1

x
, h(x) =

1

x
,

i(x) = x, j(x) = 1− x, k(x) =
x

x− 1
. G is a group with respect to composition of

functions and its Cayley Table is as follows:
From Definition 3.1 and Table 1, we have that c(f) = {f, g, i}, c(g) = {f, g, i},

c(h) = {h, i}, c(i) = G, c(j) = {i, j} and c(k) = {i, k}. Then the centralizer soft
set over G is

(c, G) = {f = {f, g, i}, g = {f, g, i}, h = {h, i}, i = G, j = {i, j}, k = {i, k}}.

From Definition 3.4 and Table 1, we have that cy(f) = {f, g, i}, cy(g) =
{f, g, i}, cy(h) = {h, i}, cy(i) = {i}, cy(j) = {i, j}, cy(k) = {i, k}. Then the
cyclicizer soft set over G is

(cy, G) = {f = {f, g, i}, g = {f, g, i}, h = {h, i}, i = {i}, j = {i, j}, k = {i, k}}.
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◦ f g h i j k
f g i k f h j
g i f j g k h
h j k i h f g
i f g h i j k
j k h g j i f
k h j f k g i

Table 1. Cayley Table of G

From Definition 3.2 and Table 1, we have that

n(f) = {y | y−1 ◦ f ◦ y ∈ 〈f〉} = {y | y−1 ◦ f ◦ y ∈ {f, g, i}} = G,

n(g) = G, n(h) = {h, i}, n(i) = G, n(j) = {i, j}, n(k) = {i, k}. Then the
normalizer soft set over G is

(n, G) = {f = G, g = G, h = {h, i}, i = G, j = {i, j}, k = {i, k}}.
Let take the subgroup S = {i, j} of G. Then we have that kL(f) = {f, h},

kL(g) = {g, k}, kL(h) = {f, h}, kL(i) = {i, j}, kL(j) = {i, j}, kL(k) = {g, k}.
Hence, the left cosetial soft set over G with respect to S = {i, j} is

(kL, G) = {f = {f, h}, g = {g, k}, h = {f, h}, i = {i, j}, j = {i, j}, k = {g, k}}.
We can calculate the right cosetial soft set (kR, G) over G with respect to S in

the same way.

Now, let’s give some of the results we obtained from the definitions given above.

Theorem 3.6. Let G be a group and (cy, G) (c, G) and (n, G) be cyclicizer, cen-
tralizer and normalizer soft sets over G, respectively. Then

(cy, G)⊂̃(c, G)⊂̃(n, G).

Proof. Since 〈x〉 ⊂ C(x) ⊂ N(x) for all x ∈ G, then (cy, G)⊂̃(c, G)⊂̃(n, G). �

Theorem 3.7. Let G be a group. The centralizer soft set (c, G), the normalizer
soft set (n, G) and the cyclicizer soft set (cy, G) over G are soft groups over G.

Proof. Since c(x) = C(x), n(x) = N(x) and cy(x) = 〈x〉 are subgroups of G, for
all x ∈ G, then (c, G), (n, G) and (cy, G) are soft group over G from Definition
2.14. �

Theorem 3.8. G is an abelian group if and only if (c, G) is the absolute soft set
over G.

Proof. From Definition 3.1, we have the centralizer soft set (c, G) such that c(x) =
{y | xy = yx} where c : G → P(G) is a function. Since G is an abelian group,
i.e. xy = yx for all x, y ∈ G, then we obtain that c(x) = G for all x ∈ G. Hence
(c, G) = G.

On the other hand, suppose that (c, G) = G, then c(x) = {y | xy = yx} = G for
all x ∈ G. Obviously, xy = yx for all x, y ∈ G, then G is an abelian group. �

Theorem 3.9. If G is cyclic group then (c, G) is the absolute soft set over G.
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Proof. If G is cyclic then G is abelian. From Theorem 3.8, we have (c, G) is the
absolute soft set. �

Theorem 3.10. (c, G) and (n, G) are full soft sets over G.

Proof. Let G be a group. For the identity element eG ∈ G, we have obviously that
xeG = eGx for all x ∈ G, i.e. each element of G is commutative with the identity
element. Hence, c(eG) = G for eG ∈ G. Consequently, for all x ∈ G, we obtain
that

⋃
x∈G c(x) = G, i.e. (c, G) is full.

In addition, we have (c, G)⊂̃(n, G) from Theorem 3.6. So, (n, G) is full also. �

Theorem 3.11. Let G be a group. If (cy, G) is an identity soft group, then G is
the trivial group.

Proof. For any x ∈ G, we have cy(x) = 〈x〉 = {eG}. Then x = eG. Thus G is
trivial. �

Theorem 3.12. Let G be a group. (cy, G) is the normal soft subgroup of (n, G).

Proof. It is obvious. �

Theorem 3.13. Let G be a group and S be a subgroup of G. Then (kL, G) and
(kR, G) are partition-type soft sets and covering-type soft sets over G.

Proof. For any x ∈ G, we have x ∈ kL(x) = xS 6= ∅. Then we obtain that⋃
x∈G kL(x) = G. We know that either kL(x) = kL(y) or kL(x) ∩ kL(y) = ∅ for

each x, y ∈ G. So, if we take kL(x) 6= kL(y) then we have kL(x) ∩ kL(y) = ∅ for
each x, y ∈ G. From Definition 2.10, we obtain that (kL, G) is a partition-type soft
set and so covering-type soft set over G.

The same arguments apply to (kR, G). �

Obviously, we have following theorems for cosetial soft sets over a group.

Theorem 3.14. Let G be a group and S be a subgroup of G. If S is normal, then
(kL, G) = (kR, G).

Theorem 3.15. If G is an abelian group, then (kL, G) = (kR, G).

In [2], Aktaş and Özlü defined the concept of cyclic soft group as follows:

Definition 3.16. [2] Let (F,A) be a soft group over G and X an element of P(G).
The set {(a, 〈x〉) | a ∈ A, x ∈ G} is called a soft subset of (F,A) generated by the
set X and denoted by 〈X〉. If (F,A) = 〈X〉, then the soft group (F,A) is called the
cyclic soft group generated by X.

From this definition, we can give following theorem.

Theorem 3.17. The cyclicizer soft set over any group G is a cyclic soft group over
G.

Proof. From Theorem 3.7, (cy, G) is a soft group over G. Since cy(x) = 〈x〉 for
any x ∈ G, (cy, G) is generated by G, i.e. (cy, G) = 〈G〉. Hence, we obtain that
(cy, G) is a cyclic soft group over G from Definition 3.16. �

Theorem 3.18. Let G and G′ be groups. (c, G) ∼= (c′, G′) if and only if G is
isomorphic to G′.
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Proof. Suppose that (c, G) ∼= (c′, G′). In this case, there exists a bijection f : G→
G′ such that c′ ◦ f = f∗ ◦ c. For any x ∈ G, we have

(c′ ◦ f)(x) = c′(f(x)) = {y | yf(x) = f(x)y}

and

(f∗ ◦ c)(x) = f∗(c(x)) = f∗({t | xt = tx}) = {f(t) | f(xt) = f(tx)}.

Since f is a bijection and c′ ◦ f = f∗ ◦ c, we obtain that f(t) = y and yf(x) =
f(tx). Hence, we have f(xt) = f(x)f(t), i.e. f is a homomorphism. Thus f is an
isomorphism from G to G′.

Other side of the proof of theorem is obvious. �

The definitions of the soft sets obtained using the group action concept are as
follows.

Definition 3.19. Let G be a group, X be a non-empty set and ∗ : G×X → X be
a group action on X. It is called that (Orb, X) is an orbital soft set over X, such
that Orb : X → P(X) is a set valued mapping where Orb(x) is an orbit of x in
X.

Besides,

Definition 3.20. Let G be a group, X be a non-empty set and ∗ : G × X → X
be a group action on X. It is called that (Stab, X) is a stabilizer soft set over G,
such that Stab : X → P(G) is a set valued mapping where Stab(x) is a stabilizer
of x in X.

Example 3.21. Let G = {1,−1} be group and X = R be the set of real numbers.
Define ∗ : {1,−1} × R → R : (x, y) 7→ xy multiplication of real numbers. So, ∗
is a group action and R is a G-set. For arbitrary x ∈ R, we have that Orb(x) =
{x,−x}. Hence,

(Orb,R) = {x = {x,−x} | x ∈ R}.

From Definition 2.22, since Stab(x) is a subgroup of G for each x ∈ X. Then
we obtain following theorem, obviously.

Theorem 3.22. Let G be a group and X be a G-set. Then (Stab, X) is a soft
group over G.

Theorem 3.23. Let G be a group and X be a G-set. (Orb, X) is a partition-type
soft set over X.

Proof. From definition of orbit (Definition 2.22), we have an equivalence relation
on X and defined by x1 ∼ x2 ⇔ gx1 = x2 for some g ∈ G. Therefore, Orb(x) is
an equivalence class for each x ∈ X, so the collection of orbits is a partition for X.
Hence, (Orb, G) is a partition-type soft set over X from Definition 2.10. �

Theorem 3.24. (Orb, X) is similar to (Orb, Y ) if and only if X is isomorphic
to Y .

Proof. Suppose that X is isomorphic to Y . Then we have an isomorphism f : X →
Y such that f is bijective and f(g ∗ x) = g ∗ f(x) for all g ∈ G and for all x ∈ X.
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For any x ∈ X, we have

(f∗ ◦Orb)(x) = f∗[{y ∈ X | ∃g ∈ G, y = g ∗ x}]
= {f(x) ∈ f [X] | ∃g ∈ G, f(y) = f(g ∗ x)}
= {f(x) ∈ f [X] | ∃g ∈ G, f(y) = g ∗ f(x)}
= {f(x) ∈ Y | ∃g ∈ G, f(y) = g ∗ f(x)}
= Orb(f(x))

= (Orb ◦ f)(x)

Hence (Orb, X) is similar to (Orb, Y ) from Definition 2.13.
On the other hand, suppose that (Orb, X) is similar to (Orb, Y ). We say that

y = g ∗ x for any y ∈ X. Then y ∈ Orb(x). In this way, we obtain that

f(y) ∈ f [Orb(x)] = f∗(Orb(x)) = Orb(f(x)),

i.e. f(g ∗ x) ∈ Orb(f(x)). From here, we get f(g ∗ x) = g ∗ f(x) as a result since f
is a bijective function. Hence f is an isomorphism from X to Y . �

Theorem 3.25. (StabX , X) is similar to (StabY , Y ) if and only if X is isomor-
phic to Y .

Proof. Suppose that (StabX , X) ∼= (StabY , Y ). Then we have a bijection f :
X → Y such that StabX = StabY ◦ f . Since f is a bijection, then we have that
there is one and only one y ∈ Y such that f(x) = y for each x ∈ X. Let us take
g ∈ StabY (y) = StabY (f(x)), so we have g ∗ y = y such that f(x) = y. Then we
obtain that g ∗ f(x) = f(x). Since StabX = StabY ◦ f , we have g ∈ StabX(x),
so g ∗ x = x. Thus we obtain that f(g ∗ x) = f(x) for each x ∈ X, since f is a
bijection. Hence, we have f(g ∗ x) = f(x) = g ∗ f(x). Thus f is an isomorphism
from X to Y .

If we take f is an isomorphism, then it is obvious that StabX = StabY ◦ f for
each x ∈ X. Thus (StabX , X) ∼= (StabY , Y ). �

Theorem 3.26. Let G be a group and G acts on itself by left multiplication. Then
(Stab, G) is an identity soft group.

Proof. For any x ∈ G, we have Stab(x) = {g ∈ G | gx = x} = {eG}. From
Definition 2.16, we get that (Stab, G) is an identity soft groups. �

Theorem 3.27. Let G be a group and G acts on itself by conjugation. Then
(Stab, G) = (c, G).

Proof. For any x ∈ G,

Stab(x) = {g ∈ G | gxg−1 = x} = {g | gx = xg} = c(x).

Thus we have that (Stab, G) = (c, G) from Definition 2.24 and Definition 3.1. �

4. Conclusion

As we have already stated, group theory is a major area in abstract algebra
and very important tool in mathematics. Besides, the soft set theory, which has a
wide application in many areas, is one of the most popular topics of recent times in
mathematics. In this article, we derived some specific soft sets from a given group
and discussed basic properties. We give some necessary and sufficient conditions for
isomorphic groups using soft set theoretic concepts. In [12], Pei and Miao showed
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that every soft set over any given universal set is an information system. By using
this way, soft sets derived from groups also naturally become an information system.
Therefore, as a future study, the effect of groups on information systems can be
investigated. Of course, it also can be investigated in future that effect of soft sets
in group theory.

The author hopes that this article sheds light on a way of working scientists in
this field.
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