Tahilların Pnoamatik Serpme Ekimi için Deflektör Tasarımı ve Geliştirilmesi

Zeynep DUMANOGLU, Bülent ÇAKMAK

Ege Üniversitesi Ziraat Fakültesi Tarım Makinaları Bölümü, İzmir
zeyno2019@gmail.com bulent.cakmak@ege.edu.tr

Received (Geliş Tarihi): 04.06.2013 Accepted (Kabul Tarihi): 07.10.2013

ÖZET: Tanrsmal üretimin en önemli aşaması olan ekim alanı, farklı şekillerde uygulanabilmektedir. Bunlarda birisi olan serpme ekim yaygın olarak tercih edilmektedir. Serpme ekimde, homojen olmayan tohum dağılımı düzenliği istenmeyen bir durumdur. Bu çalışmanın konusu, serpme ekimde ortaya çıkan bu durum üzerinde çalışmalar dağılımı düzenliğini iyileştirilmesi için uygun deflektör tasarımları ve geliştirilmesidir. Bunun için balık kuyruğu şeklinde üç farklı deflektör (düz-kanalli-çaprazmalı balık kuyruğu deflektör) geliştirilmiştir. Bu deflektörlerin performansları laboratuvar ortamında üç ayrı eğimde (%0-5-10) ve üç ayrı ilerleme hızında (1-1,5-2 ms⁻¹) incelenmiştir. Çalışmada, Ege bölgesinde en çok tercih edilen buğday tohumu olan Başı Bey 95 çeşidi kullanılmış ve alınan veriler istatistiksel olarak değerlendirilmiştir. Elde edilen sonuçlara göre; tasarlanan üç deflektörle yapılan serpme ekimde tüm meyillerde ve ilerleme hızlarında tohum dağılımı düzenlilingi homojen bir şekilde gerçekleşmiştir. Bu çalışma sonunda tasarılan ve geliştirilen deflektörler kullanarak yapılan serpme ekimde homojen olmayan dağılım düzeyi düzeltilmiş ve ekim makinesini oluşturan bileşenlerin sayısı azaltılmıştır.

Anahtar kelimeler: Serpme ekim, Buğday, Deflektör, Dağılım Düzeltilmesi

Design and Development of Deflectors for Pneumatic Broadcast Seeding of Grains

Abstract: Planting as one of the most important operations in plant production can be achieved in different ways. One of these is broadcast seeding and it is the most preferred method. The disadvantage of this method is inhomogeneous seed distribution. Considering and focusing on this disadvantage, a study was conducted and the objective of this study was to design and develop deflectors to improve seed distribution in broadcast seeding. For this purpose, three different deflectors (flat, channeled and impact fish tail type) were designed and developed. The performance of these deflectors was tested under the laboratory conditions. The seed distributions from the deflectors at three different slopes (0, 5 and 10%) and forward speeds (1, 1.5 and 2 ms⁻¹) were obtained. Başı Bey 95 variety, the most preferred one by the farmers in the Aegean region was during the experiments. The data obtained in the lab were evaluated statistically. The results found from the analysis indicated that all three deflectors were appropriate for broadcast seeding and met the necessary requirements. It is believed that the deflectors developed in this study will help solving inhomogeneous seed distribution and simplify the construction of the seeder by reducing the number of components in broadcast seeding.

Key words: Broadcast seeding, Wheat, Deflector, Seeding Distribution

GİRİŞ

Tanrsmal üretimin temel amacı; insanlığın besin ihtiyacı karşılamak olması karşın ne yazık ki üretim alanları giderek azalmaktadır. Bu nedenle; tanımda az alandan, en fazla verimin sağlanması yeni teknolojiler ve sürdürülebilir tanr teknikleri ön plana çıkamakta; üreticilerin tercih ettikleri üretim yöntemleri de değişiklik göstermektedir.

Ekim yöntemlerinden biri olan serpme ekim yöntemi, diğer yöntemlerle (sraya, banda..) karşılaştırıldığında tohum yaşam alanına oranı mühahale şansının olması ve sira arası mesafelerin (<10 cm) (Önal, 2005) daraltılabilmesi nedeniyle ön çıkmaktadır. Ayrıca; serpme ekim makineleri çok sayıda gömÜğu ayağa sahiptir. Ayak sayısının makine performansını düşürülenmeden azaltılması için geliştirilen uygun tasarrflar büyük önem arz etmektedir.

Deflektör (dağıtıcı), bu tasarrflar içerisinde önemli bir çözüm olarak görülmektedir. Deflektörlerin ekim
makinesi üzerinde kullanımyla çok daha az gömücü ayak ve eleman ile makine üretiminde daha az işçilik, çalışma zamanı ve maliyet, hedeflenen temel amaçtır. Bunu yaparken dikkat edilecek en önemi kısım ise; klasik ekim makinası ile aynı performansi göstermesidir.

MATERYAL ve YÖNTEM

Materyal

Buğday

Deflektörler

Makinelserme, elık yöntemde tohumlarını, tohum borusuna prömätik yoluya iletilmesinin ardından ekimi doğruan yapılması nedeniyle ekim hızı ayrıca önem taşımaktadır. Ekimdeki başarı, yatay (alanda) ve düsey (derinlik) düzlemde düzgün bir tohum dağılımı ile mümkün olmaktadır.

İdeal bir dağılımların gerçekleştirilebilmesi için prömätik serpme ekimde kullanılan tohum boruları ve bu boruların çiğ kıç ağrının tohumu toprağa ulaşması açısından büyük önem taşımaktadır. Özellikle, tohum borularının çiğ kıç ağrında yer alan deflektörün şekli ve boyutsal özellikleri dağılımı doğruan etkilemektedir.

Bu çalışma içerisinde materyal olarak, Basri Bey 95 buğday çeşidi kullanılmıştır. Bu buğday türü özellikle Ege bölgesinde üreticiler tarafından çoklu buçukla tercih edilen bir buğday çeşididir (Şekil 1). Basri Bey 95 buğday çeşidi bir dene ağırlığı 38 g, laboratuvar koşullarında çıxımlene oranı %98 dir.

Çalışma kapsamında buğday ekiminde kullanılan ekim makinaları için aşağıdaki balık kuyruğu şeklindeki deflektörler tasarlanmış ve E.U. Ziraat Fakültesi Tarım Makineleri atölyesinde üç farklı tipi imal edilmiştir (Şekil 2).

Bunlar;
- Düz deflektör
- Kanalli deflektör
- Çarpımlı deflektör dür.

Düz Balık Kuyruğu Deflektör

Bu deflektör, hava akımı yarım ile gelen tohumları doğrudan toprağa bırakıma esasına göre çalışmaktadır (Şekil 3).

Kanalli Balık Kuyruğu Deflektör

Bu deflektörün çiğ kıç kısmının ortasında beliri basınç ve hizada gelen hava akımından dolaylı, çiğ kıç ağının kapanmasını önleme amaçla bir civata yerleştirilmiştir. Böylelikle, deflektörün hava akımından olumsuz yönde etkilenmesi önlenmiş ve tohumların deflektörden çiğ kıç kolaylaştırılmıştır.

Bu deflektörün içten, üç kısımlara doğru daralan bir kesitte kanallar yer almaktadır (Şekil 4). Bu kanallar...
yardımlıa, hava ile taşınan tohumlar yönlendirilerek toprak yüzeyinde hedeflenen alana bırakılmaktadır. Böylelikle ekim alanında olası olabilecek yılın veya boşlukların önüne geceimekte ve dağılim homojen bir şekilde gerçekleştirilmektedir.

Şekil 4. Kanalli Balık Kuyruğu Deflektör

Çarpırmalı Balık Kuyruğu Deflektör

Çarpırmalı balık kuyruğu deflektörde, diğer deflektörlerden farklı olarak kanallar yerine, tohum aks yoluz üzerinde daire kesiti çarptırma barierleri bulunmaktadır (Şekil 5). Hava ile taşınarak gelen tohumlar bu barierlere çarparak, karmışık yöngeler oluşturarak ve yoğunlara olusturarak homojen bir şekilde toprak yüzeyine bırakılması sağlanmaktadır.

Şekil 5. Çarpırmalı Balık Kuyruğu Deflektör

Bu deflektör tipinde, özellikle tohum zedelenmesinin en az düzeyde olması için daire kesiti barierlerin açık olan yüzeyleri yumuşak malzemeyle kaplanmıştır.

Yöntem

Deflektörlerin performanslarını kontrol etmek için aşağıdaki belirtilen sistemler bir arada kullanılmıştır. Bu sistemler;
1. Orijinal tasarım balık kuyruğu deflektörler (Düz-Kanalı-Çarpırmalı)
2. Başınıca hava kaynağı ve hava iletim hattı
3. Hareket sistemleri (Orijinal tasarım hidrolik hareket sistem, Ray sistemi, Elektronik hız kontrol sistemi),
4. Orijinal tasarım hava ve tohum kanşim adaptörü
5. Kontrol ve ölçüm cihazları (Hassas terazi, Anemometre, Kronometre)

6. Yardımcı elementler (Ekim alanı için ölçekte plastik örtüler, yıpkı jelo ve yemek malzemesi, orijinal tasarımının eğim sağlayıcı takozlar)

Normal sırrari ekim makinesine monte edilen deflektörlerin alt kısmına ekim yapılandırılan olarak raylı arabalı bir düzen kurulmuştur (Şekil 6). Raylı arabada; bağlantı parçası ve kanca yardımı hareketli bir banda ve dolayısıyla elektronik sistemle hareketlendirilen bir motorbağlanmıştır. Raylı arabanın örtülerine uygun olarak hazırlanmış polietilen örtüler, her iki yanındaki, cvata-somun yardımı arayacak sabitlenmiştir. Bu örtüler ekim yapılan örnek alanı temsil etmektedir.

Şekil 6. Deflektörlerin denemesinde kullanılan deneme düzeninin şematik görünüşü

Ekim için gerekli olan hava, yüksek kapasiteli kompresörden bir hava portumuyla alınarak çift girişli adaptöre bağlanmıştır (Şekil 7). Çalışma kullanılacak oluku makara devri (hidrolik motor ile tahrik edilen) ve hava hızı, Basri Bey 95 için belirlenen norm değeri dikkate alınarak ayarlanmıştır. Buğday danelerinin, illetim borusunda taşınması sırasında kullanılan havannın hızı ön denemeler sonunda; hava-tohum kandırma adaptöründe 19±1 ms⁻¹, deflektör çıkış ağızında ise; 4±1 ms⁻¹ olarak ölçülüm ve denemeler bu hava hızında gerçekleşmiştir. Hava hızı her deneme öncesinde kontrol edilmiştir.
Serpme ekim uygulanan polietilen örürlerdeki karelerin her birinde bulunan tohum miktarları belirlenmiş ve bu veriler Basri Bey 95’in önceden belirlenen norm değerleri ile karşılaştırılacak hedeflenen miktarlarda ekimin gerçekleştirilmede kontor edilmistir. Daha sonra, elde edilen verilerden kullanılarak ortalama, standart sapma ve varyans faktörleri saptanmıştır.

Serpme ekim uygulamalarında tohumların tarlaya mümkün olduğuna eşit miktardada ve yaşam alan düzgünliği sağlanacak şekilde ekimi hedeflenmektedir (Mahisted, 1972; Önal, 1995). Bu nedenle, ekim yapılan tarlanın eşit karelerden oluştuğu düşünüldüğünde, bu karelerde yer alan tohumların dağılmının poisson dağılım karakterinde olması; makininin ve buna bağlı olarak deflektörlerin de istenen şekilde çalıştırın bir göstergesi olarak kabul edilmektedir.

Poisson dağılımı:

\[f(x) = e^{-\mu} \cdot \frac{\mu^x}{x!} \]

X: Karelereki tohum sayısı
\(\mu \): Poisson popülasyonu ortalaması (toplam tohum sayısı/toplam şerit sayısı)
\(e \): Doğal logaritmanın tabanı (2,718)
\(f(x) \): Her birinde \(x=1,2,3,... \) adet tohum bulunan şeritlerin ondalık olarak nispi miktarı

Geçerleştirdiğim denemeler sonucunda elde edilen verilerin, poisson dağılımına uyguluğunu aşağıdaki yöntemlerden faydalanılarak saptanmıştır (Mahisted, 1972; Önal,1995);

- \(\chi^2 \) testi
- Varyasyon faktörü (vf)

Varyasyon faktörü:

\[v_f = \frac{s^2}{\mu} \]

\(s^2 \) : Örneğin varyansı
\(\mu \): Teorik poisson ortalama değeri
Varyans (S²) :

\[S^2 = \frac{\sum X_i^2 \cdot f_i - (\sum X_i \cdot f_i)^2}{n - 1} \]

\(X_i \): Beklenen değerler
\(f_i \): Nispi değerler
\(n \): Toplam örnek ölçüsü sayısıdır.

Bu eşitliklerden elde edilen varyans değerleri varyans faktörünün dağılım düzgünliğinin gösteren çizelge kullanılarak (Çizelge 2), \(\mu = 2 \) koşuluyla karelerde yer alan tohumların yüzdesinin hangi aralıklar arasında yer aldığı saptanmış ve deflectörlerin poison dağılım düzgünliğine uygunluğu belirlenmiştir.

Çizelge 2. Varyasyon faktörünün dağılım karakterine göre sınırlar (Önal, 2005)

vf > 1,1	Negatif Binomial Dağılım: Karelerdeki tohum dağılımsında sık rastlanan bir durum, boşluk ve kümenmeler mevcut, düzgünlik bozuk
0,9 < vf < 1,1	Poisson Dağılım: Tohumların sıra üzerindeki boşluk ve kümenmeler miktarları normal düzeyde
vf < 0,9	Binomial Dağılım: Karelerdeki boşluk ve kümenmelerin azlığı sonucunda, tek daneli ekim karakteri göstermekte

Çizelge 3'de görüldüğü gibi; vf değerlerinin daha önceden belirlenen sınırlar göze göre; vf<0,9'un oldukça altında değerler belirlenmiş ve binomial düzeyde dağılım gösterdikleri saptanmıştır.

Kanallı Balık Kuyruğu Deflektör

Kanallı balık kuyruğu deflektörün denemelerinden elde edilen sonuçlarda hız ve eğime bağlı olarak vf değerleri belirlenmiş ve belirlenen ölçütlerde göre vf<0,9'dan çok daha düşük değerler elde edilmiştir (Çizelge 4).

Bu deflectörün, binomial düzeyde; boşluk ve kümenmelerin az, tek dane ekim karakterine uygun bir ekim karakteri gösterdiği belirlenmiştir.

Çizelge 4. Kanallı balık kuyruğu deflektörün hız ve eğime bağlı olarak belirlenen dağılım değerleri

[Tablo]

Çarpırmalı Balık Kuyruğu Deflektör

Çarpırmalı balık kuyruğu deflektörün denemelerinden elde edilen sonuçlarda, diğer deflectörlerde olduğu gibi varyasyon faktörünün "vf" alısmı olduğu değerler vf<0,9 koşulunu sağlamaktadır ve tek dane ekim kalitesinde ekim yapabildiğini ortaya koymaktadır (Çizelge 5).
Cizelge 5. Çarpımlı balık kuşağı deflektörün hız ve eğimi bağlı olarak belirlenen dağılım değerleri

<table>
<thead>
<tr>
<th>Deflektör No</th>
<th>Hız (m/s)</th>
<th>Eğim %</th>
<th>vf</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0,36</td>
<td>2,09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,32</td>
<td>1,98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,32</td>
<td>1,94</td>
<td></td>
</tr>
<tr>
<td>1,5</td>
<td>0</td>
<td>0,32</td>
<td>1,95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,37</td>
<td>2,06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,34</td>
<td>2,01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0,32</td>
<td>2,01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,32</td>
<td>2,03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,34</td>
<td>1,98</td>
<td></td>
</tr>
</tbody>
</table>

Prototip deflektörlerin (Düz-Kanalı-Carpımlı Balık Kuşağı Deflektörler) kendi aralarında hız ve eğime bağlı olarak vf değerleri için Duncan gruplandırılması (α=0,05 düzeyinde) uygulanmıştır.

Cizelge 6. Deflektörlerin hızlara göre varyasyon faktörü (vf) değerlerinin Duncan gruplandırılması (α = 0,05)

<table>
<thead>
<tr>
<th>Hızlar (m/s)</th>
<th>Balık Kuşağı Deflektörleri*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0,36b</td>
</tr>
<tr>
<td>2</td>
<td>0,35a</td>
</tr>
<tr>
<td>3</td>
<td>0,33a</td>
</tr>
</tbody>
</table>

*1-Düz; 2-Kanalı 3-Çarpımlı deflektör

Duncan gruplandırmasında (α=0,05 düzeyinde); farklı hız kademelerinde (1-1,5-2 ms⁻¹) deflektörlerin almış olduğu değerler incelenmiştir; deflektörlerin varyasyon faktörü (vf) üzerine herhangi bir etkisi olmadığı belirlendi (Cizelge 6).

LITERATÜR LİSTESİ

Önal, İ., 2005. Serpme Ekimün Matematik-İstatistik Esasları ve Ekim Makinelere Kullanılması, Tarm Makinelere Bilim Dergisi,(1,2),93-100, İzmir

Sepetoglu, H., 2006. Tarla Bıktleri 1(Tarla Tanımı, Tahiller, Yemeklik Tane Baklagiller), Ege Üniversitesi Yayınları Ziraat Fak. Yayın No:569, Ege Üniversitesi Basmevi, Bornova, İzmir