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ABSTRACT 

In this study, a numerical approach is proposed to obtain approximate solutions of nonlinear system of second-
order boundary value problem. This technique is essentially based on the truncated Taylor series and its matrix 
representations with collocation points. Using the matrix method, we reduce the problem system of nonlinear 
algebraic equations. Numerical examples are also given to demonstrate the validity and applicability of the 
presented technique. The method is easy to implement and produces accurate results. All numerical computations 
have been performed on the computer algebraic system Maple 9. 
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Lineer Olmayan Sistemlerin İkinci Mertebe Sınır-Değer Problemleri 
İçin Taylor Sıralama Metodu 

ÖZET 

Bu çalışmada, lineer olmayan ikinci mertebe sınır değer probleminin yaklaşık çözümünü elde etmek için bir 
nümerik yaklaşım önerilmiştir. Bu teknik, temel olarak sıralama noktaları ile birlikte kesilmiş Taylor serisi ve onun 
matris gösterimlerini esas almaktadır. Matris metodu ile problem, lineer olmayan cebirsel denklem sistemine 
indirgenir. Ayrıca, sunulan tekniğin geçerliliği ve uygulanabilirliğini göstermek için nümerik örnekler verilmiştir. 
Metodun uygulanması kolaydır ve uygulama sonucunda doğru sonuçlar elde edilir. Çalışmadaki bütün sayısal 
hesaplamalar Maple 9 programında yapılmıştır. 
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I. INTRODUCTION 

 
RDINARY differential systems are encountered in scientific fields such as biology, medicine, 

physics and engineering. Many real life phenomena are modelled by second order ordinary 
differential systems [1-4]. Although, there are many classical methods to solve second-order initial value 
problems [5,6], these methods cannot be  applied to second-order boundary value problems (BVPs). 
Therefore, it is required to numerical methods. 

In this paper, we will consider the following nonlinear system of second-order differential equations: 

1 1 1 2 1 3 2 4 2 5 2 1 1 2 1

2 1 2 2 2 3 1 4 1 5 1 2 1 2 2

( ) ( ) ( ) ( ) ( ) ( , ) ( ),

( ) ( ) ( ) ( ) ( ) ( , ) ( ),

y a t y a t y a t y a t y a t y N y y f t

y b t y b t y b t y b t y b t y N y y f t

 ′′ ′ ′′ ′+ + + + + + =


′′ ′ ′′ ′+ + + + + + =

                                 (1) 

with boundary conditions  

1 1

2 2

(0) (1) 0,

(0) (1) 0,

y y

y y

= =
= =

                                                                                                                                 (2) 

where 0 1,t≤ ≤  1N  and 2N  are nonlinear functions of 1y  and 2.y  Also ( ), ( )i ia t b t  for 1, ,5i = K  

are given continuous functions and 1f  and 2f  are known functions. 

In [7], the analytical solution of problem (1)-(2) is represented in the form of series in the reproducing 
kernel space under the assumption that the solution to problem (1)-(2). In [8] Lu, proposed a variational 
iteration method, in [9] Dehghan et al. presented a numerical method based on  Sinc-collocation method, 
in [10] Saadatmandi et al. solved this problem by using the Chebyshev finite difference method. 
Dehghan et al. suggested a numerical method base on the cubic B-spline scaling functions to find the 
solutions of the system [11]. Also, in [12] He’s homotopy perturbation method is introduced to solve 
problem (1)-(2). The existence and uniqueness of solutions of second-order systems have been 
discussed, including the approximation of solutions via finite difference method [13-19]. 

Since the beginning of 1994, Taylor, Chebyshev, Legendre, Laguerre, Berstein and Bessel collocation 
and matrix methods have been used by Sezer et al.[20-25] to solve differential, difference, integral , 
integro-differential, delay differential equations  and  their systems. In the present work, by modifying 
and developing matrix and collocation methods studied in [20-25], we will find the approximate 
solutions of the system (1) with boundary conditions (2) in the truncated Taylor series form  

 
( )

0

( )
( ) ( ) , , 1,2, .

!

nN
n i

i in in
n

y c
y t y t c y i a t b

n=

= − = = ≤ ≤∑                                                          (3) 

where , ( 0,1,..., , 1,2)iny n N i= =  are unknown coefficients to be determined. 

The organization of this paper is as follows: In the next section we describe the matrix representations 
of each term in the system (1)-(2). In Section 3, we find the fundamental matrix relation of this system. 
In Section 4, the Taylor collocation method is performed. In Section 5, the accuracy of solution is given 

O
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and in Section 6, some computational results are given to clarify the method. Section 7 ends this paper 
with a brief conclusion.      

 

II. FUNDAMENTAL  RELATIONS  

Let us consider the nonlinear system in the form (1) and find the matrix representations of each 
term in the system. First we convert the solution defined by (3) and its derivatives, for 

0,1, ,n N= K  to the following matrix forms: 
 

( ) ( ) , 1,2iy T Yit t i= =                                                                                                             (4) 

( ) ( ) ( ) , 1,2n n
iy T B Yit t i= =                                                                                                     (5) 

where 

2

,0 ,1 ,2 ,

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0
( ) 1 , ,

0 0 0 0

0 0 0 0 0

.

T B

Y

N

T

i i i i i N

t t t t

N

y y y y

 
 
 
 

 = =   
 
 
 
 

 =  

K

K

K
K

M M M M M M

K

K

K
 

Nonlinear part of the system (1), 1 2( , ), 1,2iN y y i =  can be found as 2( )iy t  or 

( ) ( ), , , 1, 2.i jy t y t i j i j≠ =  Also, we can write the matrix form of these nonlinear expressions, 

respectively, 

2
1 ( ) ( ) ( )*

1,1T T Yy t t t=                                                                                                                          (6) 

2
2 ( ) ( ) ( )*

2,2T T Yy t t t=                                                                                                                          (7) 

1 2( ) ( ) ( ) ( )*
2,1T T Yy t y t t t=                                                                                                                   (8)       

2 1( ) ( ) ( ) ( )*
1,2T T Yy t y t t t=                                                                                                                    (9)    

where 

2( 1) ( 1)

( ) 0 0

0 ( ) 0
( ) ,

0 0 ( )
N N

t

t
t

t + × +

 
 
 =
 
 
 

*

T

T
T

T

K

K

M M O M

K
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2

2

2

2

1,0 1,1 1, ( 1) 1

2,0 2,1 2, ( 1) 1

1,0 1,1 1, ( 1) 1

2,0 2,1 2, ( 1) 1
.

N N

N N

N N

N N

y y y

y y y

y y y

y y y

+ ×

+ ×

+ ×

+ ×

 =  

 =  

 =  

 =  

T
1,1 1 1 1

T
2,2 2 2 2

T
2,1 2 2 2

T
1,2 1 1 1

Y Y Y Y

Y Y Y Y

Y Y Y Y

Y Y Y Y

K

K

K

K
 

 

III. FUNDAMENTAL  MATRIX EQUATIONS FOR SYSTEM (1) 

We are now ready to construct the fundamental matrix equations for the nonlinear system of second-
order boundary value problem (1). For this purpose, substituting the matrix relations (4)-(9) into system 
(1) and simplifying, we obtain the system of matrix equations 

,1 2 3 4 5 1

,1 2 2 3 4 5 2

( )[ ( ) ( ) ] ( )[ ( ) ( ) ( ) ] ( ) ( ),

( )[ ( ) ( ) ] ( )[ ( ) ( ) ( ) ] ( ) ( ).

2 2
1 2 1

2 2
1 2

T B B I Y T B B I Y N Y

T B B I Y T B B I Y N Y

i j

i j

t a t a t t a t a t a t t f t

t b t b t t b t b t b t t f t

 + + + + + + =


+ + + + + + =
           (10) 

Therefore, we can write the matrix representation of the system (10) in the form  

, 1

, 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2 1

1 1 2 2 2

D Y D Y N Y

E Y +E Y N Y

i j

i j

t t t f t

t t t f t

 + + =


+ =
                                                                                          (11)       

where 

1 2( ) ( )[ ( ) ( ) ],2
1D T B B It t a t a t= + +  

3 4 5( ) ( )[ ( ) ( ) ( ) ],2
2D T B B It t a t a t a t= + +  

3 4 5( ) ( )[ ( ) ( ) ( ) ],2
1E T B B It t b t b t b t= + +  

and 

1 2( ) ( )[ ( ) ( ) ].2
2E T B B It t b t b t= + +  

Consequently, the fundamental matrix equations of the system (11) can be written in the following 
compact form 

                                                                                                                         (12) 

 

where 

( ) ( ) ( )P Y N ft t t+ =
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2 2

1

22 2( 1) 2( 1) 1 2 1

,

,2 2( 1) 2( 1) 1

( ) ( ) ( )
( ) , , ( ) ,

( ) ( ) ( )

( ) 0
( ) , .

0 ( )

1 2 1

1 2 2

1

2

D D Y
P Y f

E E Y

N Y
N Y

N Y

N N

i j

i jN N

t t f t
t t

t t f t

t
t

t

× + + × ×

× + + ×

     
= = =     
     

  
= =   
      

 

IV. TAYLOR COLLOCATION METHOD 

In this section, by substituting the collocation points defined by 

, 0,1,..., ,s

b
t s s N

N
= =  

into the fundamental matrix equation (12), we obtain the new system  

( ) ( ) ( ), 0,1,...,P Y N Y Fs s st t t s N+ = =                                                                                          (13) 

and therefore, the new fundamental matrix equation 

*WY VY F+ =                                                                                                                                  (14) 

where 

22

3
3

0

1

2( 1) 12( 1) 2( 1)

0

1

2( 1) 2( 1) 2( 1) 1

( ) 0 0

0 ( ) 0
,

0 0 ( )

( ) 0 0

0 ( ) 0
, .

0 0 ( )

*

P Y

P Y
W Y ,

P Y

YN

N Y
V Y=

N Y

N NN N

N N N N

t

t

t

t

t

t

+ ×+ × +

+ × + + ×

   
   
   = =
   
   

  

  
  
  =   
  
    

K

K

M M O M M

K

K

K

M M O M M

K

 

To find matrix representation of boundary conditions given with (2), by using Eq. 4 we can write row 
matrices as 

1 2(0) 0, (0) 0T Y T Y= =                                                                                                                             

and 

1 2(1) 0, (1) 0.T Y T Y= =                                                                                                                              

Thus, we obtain the matrix forms of the conditions, respectively, 
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0J Y=0                                                                                                                                                  (15) 

and 

 1J Y=0                                                                                                                                                 (16) 

where 

2 2( 1)

0 1

2 2( 1)

1

2 2( 1) 1

(0) 0 (1) 0
,

0 (0) 0 (1)

.

T T
J J

T T

Y
Y

Y

NN

N

× +× +

+ ×

   
= =   
   

 
=  
 

 

By replacing the matrices (15) and (16) into any rows of the partW  in Eq. 14, we get the new coefficient 

matrix �W  for system based on the conditions. Thus, the fundamental matrix equation of  the system (1) 

under boundary conditions (2) corresponds to a system of 2( 1)N +  nonlinear algebraic equations with 

the unknown coefficients 1,ny  and 2, ,ny ( 0,1, , ).n N= K  

Finally, the unknown coefficients are computed by solving this system and they are substituted in Eq. 
3. Hence, the Taylor polynomial solutions  

, ,
0

( ) , 1,2
N

n
i N i n

n

y t y t i
=

= =∑                                                                                                                (17) 

can be obtained. 

 

V. ACCURACY OF SOLUTIONS 

We can easily check the accuracy of the above solutions. Since truncated Taylor series (3) is the 

approximate solution of  system (1), when the function , ( ), 1,2,i Ny t i =  and its derivatives are substituted 

in system (1), the resulting equation must be satisfied approximately; that is, for 

[0,1], 0,1,2,...,qt t q= ∈ =
 

1, 1 1, 2 1, 3 2, 4 2,

1,
5 2, 1 1, 2, 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 0,

( ) ( ) ( ( ), ( )) ( )
N q q N q q N q q N q q N q

N q
q N q N q N q q

y t a t y t a t y t a t y t a t y t
E t

a t y t N y t y t f t

′′ ′ ′′ ′− + + +
= ≅

+ + −  

2, 1 2, 2 2, 3 1, 4 1,

2,
5 1, 2 1, 2, 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 0,

( ) ( ) ( ( ), ( )) ( )
N q q N q q N q q N q q N q

N q
q N q N q N q q

y t b t y t b t y t b t y t b t y t
E t

b t y t N y t y t f t

′′ ′ ′′ ′− + + +
= ≅

+ + −
 

and , ( ) 10 , 1,2qk

i N qE t i
−≤ = ( qk  positive integer). 
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If max10 10qk k− −=  ( qk  positive integer) is prescribed, then the truncation limit N  is increased until 

the difference , ( )i N qE t  at each of the points becomes smaller than the prescribed 10 ,k−  see [20-25]. 

 

VI. NUMERICAL EXPERIMENTS 

In this section we show the efficiency of the presented method by solving the following examples. In 

tables and figures, we give the values of the exact solutions ( ), 1,2,iy t i = and the absolute error 

functions , ,( ) ( ) ( ) , 1,2,i N i i Ne t y t y t i= − =  are presented at selected points of the given interval. 

Results are shown with tables and figures. All numerical computations have been made in Maple 9. 

Example 1. Let us first consider the linear system of second-boundary value problems [8,12]. 

1 1 2

2 2 1

( ) ( ) ( ) 2,

( ) 2 ( ) 2 ( ) 2

y t t y t t y t

y t t y t t y t

 ′′ + + =


′′ + + = −

                    0 1,t≤ ≤  

with the boundary conditions 1 1 2 2(0) (1) 0, (0) (1) 0.y y y y= = = =  The exact solutions of this 

problem are 2
1( )y t t t= −  and 2

2( ) .y t t t= −  Now, let us apply the procedure in Section 4 to obtain this 

approximate solution. Firstly, we note that  

1 3 4 1 3 4( ) ( ) ( ) ( ) ( ) ( ) 0,a t a t a t b t b t b t= = = = = =  2 5( ) ( ) ,a t a t t= =  2 5( ) ( ) 2 .b t b t t= =  The set of 

collocation points for 2N =  is computed as 0 1 2

1
0, , 1

2
t t t = = = 
 

 and the fundamental matrix 

equation of the problem from Eq. 10 is 

1 2

1 2

[ ( ) ( )] ( ) 2,

2 ( ) [ ( ) 2 ( )] 2.

2

2

T B T Y T Y

T Y T B T Y

t t t t t

t t t t t

 + + =
 + + = −

 

We can find the compact form of this system from Eq. 12 as 

( ) ( )P Y ft t=  

where 

2 3 2 3

2 3 2 3

22
( ) , ( ) .

22 2 2 2 2 2 2
P f

t t t t t t
t t

t t t t t t

 +  
= =   −+   

  

The augmented matrix for this fundamental matrix equation is calculated as 
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0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 2

0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 ; 2

1 1 17 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 ; 2

2 4 8 2 4 8[ ] .
1 1 1 9

0 0 0 0 0 0 1 1 0 0 0 0 0 0 ; 2
2 4 2 4

0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 1 1 1 ; 2

0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 4 ; 2

W;F

 
 − 
 
 
 =
 − 
 
 
 − 

 

From Eq. 15 and 16, the matrix forms of the boundary conditions are written as 

0

1

1 0 0 0 0 0 ; 0
[ ;0] ,

0 0 0 1 0 0 ; 0

1 1 1 0 0 0 ; 0
[ ;0] .

0 0 0 1 1 1 ; 0

J

J

 
=  
 

 
=  
 

 

Therefore, the new augmented matrix based on the conditions becomes 

� �

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 2

0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 ; 2

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ; 0
[ ] .

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ; 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 ; 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 ; 0

W;F

 
 − 
 

=  
 
 
 
 

 

By solving this system, the Taylor coefficients matrix is gained as 

[ ]0 1 1 0 1 1
T

Y= − −  or  

[ ] [ ]1 20 1 1 , 0 1 1 .
T T

Y Y= − = −  

Substituting the elements of these column matrixes into Eq. 4, we obtain the solution set in 

terms of Taylor polynomials as 

2 2
1 2( ) , ( )y t t t y t t t= − = −  

which are the exact solutions. 
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Example 2. In the second example, consider the nonlinear system [8] 

1 2 1 1

2 1 1 2 2

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

y t t y t y t f t

y t t y t y t y t f t

 ′′ ′− + =


′′ ′+ + =

                0 1,t≤ ≤  

with the boundary conditions 1 1 2 2(0) (1) 0, (0) (1) 0.y y y y= = = =  Here, 3 2
1( ) 2 6f t t t t= − +  and 

5 4 3 2
2( ) 2 2.f t t t t t t= − + + − +  The exact solutions of  the problem are 3

1( )y t t t= −  and 

2
2( ) .y t t t= −  When we apply the procedure in Section 4 for 3N = , we obtain the solutions 

$ �3 2
1 2( ) , ( )y t t t y t t t= − = −  which are the exact solutions. 

Example 3. [7,9] In this example, consider the linear system of second-order boundary value problem 

1 1 1 2 2 1

2
2 2 1 1 2

1 1 2 2

( ) ( ) ( ) ( ) 2 ( ) ( ),

( ) ( ) 2 ( ) ( ) ( ),

(0) (1) 0, (0) (1) 0

y t y t ty t y t ty t f t

y t y t ty t t y t f t

y y y y

 ′′ ′ ′+ + + + =

 ′′ ′+ + + =
 = = = =


 

where 0 1,t≤ ≤  2
1( ) 2(1 )cos( ) cos( ) 2 sin( ) (4 2 4)sin( ),f t t t t t t t t tπ π π= − + + + + − −  and 

3 2 2
2( ) 4( 1)cos( ) 2( 2)sin( ) (1 )sin( ).f t t t t t t tπ π= − − + − + − + −  The exact solutions are 

1( ) 2(1 )sin( )y t t t= −  and 2( ) sin( ).y t tπ=  We obtain the approximate solutions by Taylor 

polynomials of the problem for 5,10,20.N =  In Tables 1-2, the absolute errors obtained by the present 

method for 10,20N =  are compared with the results obtained by the method using in [7] and the sinc- 

collocation method in [9] with the same number of  points in [ ]0,1 . It is seen from these tables that the 

present method is closer to exact solution than the other methods. 

Table 1. Absolute errors of 1( )y t
 
for Example 3. 

 Method of [7] Sinc-Collocation Method [9] The Present Method 

it  10N =  20N =  10N =  20N =  10N =  20N =  

0.08 3.3e-003 8.0e-004 3.2e-003 3.0e-004 0.5e-007 0.1e-009 
0.24 7.7e-003 1.9e-003 9.2e-004 8.5e-005 0.12e-006 0 
0.40 9.7e-003 2.4e-003 2.0e-003 3.5e-004 0.16e-006 0.1e-009 
0.56 9.5e-003 2.4e-003 2.2e-004 2.6e-004 0.16e-006 0.1e-009 
0.72 7.3e-003 1.8e-003 4.1e-003 2.0e-004 0.14e-006 0.3e-009 
0.88 3.4e-003 8.0e-004 1.0e-002 2.6e-004 0.9e-007 0.1e-009 
0.96 1.1e-003 2.0e-003 2.1e-003 2.6e-003 0.4e-007 0.2e-010 
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Table 2. Absolute errors of 2( )y t  for Example 3. 

 Method of [7] Sinc-Collocation Method [9] The Present Method 

it  10N =  20N =  10N =  20N =  10N =  20N =  

0.08 7.7e-003 1.9e-003 1.5e-003 2.0e-003 0.86e-007 0 
0.24 2.0e-002 5.1e-003 7.0e-003 9.8e-004 0.23e-006 0 
0.40 2.7e-002 7.1e-003 7.4e-003 1.1e-003 0.35e-006 0.5e-009 
0.56 2.7e-002 6.9e-003 1.0e-002 1.4e-003 0.45e-006 0 
0.72 2.0e-002 5.2e-003 4.4e-003 5.5e-005 0.55e-006 0.7e-009 
0.88 9.4e-003 2.4e-003 2.1e-002 7.7e-004 0.63e-006 0.14e-008 
0.96 3.1e-003 8.0e-003 6.9e-003 8.3e-004 0.44e-006 0.18e-008 

 

Example 4. [12] Our last example is the non-linear system  

2
1 2 1 1

2 1 2 2

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

y t t y t t y t f t

y t t y t y t f t

 ′′ + + =


′′ ′+ + =

                 0 1,t≤ ≤  

with the boundary conditions 1 1 2 2(0) (1) 0, (0) (1) 0,y y y y= = = =  where 

2 2 4 3
1( ) ( ) ( ) 3 2f t sin t t sin t t t tπ π π= − + + − +  and 3 2

2( ) ( ) 3 8 6.f t t cos t t t tπ π= + − + −  The exact 

solutions of this problem are 1( ) ( )y t sin tπ=  and 3 2
2( ) 3 2 .y t t t t= − +  Using the procedure in Section 

4, we calculate the approximate solutions 1, ( )Ny t  and  2, ( )Ny t  for 6,8,10.N =  In Tables 3-4, the exact 

solutions and approximate solutions obtained by the present method are compared. On the other hand, 

in Fig. 1-2, the absolute errors for the present method are shown for different values of .N  Additionally, 

in Table 5, the accuracy of solutions are stated. These results show that if N  increases, than the absolute 
errors decrease more rapidly. 

Table 3. Numerical results of solutions 1( )y t of Example 4. 

 Exact Solution Present method 

it  1( ) sin( )i iy t tπ=  1,66, ( )iN y t=  1,88, ( )iN y t=  1,1010, ( )iN y t=  

0.1 0.3090169944 0.3085841093 0.3090243256 0.3090169105 
0.2 0.5877852524 0.5869635288 0.5877994680 0.5877850874 
0.3 0.8090169944 0.8077989920 0.8090382049 0.8090167485 
0.4 0.9510565165 0.9494390161 0.9510845314 0.9510561908 
0.5 1.0 0.9980106604 1.000034626 0.9999995978 
0.6 0.9510565163 0.9487139849 0.9510973706 0.9510560420 
0.7 0.8090169941 0.8063201981 0.8090635500 0.8090164533 
0.8 0.5877852522 0.5848734949 0.5878372288 0.5877846485 
0.9 0.3090169936 0.3065966020 0.3090671066 0.3090163656 
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Table 4. Numerical results of solutions 2( )y t of Example 4. 

 Exact Solution Present method 

it  3 2
2( ) 3 2i i i iy t t t t= − +  2,66, ( )iN y t=  2,88, ( )iN y t=  2,1010, ( )iN y t=  

0.1 0.171 0.1709254664 0.1710012938 0.1709999851 
0.2 0.288 0.2878551222 0.2880025096 0.2879999712 
0.3 0.357 0.3567941626 0.3570035593 0.3569999591 
0.4 0.384 0.3837474041 0.3840043670 0.3839999500 
0.5 0.375 0.3747185358 0.3750048635 0.3749999444 
0.6 0.336 0.3357103322 0.3360049891 0.3359999430 
0.7 0.273 0.2727258226 0.2730047107 0.2729999466 
0.8 0.192 0.1917704189 0.1920039970 0.1919999550 
0.9 0.099 0.09885500963 0.09900267529 0.09899996937 

 

 

 

Figure. 1. Comparison of absolute error functions 1, ( )Ne t  of Example 4 for 6,8,10.N =
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Figure. 2. Comparison of absolute error functions 2, ( )Ne t  of Example 4 for 6,8,10.N =  

 

Table 5. Accuracies of the solutions of Example 4 for 8,10.N =  

Present method 

it  1,8( )iE t  1,10( )iE t  2,8( )iE t  2,10( )iE t  

0.1 0.38636283e-004 0.2717e-008 0.3897e-006 0.29997344e-009 
0.2 0.2348542e-004 0.442e-008 0.2575e-006 0.28676425e-009 
0.3 0.135312e-004 0.58e-008 0.1271e-006 0.50503154e-009 
0.4 0.69530e-005 0.150e-007 0.360e-007 0.169243191e-008 
0.5 0.2e-008 0.24e-007 0.171288e-009 0.193190512e-008 
0.6 0.143913e-004 0.187e-007 0.1609e-006 0.196237761e-008 
0.7 0.658243e-004 0.183e-007 0.1564e-005 0.52748838e-008 
0.8 0.4209972e-003 0.218e-007 0.16807e-004 0.79202062e-008 
0.9 0.41214521e-002 0.444069e-004 0.24904e-003 0.200696419e-005 

 

 

VII. CONCLUSION 

In this study, a new Taylor matrix-collocation method is proposed for nonlinear system of second-order 
boundary value problems. It is observed from Figures and Tables that the method is a simple and 
powerful tool to obtain the approximate solution. When the numerical experiments are analyzed and the 

results are compared, it is seen that, the present method is quite effective. Additionally, if N  is 



23 

increased, it can be seen that approximate solutions obtained by the mentioned method are close to the 
exact solutions. One of the considerable advantages of the method is finding the approximate solutions 
very easily by using the computer program written in Maple 9. Shorter computation time and lower 
operation count results in a reduction of cumulative truncation errors and improvement of overall 
accuracy. In addition, the method can also be extended to other models in the future. 
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