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Abstract: Along with rapid developments in computational technologies, 

evolutionary/heuristic/metaheuristic algorithms have frequently used in many applications to solve 

optimization problems. Nowadays, new algorithms are being developed and improvements are being 

made to existing algorithms. In this study, chaos-based modifications have been proposed for recently 

developed metaheuristic algorithms: Backtracking Search (BS), Grey Wolf Optimizer (GWO) and Vortex 

Search (VS), and the algorithms have been analyzed by detailed comparisons. The proposed approaches 

are based on generating new values through chaos maps, rather than some random numbers normally 

used in the algorithms, to improve their solutions. In addition, some modifications are performed to the 

structural operations of the algorithms used in the optimization process by taking advantage of chaos-

based values. The performances of the algorithms are evaluated by considering two metrics: convergence 

rates and statistical results. Experiments demonstrated that the performance of the algorithms with the 

proposed modifications based on the chaos approach, are better than, or at least comparable to, the 

original algorithms. 

Keywords: Metaheuristic algorithms, Chaotic maps, Chaotic sequences.  

Güncel Metasezgisel Algoritmalar İçin Kaos Tabanlı Yaklaşımlar 

Öz: Hesaplama teknolojilerindeki hızlı gelişmelerle orantılı olarak, optimizasyon problemlerinin 

çözümünde evrimsel/sezgisel/metasezgisel algoritmalardan birçok alandaki uygulamalarda sıklıkla 

faydalanılmaktadır. Günümüzde, yeni algoritmalar geliştirilmekte ve mevcut algoritmalara yenilikler 

uygulanmaya devam edilmektedir. Bu çalışmada, son zamanlarda geliştirilmiş olan metasezgisel 

algoritmalardan olan: Geri İzleme Arama (BS), Gri Kurt Optimizasyon (GWO) ve Girdap Arama (VS) 

algoritmalarına kaos tabanlı modifikasyonlar önerilmiş ve algoritmaların, kıyaslamalarla detaylı analizleri 

gerçekleştirilmiştir. Önerilen yaklaşımlar, algoritmaların çözümlerini geliştirmek için işlemlerinde 

kullandıkları bazı rassal değişkenler yerine, kaos haritalarına dayanan yeni değişkenlerin üretilmesi 

temeline dayanmaktadır. Bunun yanında, kaos tabanlı bu değişkenler kullanılarak algoritmaların 

optimizasyon sürecinde kullandıkları yapısal işlemlerinde modifikasyonlar gerçekleştirilmektedir. 

Algoritmaların performansları; istatistiksel ve yakınsama hızları açısından, iki yönlü olarak analiz 

edilmektedir. Kaotik haritalara dayanan yaklaşımların, orijinal algoritmalar üzerinde daha iyi veya en 

azından karşılaştırılabilir sonuçlar ürettiği, gerçekleştirilen deneylerde gösterilmiştir. 

Anahtar Kelimeler: Metasezgisel algoritmalar, Kaos haritaları, Kaotik diziler. 

1. INTRODUCTION 

The optimization process is based on the principle of defining the vectors representing the 

possible solutions of the problem within the search space, maximizing or minimizing the 

objective function, and achieving the most appropriate solutions. Nowadays, existing 

metaheuristic algorithms generally focus on such optimization problems. In general, these 
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optimization approaches can be categorized according to whether the processes they are based 

upon are random or deterministic. Gradient information is also an important notion in 

deterministic approaches, which can achieve similar solutions to the same problem if they have 

the same initial starting points. Alternatively, metaheuristic algorithms using random 

approaches can produce different solutions for the same problem without any repetitions, due to 

their random-like behavior. 

In general, metaheuristic algorithms are based on the initial population of individuals 

representing possible solutions to the problem. Afterwards, the algorithms improve the solutions 

within their populations using their own special operations in order to reach the best solutions in 

the search space. One of the main factors that affects the performance of algorithms is how to 

obtain a good trade-off between exploration and exploitation capabilities. Generally speaking, 

exploration reveals the characteristics of the whole search space, while exploitation is the ability 

to improve the solutions defined within the search space. If exploration is too robust, the 

algorithm can visit undesirable regions of the search space, whereas if exploitation is much 

stronger than exploration, it causes premature convergence problems (Zaharie, 2003). 

Therefore, maintaining a good balance between these two factors is vital for the performance of 

metaheuristic algorithms.  

The main aim of metaheuristic algorithms is to provide a proper balance between 

exploration and exploitation, which directly affects the performance of the algorithms. These 

algorithms, which are often inspired by natural evolution, can produce solutions without using 

gradient information (Yang, 2010, Goldberg, 1989). Over the last few decades, a lot of 

metaheuristics based on a random approach have been designed, such as particle swarm 

optimization (PSO) (Kennedy and Eberhart, 1995) differential evolution (DE) (Storn, 1995), 

cuckoo search (CS) (Yang and Deb, 2009), harmony search (HS) (Geem et al., 2001), and so 

on. In addition, according to the “No Free Lunch Theorem (Wolpert and Macready, 1997)”, it 

cannot be said that a single algorithm can perform well on all problems. This theory leaves the 

door open for algorithm developers, challenging them to develop more powerful and efficient 

algorithms (Civicioglu, 2013, Mirjalili et. al., 2014, Dogan and Olmez, 2015).  
Random numbers are frequently used by the algorithms. On the other hand, using these 

random numbers may give good results on one type of problem while they are not applicable to 

another. Besides, the solutions achieved by metaheuristics cannot always give the desired 

solution due to the nature of random search strategies. Chaos approach can be helpful to ensure 

the performance stability of the algorithms and it has been successfully applied to 

metaheuristics in balancing exploration and exploration in published literature (Wang et. al.,  

2014, Zhenyu et. al., 2006, Wang et. al., 2014, Gandomi et. al., 2013, Li et. al., 2011). In this 

study, chaotic values are substituted for some of the random numbers generated by the actual 

metaheuristic algorithms: Backtracking Search (BS) (Civicioglu, 2013), Grey Wolf Optimizer 

(GWO) (Mirjalili et. al., 2014) and Vortex Search (VS) (Dogan and Olmez, 2015), and the 

modifications are proposed by utilizing six different one-dimensional chaotic maps. The 

experimental results show that using chaotic sequences generated by the maps can be a better 

alternative to random numbers for improving the performance of the algorithms.  

The rest of this paper is organized as follows: Metaheuristic algorithms and the chaotic 

maps are briefly described in Section 2. The proposed modifications are presented in Section 3. 

The experimental results and the performance comparisons are given in Section 4 and finally, 

the study conclusions are detailed in Section 5.    

2. METAHEURISTIC ALGORITHMS AND CHAOTIC MAPS  

2.1. Metaheuristic Algorithms 

Nowadays, metaheuristics, such as evolutionary algorithms (EAs), inspired by ideas of 

natural evolution have attracted much interest and have been frequently used by engineers, 

researchers, etc. for solving optimization problems. These algorithms have shown effective 
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performances and have gradually been improved to solve various complex problems. In this 

section, the recently developed metaheuristic algorithms: BS, GWO and VS, are briefly 

described, and the flowcharts and pseudo-codes for these algorithms are given in Table 1. 

The BS algorithm introduced by Civicioglu (2013), is an EA for solving optimization 

problems, which comprises five main processes: initialization, selection-I, mutation, crossover 

and selection-II. BS initializes the population by using a uniform distribution in the n-

dimensional search space and then it applies the selection-I process to calculate the search 

direction of the current population. In the mutation process, BS generates the initial mutant 

population at the beginning of this process and afterwards the crossover process is used to 

achieve the final form of the trial population. In the selection-II process, BS chooses the best 

individual according to the fitness values by comparing the trial population with the current 

population. GWO was presented by Mirjalili et. al. (2014) and took inspiration from how gray 

wolves hunt by using the social hierarchy between them. This hierarchy can be defined 

according to dominance and is divided into four categories: alpha (𝛼), beta (𝛽), delta (𝛿) and 

omega (𝜔). The first level of wolves is called the alpha wolf, which is mainly responsible for 

guiding the search, whereas the fourth level of wolves is called the omega wolf.  The VS 

algorithm, developed by Dogan and Olmez (2015) is one of the most recent metaheuristic 

algorithms based on vortex patterns created by the vortical flow of stirred fluids. VS uses the 

vortex pattern methodology by modeling a number of nested circles and decreases the radius of 

the circle gradually to achieve its final solution. 

2.2. Chaotic Maps 

Chaos theory is a deterministic approach and this theory can be used in a wide variety of  

applications in engineering, such as non-linear systems (Schuster, 2006, Pecora and Carroll, 

1990). Although this approach seems like a random behavior, there is not always a need to be 

random in order for the systems to exhibit chaotic behavior (Kellert, 1993). Recently, chaos-

based approaches have been adopted in many studies to enhance the performance of algorithms. 

Alatas et al. used this approach with PSO algorithm by applying 12 different modifications 

based on chaotic maps. The results of this study showed that the performance of the algorithms 

can be increased by benefiting from these modifications (Alatas et. al., 2009). Wang and Zhong 

(2015) redefined the scaling factor and fraction probability by using chaotic maps for the CS 

algorithm. The performances of the algorithms were analyzed on 20 test functions and were 

compared statistically. In the published literature, there exist a wide variety of chaotic versions 

of metaheuristics, such as genetic, firefly and krill herd algorithms (Yao et. al., 2001, Gandomi 

et. al., 2013, Saremi et. al., 2014). 

The visualization and formulation of the different chaotic maps used in this study are given 

in Table 2 (Li-Jiang, Y and Tian-Lun, 2002, Zaharie, 2003, Pecora and Carroll, 1990, Yao et. 

al., 2001, Saremi et. al., 2014).  All maps are in the interval [0,1]. 

3. PROPOSED MODIFICATIONS 

3.1. Proposed Modifications for BS 

The historical population 𝑂𝑙𝑑𝑃 is updated according to random numbers 𝑎 and 𝑏  in the BS 

algorithm, as shown in Equation 1 (Civicioglu, 2013): 

                                                       𝐼𝑓  𝑎 < 𝑏  𝑡ℎ𝑒𝑛  𝑂𝑙𝑑𝑃 = 𝑃           (1) 
 

In the proposed approach to the BS algorithm, the probability of updating is determined by 

comparing the value generated by a chaos map with a random number in the selection-I phase, 

and 𝑂𝑙𝑑𝑃 is redefined according to this probability. In other words, chaotic values are 

substituted for random values to manipulate the selection probability. As a result of the 

experiments with six different chaos maps, the most successful results are found on map 6, 

called the Sine map, and this map is used in the experiments with the modified BS algorithm. 
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Table 1. Flowcharts and pseudo-codes of the algorithms 

 Flowchart Pseudo-code 
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i. Initialize the algorithm parameters 
ii. Generate the initial population 
iii. Calculate the fitness of the initial population 
iv. While termination criteria not met 

a. Apply the selection-I process 
b. Apply the mutation process 
c. Apply the crossover process 
d. Apply the selection-II process 

End While 
v. Return the best individual found so far 
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i. Initialize the algorithm parameters 
ii. Generate the population of grey wolves 
iii. Calculate the fitness of the population 
iv. Determine alpha, beta and delta wolves 
v. While termination criteria not met 

a. Update the position of each wolf 
b. Calculate the fitness of the population 
c. Update alpha, beta and delta wolves 

End While 
vi.    Return the grey wolf with the smallest fitness value 
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i. Initialize the algorithm parameters 
ii. Calculate the initial center and radius 
iii. Generate the candidate solutions 
iv. Calculate the fitnesses of the candidate solutions 
v. While termination criteria not met 

a. Apply boundary control mechanism to the solutions 
b. Memorize the best solution 
c. Update the center and reduce the radius 
d. Calculate the fitnesses of the solutions 
e. Update the solutions 

End While 
vi. Return the best solution found so far 

Through this chaos map, the chaotic sequence 𝐶𝑖 is generated with the maximum number of 

iterations at the beginning of the optimization process, and the selection probability is 

chaotically changed, based on comparisons between the values at each iteration, from the first to 

the last.  The formula for 𝐶𝑖 is given in Equation 2: 

                            𝐶𝑖 = 𝑀𝑎𝑝6(𝑖)           (2) 
 

where 𝑖 is the iteration index and 𝑀𝑎𝑝6 denotes the  chaotic values of map 6. In the proposed 

approach, Equation 1 is redefined as in Equation 3: 

                                             𝐼𝑓  𝐶𝑖 < 𝑏  𝑡ℎ𝑒𝑛  𝑂𝑙𝑑𝑃 = 𝑃                        (3) 
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Table 2. The chaotic maps used 

 Expression Map 
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The pseudo-code for the modifications applied is given in Figure 1. 

 

Figure 1:  
Pseudo-code for the modifications of BS 

3.2.  Proposed Modifications for GWO 

In the GWO, the positions of 𝛼, 𝛽  and  𝛿 wolves are used to determine the new positions 

of the wolves representing the possible solution set. The values of 𝐶𝑖 used in Equation 4 are 

generated randomly when updating the positions of the wolves (Mirjalili et. al., 2014). Six 

different chaotic maps have been utilized to get rid of the uncertainty of these random values 

and to exploit the advantages of the chaotic maps for the modifications. 

                                𝐷𝛼 = |𝐶1 ∗ 𝑋𝛼 − 𝑋|, 𝐷𝛽 = |𝐶2 ∗ 𝑋𝛽 − 𝑋|, 𝐷𝛿 = |𝐶3 ∗ 𝑋𝛿 − 𝑋|            (4) 

Instead of using random values, maps 1 and 2 are used for 𝐶1, maps 3 and 4 are used for 𝐶2 and 

maps 5 and 6  are used for 𝐶3 to generate the new chaos-based values. The value of 𝐶i given in 

Equation 4 can be redefined as follows: 

                              𝐶𝑖 = 𝑀𝑎𝑝𝑘𝑀𝑎𝑝𝑙                                                                                     (5) 

where 𝑘 and 𝑙 are the indexes of the maps used for updating the positions of 𝛼, 𝛽 and 𝛿 wolves. 

New 𝐶𝑖 values involve the multiplication of two different chaotic sequences. In Equation 4, the 

current wolf population 𝑋 is utilized to recognize the location of prey, and the hunt is often 

guided by 𝛼 wolves. To increase convergence towards α wolves, the distances of 𝛽 and 𝛿 to 𝛼 

are used along with the chaotic values in Equation 6. Additionally, in order for α wolves to go to 

possible different prey, the position of 𝑋 is used to calculate the next position of α wolves, 

which can put them in any location between prey and other wolves. Therefore, the hunting 

process of the wolves is completely changed by the chaos-based modifications made.  Equation 

6 shows a mathematical model of the processes mentioned above as follows: 

                             𝐷𝑎 = |𝐶1 ∗ 𝑋𝛼 − 𝑋|, 𝐷𝛽 = |𝐶2 ∗ 𝑋𝛽 − 𝑋𝛼|, 𝐷𝛿 = |𝐶3 ∗ 𝑋𝛿 − 𝑋∝|         (6) 

where  𝐶1, 𝐶2 and 𝐶3 indicate the multiplications of chaotic values generated by the chaotic 

maps. The pseudo-code of the modifications used is given in Figure. 2. 

 
Figure 2:  

Pseudo-code for the modifications of GWO 

3.3.  Proposed Modifications for VS 

The boundary control mechanism of VS is given in Equation 7 (Dogan and Olmez, 2015): 

 

 𝑆𝑘
𝑖 = {

𝑟𝑎𝑛𝑑 . (𝑢𝑝𝐿𝑖𝑚𝑖 − 𝑙𝑜𝑤𝐿𝑖𝑚𝑖) + 𝑙𝑜𝑤𝐿𝑖𝑚𝑖), 𝑖𝑓𝑆𝑘
𝑖 < 𝑙𝑜𝑤𝐿𝑖𝑚𝑖 𝑜𝑟 𝑆𝑘

𝑖 > 𝑢𝑝𝐿𝑖𝑚𝑖

𝑆𝑘
𝑖                                                                           , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (7) 
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As can be seen in Equation 7, VS puts solutions into an acceptable range when solutions exceed 

the predefined boundary constraints during the evolving process using random values. 

Candidate solutions can be located far from the desired solutions due to the unbalanced 

structure of random values and this negatively affects the search process for an optimal solution. 

Here, utilizing the chaos approach, candidate solutions that exceed boundaries are produced 

through chaotic values in the search space, which can ensure stability between the boundaries. 

The new boundary control mechanism of VS is redefined via map 6 in the following equation: 

 

𝑆 = {

𝑀𝑎𝑝6(𝑖). (𝑢𝑝𝐿𝑖𝑚 − 𝑙𝑜𝑤𝐿𝑖𝑚) + 𝑙𝑜𝑤𝐿𝑖𝑚,                  𝑆 < 𝑙𝑜𝑤𝐿𝑖𝑚
𝑆                                                                        ,                  𝑙𝑜𝑤𝐿𝑖𝑚 ≤ 𝑆 ≤ 𝑢𝑝𝐿𝑖𝑚

𝑀𝑎𝑝6(𝑖). (𝑢𝑝𝐿𝑖𝑚 − 𝑙𝑜𝑤𝐿𝑖𝑚) + 𝑙𝑜𝑤𝐿𝑖𝑚,                  𝑆 > 𝑢𝑝𝐿𝑖𝑚
                  (8) 

where 𝑆 denotes the current candidate solution, 𝑀𝑎𝑝6(𝑖) is the value generated by map 6 at 𝑖𝑡ℎ 

iteration, 𝑢𝑝𝐿𝑖𝑚 and 𝑙𝑜𝑤𝐿𝑖𝑚 are the upper and lower boundary constraints of the problem. The 

pseudo-code of the modifications for VS is given in Figure 3. 

 
Figure 3:  

Pseudo-code for the modifications of VS 

4. EXPERIMENTAL RESULTS 

The parameter values for the algorithms used are given in Table 3. The benchmark 

functions used in this study are chosen from CEC2013 test functions (Liang et. al., 2013) and 

the properties of the functions are given in Table 4. The detailed description of the functions can 

be found in (Liang et. al., 2013). The 30 dimensional problems are used in this study for all the 

experiments, and the mean and standard deviation values of the solutions are calculated over 20 

runs by using the function error value (𝐹𝑏𝑒𝑠𝑡 − 𝐹𝑜𝑝𝑡), where 𝐹𝑏𝑒𝑠𝑡 is the best value found by the 

algorithms and 𝐹𝑜𝑝𝑡 is the global minimum of the related function. The results found by the 

algorithms are given in Tables 5 to 7 and the best results are marked in bold. To analyze the 

convergence performance of the algorithms, six functions are selected to show their 

convergence characteristics, and the convergence graphs of the related algorithms are given in 

Figures 4 to 6. 

Table 3. Control parameters of the algorithms 

BS GWO VS 
Iteration cycles= 500 
Population size= 60 

𝑚𝑖𝑥𝑟𝑎𝑡𝑒= 0.9 

Iteration cycles = 500 
Population size= 60 

𝑎0=0.9 

Iteration cycles = 500 
Number of candidate sol.= 60 

𝑋= 0.9 
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Table 4. Properties of the CEC2013 benchmark functions 

Test 
Func. 

Function 
Names 

Main Equations 
Global 

Minimum 
Range Types 

F6 
Rotated 

Rosenbrock 
𝑓(𝑥) = ∑(100(𝑧𝑖

2 − 𝑧𝑖+1)
2)

𝐷−1

𝑖=1

+ (𝑧𝑖 − 1)
2) -900 [−100, 100]𝐷 

Multi-modal, 
Non-separable 

F7 
Rotated 

Schaffers 
𝑓(𝑥) = (

1

𝐷 − 1
∑(√𝑧𝑖 +√𝑧𝑖𝑠𝑖𝑛

2(50𝑧𝑖
0.2))

𝐷−1

𝑖=1

)2 -800 [−100, 100]𝐷 
Multi-modal, 

Non-separable, 
Asymmetrical 

F9 
Rotated 

Weierstrass 

𝑓(𝑥) =∑(∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘(𝑧𝑖 + 0.5))]

𝑘𝑚𝑎𝑥

𝑘=0

)

𝐷

𝑖=1

− 𝐷 ∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘 ∙ 0.5)]

𝑘𝑚𝑎𝑥

𝑘=0

 

-600 [−100, 100]𝐷 
Multi-modal, 

Non-separable, 
Asymmetrical 

F11 Rastrigin 𝑓(𝑥) =∑(𝑧𝑖
2 − 10 cos(2𝜋𝑧𝑖) + 10)

𝐷

𝑖=1

 -400 [−100, 100]𝐷 
Multi-modal, 
Separable, 

Asymmetrical 

F12 
Rotated 
Rastrigin 

𝑓(𝑥) =∑(𝑧𝑖
2 − 10 cos(2𝜋𝑧𝑖) + 10)

𝐷

𝑖=1

 -300 [−100, 100]𝐷 
Multi-modal, 

Non-separable, 
Asymmetrical 

F14 Schwefel 𝑓(𝑧) = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

 -100 [−100, 100]𝐷 
Multi-modal, 

Non-separable, 
Asymmetrical 

F15 
Rotated 
Schwefel 

𝑓(𝑧) = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

 100 [−100, 100]𝐷 
Multi-modal, 

Non-separable, 
Asymmetrical 

F16 
Rotated 
Katsuura 

𝑓(𝑥) =
10

𝐷2
∏(1+ 𝑖∑

|2𝑗𝑧𝑖 − 𝑟𝑜𝑢𝑛𝑑(2
𝑗𝑧𝑖)|

2𝑗

32

𝑗=1

)

10
𝐷1.2𝐷

𝑖=1

−
10

𝐷2
 

200 [−100, 100]𝐷 
Multi-modal, 

Non-separable, 
Asymmetrical 

F17 
Lunacek 

BiRastrigin 

𝑓(𝑥) = min {∑(𝑥𝑖 − 𝜇0)
2, 𝑑𝐷

𝐷

𝑖=1

+ 𝑠∑(𝑥̂𝑖 − 𝜇1)
2

𝐷

𝑖=1

} 

+10(𝐷 −∑cos(2𝜋𝑧̂𝑖)

𝐷

𝑖=1

) 

300 [−100, 100]𝐷 
Multi-modal, 

Non-separable, 
Asymmetrical 

F23 
Composition 
Function 3 

𝑓(𝑥) =∑{𝑤𝑖
∗[𝜆𝑖𝑔𝑖(𝑥) + 𝑏𝑖𝑎𝑠𝑖]

𝑛

𝑖=1

}, n = 3, bias

= [0, 100, 200], λ
= [1, 1, 1],  g 1−3 = F15 

900 [−100, 100]𝐷 
Multi-modal, 

Non-separable, 
Asymmetrical 

F25 
Composition 
Function 5 

𝑓(𝑥) =∑{𝑤𝑖
∗[𝜆𝑖𝑔𝑖(𝑥) + 𝑏𝑖𝑎𝑠𝑖]

𝑛

𝑖=1

}, n = 3, bias

= [0, 100, 200], λ
= [0.25, 1, 2.5],  g 1 = F15,  g 2
= F12,  g 3 = F9 

1100 [−100, 100]𝐷 
Multi-modal, 

Non-separable, 
Asymmetrical 

F26 
Composition 
Function 6 

𝑓(𝑥) =∑{𝑤𝑖
∗[𝜆𝑖𝑔𝑖(𝑥) + 𝑏𝑖𝑎𝑠𝑖]

𝑛

𝑖=1

}, n = 5, bias

= [0, 100, 200, 300, 400], λ
= [0.25, 1, 1e − 7, 2.5, 10],  g 1
= F15,  g 2 = F12,  g 3 = F2,
 g 4 = F9,  g 5 = F10 

1200 [−100, 100]𝐷 
Multi-modal, 

Non-separable, 
Asymmetrical 

 

4.1. Performance Analysis of Modified BS and BS 

As can be seen in Table 5, according to the mean error and standard deviation results, the 

modifications applied to the original BS algorithm increase the performance of the algorithm. 

The modified BS algorithm produced an inferior performance only for functions F12 and F16 

out of the 12 functions when compared to the original algorithm, achieving better results for the 

rest of the functions. This also demonstrates that the proposal is more capable of jumping out of 

local minima. The convergence graphs of the related algorithms are given in Figure 4. It can be 

observed from this figure that the proposed approach to the BS can show faster convergence in 
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the first half of iterations for functions F6, F11 and F17, but there is no significant difference 

observed between the convergence speeds of the algorithms for function F14.  For function F16, 

the BS algorithm approaches a final solution faster than the proposal. Despite this, the 

performance of the modified algorithm is still comparable to the BS. 

Table 5. Experimental results for 20 runs of 12 test functions for Modified BS and BS 

algorithms 

Test Functions from 

CEC2013 

BS 

(Mean Error ± Std. Dev.) 
Modified BS 

(Mean Error ± Std. Dev.) 

F6 1.31e+02±1.87e+01 1.28e+02± 1.40e+01 

F7 1.41e+02±1.65e+01 1.38e+02±1.27e+01 

F9 3.44e+01±1.08e+00 3.41e+01±9.48e-01 

F11 8.41e+01±1.25e+01 8.13e+01±1.08e+01 

F12 2.16e+02±1.07e+01 2.32e+02±1.37e+01 

F14 2.43e+03±2.40e+02 2.29e+03±2.20e+02 

F15 6.87e+03±3.40e+02 6.53e+03±3.80e+02 

F16 2.69e+00±3.34e-01 3.02e+00±2.11e-01 

F17 1.44e+02±2.02e+01 1.34e+02±1.16e+01 

F23 7.49e+03±3.10e+02 7.42e+03±2.16e+02 

F25 3.08e+02±3.99e+00 3.06e+02±5.50e+00 

F26 2.09e+02±2.16e+00 2.08e+02±3.05e+00 

 

   
(a)  𝑓6 (b)  𝑓11 (c)  𝑓14 

   
(d)  𝑓16 (e)  𝑓17 (f)  𝑓23 

Figure 4:   

Convergence graphs of 𝑓6, 𝑓11, 𝑓14, 𝑓16, 𝑓17 and 𝑓23 for BS and modified BS 

4.2. Performance Analysis of Modified GWO and GWO 

The comparative results of GWO and the modified GWO algorithms are shown in Table 6. 

As can be seen from this table, the proposed approach outperforms GWO in 8 out of 12 

functions, whereas it does not show any improvement over the original algorithm for functions 

F6, F15, F25 and F26. The convergence graphs of the algorithms are shown in Figure 5. It can 

be observed that our proposal has a good convergence behavior for functions F14 and F16, but 

there are very few improvements for functions F11 and F17, meaning that the convergence 

behaviors are very close to each other. In function F23, we can obviously see that the 

convergence speed of the proposed algorithm is much faster than the original GWO. 
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Table 6. Experimental results for 20 runs of 12 test functions for Modified GWO and 

GWO algorithms 

Test Functions from 

CEC2013 

GWO 

(Mean Error ± Std. Dev.) 
Modified GWO 

(Mean Error ± Std. Dev.) 

F6 1.43e+02±2.08e+01 1.48e+02±4.81e+01 

F7 8.39e+01±1.56e+01 8.30e+01±1.82e+01 

F9 2.12e+01±2.54e+00 2.03e+01±1.94e+00 

F11 1.48e+02±4.22e+01 1.24e+02±3.04e+01 

F12 1.67e+02±6.07e+01 1.67e+02±7.19e+01 

F14 3.86e+03±1.53e+03 3.74e+03±1.29e+03 

F15 3.55e+03±5.13e+02 3.76e+03±1.48e+03 

F16 3.07e+00±3.40e-01 2.93e+00±4.19e-01 

F17 2.08e+02±5.97e+01 2.02e+02±6.89e+01 

F23 5.30e+03±1.73e+03 4.37e+03±1.49e+03 

F25 2.75e+02±7.23e+00 2.81e+02±6.90e+00 

F26 2.89e+02±7.65e+01 3.39e+02±4.82e+01 

 

   
(a)  𝑓6 (b)  𝑓11 (c)  𝑓14 

   
(d)  𝑓16 (e)  𝑓17 (f)  𝑓23 

Figure 5:   

Convergence graphs for 𝑓6, 𝑓11, 𝑓14, 𝑓16, 𝑓17 and 𝑓23 for GWO and modified GWO 

4.3.  Performance Analysis of Modified VS and VS 

The comparative results of the VS and the modified VS algorithm are presented in Table 7. 

Considering the performance of the proposed approach on the related functions, experimental 

results demonstrate that the proposed approach achieves better solutions in 9 out of 12 

functions. The modified VS algorithm only performs worse than the original algorithm in 

functions F7, F9 and F23. As shown in Figure 6, analyzing the convergence graphs of the 

algorithms, the VS improves solutions better at the beginning of the evolutionary stage, whereas 

the modified VS produces a better solution during the latter half of iterations. In addition, we 

noticed that the proposed approach usually shows better performance than its original version in 

the later evolutionary stage. 
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Table 7. Experimental results for 20 runs of 12 test functions for Modified VS and 

VS algorithms 

Test Functions from 

CEC2013 

VS 

(Mean Error ± Std. Dev.) 
Modified VS 

(Mean Error ± Std. Dev.) 

F6 6.72e+01±2.04e+01 6.29e+01±3.44e+01 

F7 7.94e+01±2.44e+01 8.64e+01±2.55e+01 

F9 2.08e+01±2.91e+00 2.39e+01±3.07e+00 

F11 1.42e+02±3.11e+01 1.25e+02±3.08e+01 

F12 1.23e+02±4.30e+01 1.21e+02±2.67e+01 

F14 3.84e+03±3.85e+02 3.70e+03±6.71e+02 

F15 3.96e+03±1.68e+02 3.56e+03±3.75e+02 

F16              7.29e-01±4.99e-01 6.93e-01±4.62e-01 

F17 2.30e+02±6.24e+01 2.02e+02±5.15e+01 

F23 4.45e+03±6.12e+02 4.48e+03±8.26e+02 

F25 3.03e+02±1.71e+01 2.96e+02±1.58e+01 

F26 2.01e+02±2.38e-01 2.01e+02±1.89e-01 

 

   
(a)  𝑓6 (b)  𝑓11 (c)  𝑓14 

   
(d)  𝑓16 (e)  𝑓17 (f)  𝑓23 

Figure 6:   

Convergence graphs for 𝑓6, 𝑓11, 𝑓14, 𝑓16, 𝑓17 and 𝑓23 for VS and modified VS 

 

5. CONCLUSION 

This study presents modifications to the following actual metaheuristics: BS, GWO and VS, 

using a chaotic-based approach. The modifications are intended to take advantage of using 

chaotic values generated by chaos maps instead of some random variables used by algorithms in 

their operations. Using six different chaos maps in total, comparative performance analyzes 

were performed on 12 functions used in published literature. The performances of the 

algorithms, using experimental results, have been evaluated with respect to two different 

metrics: convergence rates and statistical results. Experimental results on 12 benchmark 

functions from CEC2013 problems demonstrated that the modifications applied to the 

algorithms were able to enhance the performance of the original versions of the algorithms. The 

aim of future work is to investigate the use of the proposed algorithms to solve other 

optimization problems. 
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