
Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018 RESEARCH

DOI:10.17482/uumfd.420397

103

THE CHAOS-BASED APPROACHES FOR ACTUAL

METAHEURISTIC ALGORITHMS

Yiğit Çağatay KUYU
*

Fahri VATANSEVER
**

Received: 02.05.2018; revised:15.10.2018; accepted: 17.10.2018

Abstract: Along with rapid developments in computational technologies,

evolutionary/heuristic/metaheuristic algorithms have frequently used in many applications to solve

optimization problems. Nowadays, new algorithms are being developed and improvements are being

made to existing algorithms. In this study, chaos-based modifications have been proposed for recently

developed metaheuristic algorithms: Backtracking Search (BS), Grey Wolf Optimizer (GWO) and Vortex

Search (VS), and the algorithms have been analyzed by detailed comparisons. The proposed approaches

are based on generating new values through chaos maps, rather than some random numbers normally

used in the algorithms, to improve their solutions. In addition, some modifications are performed to the

structural operations of the algorithms used in the optimization process by taking advantage of chaos-

based values. The performances of the algorithms are evaluated by considering two metrics: convergence

rates and statistical results. Experiments demonstrated that the performance of the algorithms with the

proposed modifications based on the chaos approach, are better than, or at least comparable to, the

original algorithms.

Keywords: Metaheuristic algorithms, Chaotic maps, Chaotic sequences.

Güncel Metasezgisel Algoritmalar İçin Kaos Tabanlı Yaklaşımlar

Öz: Hesaplama teknolojilerindeki hızlı gelişmelerle orantılı olarak, optimizasyon problemlerinin

çözümünde evrimsel/sezgisel/metasezgisel algoritmalardan birçok alandaki uygulamalarda sıklıkla

faydalanılmaktadır. Günümüzde, yeni algoritmalar geliştirilmekte ve mevcut algoritmalara yenilikler

uygulanmaya devam edilmektedir. Bu çalışmada, son zamanlarda geliştirilmiş olan metasezgisel

algoritmalardan olan: Geri İzleme Arama (BS), Gri Kurt Optimizasyon (GWO) ve Girdap Arama (VS)

algoritmalarına kaos tabanlı modifikasyonlar önerilmiş ve algoritmaların, kıyaslamalarla detaylı analizleri

gerçekleştirilmiştir. Önerilen yaklaşımlar, algoritmaların çözümlerini geliştirmek için işlemlerinde

kullandıkları bazı rassal değişkenler yerine, kaos haritalarına dayanan yeni değişkenlerin üretilmesi

temeline dayanmaktadır. Bunun yanında, kaos tabanlı bu değişkenler kullanılarak algoritmaların

optimizasyon sürecinde kullandıkları yapısal işlemlerinde modifikasyonlar gerçekleştirilmektedir.

Algoritmaların performansları; istatistiksel ve yakınsama hızları açısından, iki yönlü olarak analiz

edilmektedir. Kaotik haritalara dayanan yaklaşımların, orijinal algoritmalar üzerinde daha iyi veya en

azından karşılaştırılabilir sonuçlar ürettiği, gerçekleştirilen deneylerde gösterilmiştir.

Anahtar Kelimeler: Metasezgisel algoritmalar, Kaos haritaları, Kaotik diziler.

1. INTRODUCTION

The optimization process is based on the principle of defining the vectors representing the

possible solutions of the problem within the search space, maximizing or minimizing the

objective function, and achieving the most appropriate solutions. Nowadays, existing

metaheuristic algorithms generally focus on such optimization problems. In general, these

* Uludag University, Faculty of Engineering, Electrical-Electronics Eng. Dept., 16059 Bursa/Turkey
**

 Uludag University, Faculty of Engineering, Electrical-Electronics Eng. Dept., 16059 Bursa/Turkey

Corresponding author: Fahri Vatansever (fahriv@uludag.edu.tr)

Kuyu Y.Ç.,Vatansever F.: The Chaos-Based Approaches for Actual Metaheuristic Algorithms

104

optimization approaches can be categorized according to whether the processes they are based

upon are random or deterministic. Gradient information is also an important notion in

deterministic approaches, which can achieve similar solutions to the same problem if they have

the same initial starting points. Alternatively, metaheuristic algorithms using random

approaches can produce different solutions for the same problem without any repetitions, due to

their random-like behavior.

In general, metaheuristic algorithms are based on the initial population of individuals

representing possible solutions to the problem. Afterwards, the algorithms improve the solutions

within their populations using their own special operations in order to reach the best solutions in

the search space. One of the main factors that affects the performance of algorithms is how to

obtain a good trade-off between exploration and exploitation capabilities. Generally speaking,

exploration reveals the characteristics of the whole search space, while exploitation is the ability

to improve the solutions defined within the search space. If exploration is too robust, the

algorithm can visit undesirable regions of the search space, whereas if exploitation is much

stronger than exploration, it causes premature convergence problems (Zaharie, 2003).

Therefore, maintaining a good balance between these two factors is vital for the performance of

metaheuristic algorithms.

The main aim of metaheuristic algorithms is to provide a proper balance between

exploration and exploitation, which directly affects the performance of the algorithms. These

algorithms, which are often inspired by natural evolution, can produce solutions without using

gradient information (Yang, 2010, Goldberg, 1989). Over the last few decades, a lot of

metaheuristics based on a random approach have been designed, such as particle swarm

optimization (PSO) (Kennedy and Eberhart, 1995) differential evolution (DE) (Storn, 1995),

cuckoo search (CS) (Yang and Deb, 2009), harmony search (HS) (Geem et al., 2001), and so

on. In addition, according to the “No Free Lunch Theorem (Wolpert and Macready, 1997)”, it

cannot be said that a single algorithm can perform well on all problems. This theory leaves the

door open for algorithm developers, challenging them to develop more powerful and efficient

algorithms (Civicioglu, 2013, Mirjalili et. al., 2014, Dogan and Olmez, 2015).
Random numbers are frequently used by the algorithms. On the other hand, using these

random numbers may give good results on one type of problem while they are not applicable to

another. Besides, the solutions achieved by metaheuristics cannot always give the desired

solution due to the nature of random search strategies. Chaos approach can be helpful to ensure

the performance stability of the algorithms and it has been successfully applied to

metaheuristics in balancing exploration and exploration in published literature (Wang et. al.,

2014, Zhenyu et. al., 2006, Wang et. al., 2014, Gandomi et. al., 2013, Li et. al., 2011). In this

study, chaotic values are substituted for some of the random numbers generated by the actual

metaheuristic algorithms: Backtracking Search (BS) (Civicioglu, 2013), Grey Wolf Optimizer

(GWO) (Mirjalili et. al., 2014) and Vortex Search (VS) (Dogan and Olmez, 2015), and the

modifications are proposed by utilizing six different one-dimensional chaotic maps. The

experimental results show that using chaotic sequences generated by the maps can be a better

alternative to random numbers for improving the performance of the algorithms.

The rest of this paper is organized as follows: Metaheuristic algorithms and the chaotic

maps are briefly described in Section 2. The proposed modifications are presented in Section 3.

The experimental results and the performance comparisons are given in Section 4 and finally,

the study conclusions are detailed in Section 5.

2. METAHEURISTIC ALGORITHMS AND CHAOTIC MAPS

2.1. Metaheuristic Algorithms

Nowadays, metaheuristics, such as evolutionary algorithms (EAs), inspired by ideas of

natural evolution have attracted much interest and have been frequently used by engineers,

researchers, etc. for solving optimization problems. These algorithms have shown effective

Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018

105

performances and have gradually been improved to solve various complex problems. In this

section, the recently developed metaheuristic algorithms: BS, GWO and VS, are briefly

described, and the flowcharts and pseudo-codes for these algorithms are given in Table 1.

The BS algorithm introduced by Civicioglu (2013), is an EA for solving optimization

problems, which comprises five main processes: initialization, selection-I, mutation, crossover

and selection-II. BS initializes the population by using a uniform distribution in the n-

dimensional search space and then it applies the selection-I process to calculate the search

direction of the current population. In the mutation process, BS generates the initial mutant

population at the beginning of this process and afterwards the crossover process is used to

achieve the final form of the trial population. In the selection-II process, BS chooses the best

individual according to the fitness values by comparing the trial population with the current

population. GWO was presented by Mirjalili et. al. (2014) and took inspiration from how gray

wolves hunt by using the social hierarchy between them. This hierarchy can be defined

according to dominance and is divided into four categories: alpha (𝛼), beta (𝛽), delta (𝛿) and

omega (𝜔). The first level of wolves is called the alpha wolf, which is mainly responsible for

guiding the search, whereas the fourth level of wolves is called the omega wolf. The VS

algorithm, developed by Dogan and Olmez (2015) is one of the most recent metaheuristic

algorithms based on vortex patterns created by the vortical flow of stirred fluids. VS uses the

vortex pattern methodology by modeling a number of nested circles and decreases the radius of

the circle gradually to achieve its final solution.

2.2. Chaotic Maps

Chaos theory is a deterministic approach and this theory can be used in a wide variety of

applications in engineering, such as non-linear systems (Schuster, 2006, Pecora and Carroll,

1990). Although this approach seems like a random behavior, there is not always a need to be

random in order for the systems to exhibit chaotic behavior (Kellert, 1993). Recently, chaos-

based approaches have been adopted in many studies to enhance the performance of algorithms.

Alatas et al. used this approach with PSO algorithm by applying 12 different modifications

based on chaotic maps. The results of this study showed that the performance of the algorithms

can be increased by benefiting from these modifications (Alatas et. al., 2009). Wang and Zhong

(2015) redefined the scaling factor and fraction probability by using chaotic maps for the CS

algorithm. The performances of the algorithms were analyzed on 20 test functions and were

compared statistically. In the published literature, there exist a wide variety of chaotic versions

of metaheuristics, such as genetic, firefly and krill herd algorithms (Yao et. al., 2001, Gandomi

et. al., 2013, Saremi et. al., 2014).

The visualization and formulation of the different chaotic maps used in this study are given

in Table 2 (Li-Jiang, Y and Tian-Lun, 2002, Zaharie, 2003, Pecora and Carroll, 1990, Yao et.

al., 2001, Saremi et. al., 2014). All maps are in the interval [0,1].

3. PROPOSED MODIFICATIONS

3.1. Proposed Modifications for BS

The historical population 𝑂𝑙𝑑𝑃 is updated according to random numbers 𝑎 and 𝑏 in the BS

algorithm, as shown in Equation 1 (Civicioglu, 2013):

 𝐼𝑓 𝑎 < 𝑏 𝑡ℎ𝑒𝑛 𝑂𝑙𝑑𝑃 = 𝑃 (1)

In the proposed approach to the BS algorithm, the probability of updating is determined by

comparing the value generated by a chaos map with a random number in the selection-I phase,

and 𝑂𝑙𝑑𝑃 is redefined according to this probability. In other words, chaotic values are

substituted for random values to manipulate the selection probability. As a result of the

experiments with six different chaos maps, the most successful results are found on map 6,

called the Sine map, and this map is used in the experiments with the modified BS algorithm.

Kuyu Y.Ç.,Vatansever F.: The Chaos-Based Approaches for Actual Metaheuristic Algorithms

106

Table 1. Flowcharts and pseudo-codes of the algorithms

 Flowchart Pseudo-code

B
ac

kt
ra

ck
in

g
 s

ea
rc

h
 (

B
S

)

i. Initialize the algorithm parameters
ii. Generate the initial population
iii. Calculate the fitness of the initial population
iv. While termination criteria not met

a. Apply the selection-I process
b. Apply the mutation process
c. Apply the crossover process
d. Apply the selection-II process

End While
v. Return the best individual found so far

G
re

y
w

o
lf

 o
p

ti
m

iz
er

 (
G

W
O

)

i. Initialize the algorithm parameters
ii. Generate the population of grey wolves
iii. Calculate the fitness of the population
iv. Determine alpha, beta and delta wolves
v. While termination criteria not met

a. Update the position of each wolf
b. Calculate the fitness of the population
c. Update alpha, beta and delta wolves

End While
vi. Return the grey wolf with the smallest fitness value

V
o

rt
ex

 s
ea

rc
h

 (
V

S
)

i. Initialize the algorithm parameters
ii. Calculate the initial center and radius
iii. Generate the candidate solutions
iv. Calculate the fitnesses of the candidate solutions
v. While termination criteria not met

a. Apply boundary control mechanism to the solutions
b. Memorize the best solution
c. Update the center and reduce the radius
d. Calculate the fitnesses of the solutions
e. Update the solutions

End While
vi. Return the best solution found so far

Through this chaos map, the chaotic sequence 𝐶𝑖 is generated with the maximum number of

iterations at the beginning of the optimization process, and the selection probability is

chaotically changed, based on comparisons between the values at each iteration, from the first to

the last. The formula for 𝐶𝑖 is given in Equation 2:

 𝐶𝑖 = 𝑀𝑎𝑝6(𝑖) (2)

where 𝑖 is the iteration index and 𝑀𝑎𝑝6 denotes the chaotic values of map 6. In the proposed

approach, Equation 1 is redefined as in Equation 3:

 𝐼𝑓 𝐶𝑖 < 𝑏 𝑡ℎ𝑒𝑛 𝑂𝑙𝑑𝑃 = 𝑃 (3)

Start

Set BS parameters
Generate BS population

Calculate the fitness of the population

Termination criterion?

Apply the selection-I
Apply the mutation
Apply the crossover
Apply the selection-II

No

Yes

The best individual of the population

Stop

Start

Set GWO parameters
Initialize the grey wolf population

Calculate the fitness of the population

Termination criterion?

Update the position
of each grey wolf

No

Yes

The grey wolf having a best position

Stop

Calculate the fitness of the each grey wolf
Determine alpha, beta and delta wolves

Start

Set VS parameters
Calculate the initial center and radius

Generate the candidate solutions

Termination criterion?

M
em

orize the best solution
U

pdate the center and radius

U
pdate the solutions

No

Yes

The best solution found so far

Stop

Calculate the fitness of the solutions

Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018

107

Table 2. The chaotic maps used

 Expression Map

1
→

 C
h

eb
ys

h
ev

𝑋𝑖+1 = Cos(𝑖 Cos−1(𝑥𝑖))

2
→

 C
ir

cl
e

𝑋𝑖+1 = 𝑚𝑜𝑑 (𝑥𝑖 + 𝑏 −
𝑎

𝜋
Sin(2𝜋𝑥𝑖) , 1) , 𝑎 = 0.5, 𝑏 = 0.2

3
→

 It
er

at
iv

e

𝑋𝑖+1 = Sin (
𝑎𝜋

𝑋𝑖
) , 𝑎 = 0.7

4
→

 L
o

g
is

ti
c

𝑋𝑖+1 = 𝑎𝑋𝑖(1 − 𝑋𝑖), 𝑎 = 4

5
→

 P
ie

ce
w

is
e

𝑓(𝑥) =

{

𝑋𝑖
𝑃
 0 ≤ 𝑋𝑖 < 𝑃, 𝑃 = 0.4

𝑋𝑖 − 𝑃

0.5 − 𝑃
 𝑃 ≤ 𝑋𝑖 < 0.5

1 − 𝑃 − 𝑋𝑖
0.5 − 𝑃

 0.5 ≤ 𝑋𝑖 < 1 − 𝑃

1 − 𝑋𝑖
𝑃

 1 − 𝑃 ≤ 𝑋𝑖 < 1

6
→

 S
in

e

𝑋𝑖+1 =
𝑎

4
Sin(𝑖) , 𝑎 = 4

Kuyu Y.Ç.,Vatansever F.: The Chaos-Based Approaches for Actual Metaheuristic Algorithms

108

The pseudo-code for the modifications applied is given in Figure 1.

Figure 1:
Pseudo-code for the modifications of BS

3.2. Proposed Modifications for GWO

In the GWO, the positions of 𝛼, 𝛽 and 𝛿 wolves are used to determine the new positions

of the wolves representing the possible solution set. The values of 𝐶𝑖 used in Equation 4 are

generated randomly when updating the positions of the wolves (Mirjalili et. al., 2014). Six

different chaotic maps have been utilized to get rid of the uncertainty of these random values

and to exploit the advantages of the chaotic maps for the modifications.

 𝐷𝛼 = |𝐶1 ∗ 𝑋𝛼 − 𝑋|, 𝐷𝛽 = |𝐶2 ∗ 𝑋𝛽 − 𝑋|, 𝐷𝛿 = |𝐶3 ∗ 𝑋𝛿 − 𝑋| (4)

Instead of using random values, maps 1 and 2 are used for 𝐶1, maps 3 and 4 are used for 𝐶2 and

maps 5 and 6 are used for 𝐶3 to generate the new chaos-based values. The value of 𝐶i given in

Equation 4 can be redefined as follows:

 𝐶𝑖 = 𝑀𝑎𝑝𝑘𝑀𝑎𝑝𝑙 (5)

where 𝑘 and 𝑙 are the indexes of the maps used for updating the positions of 𝛼, 𝛽 and 𝛿 wolves.

New 𝐶𝑖 values involve the multiplication of two different chaotic sequences. In Equation 4, the

current wolf population 𝑋 is utilized to recognize the location of prey, and the hunt is often

guided by 𝛼 wolves. To increase convergence towards α wolves, the distances of 𝛽 and 𝛿 to 𝛼

are used along with the chaotic values in Equation 6. Additionally, in order for α wolves to go to

possible different prey, the position of 𝑋 is used to calculate the next position of α wolves,

which can put them in any location between prey and other wolves. Therefore, the hunting

process of the wolves is completely changed by the chaos-based modifications made. Equation

6 shows a mathematical model of the processes mentioned above as follows:

 𝐷𝑎 = |𝐶1 ∗ 𝑋𝛼 − 𝑋|, 𝐷𝛽 = |𝐶2 ∗ 𝑋𝛽 − 𝑋𝛼|, 𝐷𝛿 = |𝐶3 ∗ 𝑋𝛿 − 𝑋∝| (6)

where 𝐶1, 𝐶2 and 𝐶3 indicate the multiplications of chaotic values generated by the chaotic

maps. The pseudo-code of the modifications used is given in Figure. 2.

Figure 2:

Pseudo-code for the modifications of GWO

3.3. Proposed Modifications for VS

The boundary control mechanism of VS is given in Equation 7 (Dogan and Olmez, 2015):

 𝑆𝑘
𝑖 = {

𝑟𝑎𝑛𝑑 . (𝑢𝑝𝐿𝑖𝑚𝑖 − 𝑙𝑜𝑤𝐿𝑖𝑚𝑖) + 𝑙𝑜𝑤𝐿𝑖𝑚𝑖), 𝑖𝑓𝑆𝑘
𝑖 < 𝑙𝑜𝑤𝐿𝑖𝑚𝑖 𝑜𝑟 𝑆𝑘

𝑖 > 𝑢𝑝𝐿𝑖𝑚𝑖

𝑆𝑘
𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7)

Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018

109

As can be seen in Equation 7, VS puts solutions into an acceptable range when solutions exceed

the predefined boundary constraints during the evolving process using random values.

Candidate solutions can be located far from the desired solutions due to the unbalanced

structure of random values and this negatively affects the search process for an optimal solution.

Here, utilizing the chaos approach, candidate solutions that exceed boundaries are produced

through chaotic values in the search space, which can ensure stability between the boundaries.

The new boundary control mechanism of VS is redefined via map 6 in the following equation:

𝑆 = {

𝑀𝑎𝑝6(𝑖). (𝑢𝑝𝐿𝑖𝑚 − 𝑙𝑜𝑤𝐿𝑖𝑚) + 𝑙𝑜𝑤𝐿𝑖𝑚, 𝑆 < 𝑙𝑜𝑤𝐿𝑖𝑚
𝑆 , 𝑙𝑜𝑤𝐿𝑖𝑚 ≤ 𝑆 ≤ 𝑢𝑝𝐿𝑖𝑚

𝑀𝑎𝑝6(𝑖). (𝑢𝑝𝐿𝑖𝑚 − 𝑙𝑜𝑤𝐿𝑖𝑚) + 𝑙𝑜𝑤𝐿𝑖𝑚, 𝑆 > 𝑢𝑝𝐿𝑖𝑚
 (8)

where 𝑆 denotes the current candidate solution, 𝑀𝑎𝑝6(𝑖) is the value generated by map 6 at 𝑖𝑡ℎ

iteration, 𝑢𝑝𝐿𝑖𝑚 and 𝑙𝑜𝑤𝐿𝑖𝑚 are the upper and lower boundary constraints of the problem. The

pseudo-code of the modifications for VS is given in Figure 3.

Figure 3:

Pseudo-code for the modifications of VS

4. EXPERIMENTAL RESULTS

The parameter values for the algorithms used are given in Table 3. The benchmark

functions used in this study are chosen from CEC2013 test functions (Liang et. al., 2013) and

the properties of the functions are given in Table 4. The detailed description of the functions can

be found in (Liang et. al., 2013). The 30 dimensional problems are used in this study for all the

experiments, and the mean and standard deviation values of the solutions are calculated over 20

runs by using the function error value (𝐹𝑏𝑒𝑠𝑡 − 𝐹𝑜𝑝𝑡), where 𝐹𝑏𝑒𝑠𝑡 is the best value found by the

algorithms and 𝐹𝑜𝑝𝑡 is the global minimum of the related function. The results found by the

algorithms are given in Tables 5 to 7 and the best results are marked in bold. To analyze the

convergence performance of the algorithms, six functions are selected to show their

convergence characteristics, and the convergence graphs of the related algorithms are given in

Figures 4 to 6.

Table 3. Control parameters of the algorithms

BS GWO VS
Iteration cycles= 500
Population size= 60

𝑚𝑖𝑥𝑟𝑎𝑡𝑒= 0.9

Iteration cycles = 500
Population size= 60

𝑎0=0.9

Iteration cycles = 500
Number of candidate sol.= 60

𝑋= 0.9

Kuyu Y.Ç.,Vatansever F.: The Chaos-Based Approaches for Actual Metaheuristic Algorithms

110

Table 4. Properties of the CEC2013 benchmark functions

Test
Func.

Function
Names

Main Equations
Global

Minimum
Range Types

F6
Rotated

Rosenbrock
𝑓(𝑥) = ∑(100(𝑧𝑖

2 − 𝑧𝑖+1)
2)

𝐷−1

𝑖=1

+ (𝑧𝑖 − 1)
2) -900 [−100, 100]𝐷

Multi-modal,
Non-separable

F7
Rotated

Schaffers
𝑓(𝑥) = (

1

𝐷 − 1
∑(√𝑧𝑖 +√𝑧𝑖𝑠𝑖𝑛

2(50𝑧𝑖
0.2))

𝐷−1

𝑖=1

)2 -800 [−100, 100]𝐷
Multi-modal,

Non-separable,
Asymmetrical

F9
Rotated

Weierstrass

𝑓(𝑥) =∑(∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘(𝑧𝑖 + 0.5))]

𝑘𝑚𝑎𝑥

𝑘=0

)

𝐷

𝑖=1

− 𝐷 ∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘 ∙ 0.5)]

𝑘𝑚𝑎𝑥

𝑘=0

-600 [−100, 100]𝐷
Multi-modal,

Non-separable,
Asymmetrical

F11 Rastrigin 𝑓(𝑥) =∑(𝑧𝑖
2 − 10 cos(2𝜋𝑧𝑖) + 10)

𝐷

𝑖=1

 -400 [−100, 100]𝐷
Multi-modal,
Separable,

Asymmetrical

F12
Rotated
Rastrigin

𝑓(𝑥) =∑(𝑧𝑖
2 − 10 cos(2𝜋𝑧𝑖) + 10)

𝐷

𝑖=1

 -300 [−100, 100]𝐷
Multi-modal,

Non-separable,
Asymmetrical

F14 Schwefel 𝑓(𝑧) = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

 -100 [−100, 100]𝐷
Multi-modal,

Non-separable,
Asymmetrical

F15
Rotated
Schwefel

𝑓(𝑧) = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

 100 [−100, 100]𝐷
Multi-modal,

Non-separable,
Asymmetrical

F16
Rotated
Katsuura

𝑓(𝑥) =
10

𝐷2
∏(1+ 𝑖∑

|2𝑗𝑧𝑖 − 𝑟𝑜𝑢𝑛𝑑(2
𝑗𝑧𝑖)|

2𝑗

32

𝑗=1

)

10
𝐷1.2𝐷

𝑖=1

−
10

𝐷2

200 [−100, 100]𝐷
Multi-modal,

Non-separable,
Asymmetrical

F17
Lunacek

BiRastrigin

𝑓(𝑥) = min {∑(𝑥𝑖 − 𝜇0)
2, 𝑑𝐷

𝐷

𝑖=1

+ 𝑠∑(𝑥̂𝑖 − 𝜇1)
2

𝐷

𝑖=1

}

+10(𝐷 −∑cos(2𝜋𝑧̂𝑖)

𝐷

𝑖=1

)

300 [−100, 100]𝐷
Multi-modal,

Non-separable,
Asymmetrical

F23
Composition
Function 3

𝑓(𝑥) =∑{𝑤𝑖
∗[𝜆𝑖𝑔𝑖(𝑥) + 𝑏𝑖𝑎𝑠𝑖]

𝑛

𝑖=1

}, n = 3, bias

= [0, 100, 200], λ
= [1, 1, 1], g 1−3 = F15

900 [−100, 100]𝐷
Multi-modal,

Non-separable,
Asymmetrical

F25
Composition
Function 5

𝑓(𝑥) =∑{𝑤𝑖
∗[𝜆𝑖𝑔𝑖(𝑥) + 𝑏𝑖𝑎𝑠𝑖]

𝑛

𝑖=1

}, n = 3, bias

= [0, 100, 200], λ
= [0.25, 1, 2.5], g 1 = F15, g 2
= F12, g 3 = F9

1100 [−100, 100]𝐷
Multi-modal,

Non-separable,
Asymmetrical

F26
Composition
Function 6

𝑓(𝑥) =∑{𝑤𝑖
∗[𝜆𝑖𝑔𝑖(𝑥) + 𝑏𝑖𝑎𝑠𝑖]

𝑛

𝑖=1

}, n = 5, bias

= [0, 100, 200, 300, 400], λ
= [0.25, 1, 1e − 7, 2.5, 10], g 1
= F15, g 2 = F12, g 3 = F2,
 g 4 = F9, g 5 = F10

1200 [−100, 100]𝐷
Multi-modal,

Non-separable,
Asymmetrical

4.1. Performance Analysis of Modified BS and BS

As can be seen in Table 5, according to the mean error and standard deviation results, the

modifications applied to the original BS algorithm increase the performance of the algorithm.

The modified BS algorithm produced an inferior performance only for functions F12 and F16

out of the 12 functions when compared to the original algorithm, achieving better results for the

rest of the functions. This also demonstrates that the proposal is more capable of jumping out of

local minima. The convergence graphs of the related algorithms are given in Figure 4. It can be

observed from this figure that the proposed approach to the BS can show faster convergence in

Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018

111

the first half of iterations for functions F6, F11 and F17, but there is no significant difference

observed between the convergence speeds of the algorithms for function F14. For function F16,

the BS algorithm approaches a final solution faster than the proposal. Despite this, the

performance of the modified algorithm is still comparable to the BS.

Table 5. Experimental results for 20 runs of 12 test functions for Modified BS and BS

algorithms

Test Functions from

CEC2013

BS

(Mean Error ± Std. Dev.)
Modified BS

(Mean Error ± Std. Dev.)

F6 1.31e+02±1.87e+01 1.28e+02± 1.40e+01

F7 1.41e+02±1.65e+01 1.38e+02±1.27e+01

F9 3.44e+01±1.08e+00 3.41e+01±9.48e-01

F11 8.41e+01±1.25e+01 8.13e+01±1.08e+01

F12 2.16e+02±1.07e+01 2.32e+02±1.37e+01

F14 2.43e+03±2.40e+02 2.29e+03±2.20e+02

F15 6.87e+03±3.40e+02 6.53e+03±3.80e+02

F16 2.69e+00±3.34e-01 3.02e+00±2.11e-01

F17 1.44e+02±2.02e+01 1.34e+02±1.16e+01

F23 7.49e+03±3.10e+02 7.42e+03±2.16e+02

F25 3.08e+02±3.99e+00 3.06e+02±5.50e+00

F26 2.09e+02±2.16e+00 2.08e+02±3.05e+00

(a) 𝑓6 (b) 𝑓11 (c) 𝑓14

(d) 𝑓16 (e) 𝑓17 (f) 𝑓23

Figure 4:

Convergence graphs of 𝑓6, 𝑓11, 𝑓14, 𝑓16, 𝑓17 and 𝑓23 for BS and modified BS

4.2. Performance Analysis of Modified GWO and GWO

The comparative results of GWO and the modified GWO algorithms are shown in Table 6.

As can be seen from this table, the proposed approach outperforms GWO in 8 out of 12

functions, whereas it does not show any improvement over the original algorithm for functions

F6, F15, F25 and F26. The convergence graphs of the algorithms are shown in Figure 5. It can

be observed that our proposal has a good convergence behavior for functions F14 and F16, but

there are very few improvements for functions F11 and F17, meaning that the convergence

behaviors are very close to each other. In function F23, we can obviously see that the

convergence speed of the proposed algorithm is much faster than the original GWO.

Kuyu Y.Ç.,Vatansever F.: The Chaos-Based Approaches for Actual Metaheuristic Algorithms

112

Table 6. Experimental results for 20 runs of 12 test functions for Modified GWO and

GWO algorithms

Test Functions from

CEC2013

GWO

(Mean Error ± Std. Dev.)
Modified GWO

(Mean Error ± Std. Dev.)

F6 1.43e+02±2.08e+01 1.48e+02±4.81e+01

F7 8.39e+01±1.56e+01 8.30e+01±1.82e+01

F9 2.12e+01±2.54e+00 2.03e+01±1.94e+00

F11 1.48e+02±4.22e+01 1.24e+02±3.04e+01

F12 1.67e+02±6.07e+01 1.67e+02±7.19e+01

F14 3.86e+03±1.53e+03 3.74e+03±1.29e+03

F15 3.55e+03±5.13e+02 3.76e+03±1.48e+03

F16 3.07e+00±3.40e-01 2.93e+00±4.19e-01

F17 2.08e+02±5.97e+01 2.02e+02±6.89e+01

F23 5.30e+03±1.73e+03 4.37e+03±1.49e+03

F25 2.75e+02±7.23e+00 2.81e+02±6.90e+00

F26 2.89e+02±7.65e+01 3.39e+02±4.82e+01

(a) 𝑓6 (b) 𝑓11 (c) 𝑓14

(d) 𝑓16 (e) 𝑓17 (f) 𝑓23

Figure 5:

Convergence graphs for 𝑓6, 𝑓11, 𝑓14, 𝑓16, 𝑓17 and 𝑓23 for GWO and modified GWO

4.3. Performance Analysis of Modified VS and VS

The comparative results of the VS and the modified VS algorithm are presented in Table 7.

Considering the performance of the proposed approach on the related functions, experimental

results demonstrate that the proposed approach achieves better solutions in 9 out of 12

functions. The modified VS algorithm only performs worse than the original algorithm in

functions F7, F9 and F23. As shown in Figure 6, analyzing the convergence graphs of the

algorithms, the VS improves solutions better at the beginning of the evolutionary stage, whereas

the modified VS produces a better solution during the latter half of iterations. In addition, we

noticed that the proposed approach usually shows better performance than its original version in

the later evolutionary stage.

Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018

113

Table 7. Experimental results for 20 runs of 12 test functions for Modified VS and

VS algorithms

Test Functions from

CEC2013

VS

(Mean Error ± Std. Dev.)
Modified VS

(Mean Error ± Std. Dev.)

F6 6.72e+01±2.04e+01 6.29e+01±3.44e+01

F7 7.94e+01±2.44e+01 8.64e+01±2.55e+01

F9 2.08e+01±2.91e+00 2.39e+01±3.07e+00

F11 1.42e+02±3.11e+01 1.25e+02±3.08e+01

F12 1.23e+02±4.30e+01 1.21e+02±2.67e+01

F14 3.84e+03±3.85e+02 3.70e+03±6.71e+02

F15 3.96e+03±1.68e+02 3.56e+03±3.75e+02

F16 7.29e-01±4.99e-01 6.93e-01±4.62e-01

F17 2.30e+02±6.24e+01 2.02e+02±5.15e+01

F23 4.45e+03±6.12e+02 4.48e+03±8.26e+02

F25 3.03e+02±1.71e+01 2.96e+02±1.58e+01

F26 2.01e+02±2.38e-01 2.01e+02±1.89e-01

(a) 𝑓6 (b) 𝑓11 (c) 𝑓14

(d) 𝑓16 (e) 𝑓17 (f) 𝑓23

Figure 6:

Convergence graphs for 𝑓6, 𝑓11, 𝑓14, 𝑓16, 𝑓17 and 𝑓23 for VS and modified VS

5. CONCLUSION

This study presents modifications to the following actual metaheuristics: BS, GWO and VS,

using a chaotic-based approach. The modifications are intended to take advantage of using

chaotic values generated by chaos maps instead of some random variables used by algorithms in

their operations. Using six different chaos maps in total, comparative performance analyzes

were performed on 12 functions used in published literature. The performances of the

algorithms, using experimental results, have been evaluated with respect to two different

metrics: convergence rates and statistical results. Experimental results on 12 benchmark

functions from CEC2013 problems demonstrated that the modifications applied to the

algorithms were able to enhance the performance of the original versions of the algorithms. The

aim of future work is to investigate the use of the proposed algorithms to solve other

optimization problems.

Kuyu Y.Ç.,Vatansever F.: The Chaos-Based Approaches for Actual Metaheuristic Algorithms

114

REFERENCES

1. Alatas, B., Akin, E. and Ozer, A. B. (2009) Chaos embedded particle swarm optimization

algorithms, Chaos, Solitons Fractals, 40(4), 1715-1734. doi: 10.1016/j.chaos.2007.09.063

2. Civicioglu, P. (2013) Backtracking search optimization algorithm for numerical

optimization problems, Applied Mathematics and Computation, 219(15), 8121-8144, 2013.

doi: 10.1016/j.amc.2013.02.017

3. Dogan, B. and Olmez, T. A. (2015) A new metaheuristic for numerical function

optimization: vortex search algorithm, Information Sciences, 293, 125-145. doi:

10.1016/j.ins.2014.08.053

4. Gandomi, A., Yang, X-S., Talatahari, S. and Alavi, A. (2013) Firefly algorithm with chaos,

Communications in Nonlinear Science and Numerical Simulation., 18(1), 89-98. doi:
10.1016/j.cnsns.2012.06.009

5. Geem, Z., Kim, J. and Loganathan, G. (2001) A new heuristic optimization algorithm:

harmony search, Simulation, 76(2), 60-68. doi: 10.1177/003754970107600201

6. Goldberg D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley Longman Publishing, USA.

7. Kellert, S. (1993) In the Wake of Chaos:Unpredictable Order in Dynamical Systems,

University of Chicago Press, USA.

8. Kennedy J. and Eberhart R. (1995) Particle swarm optimization, IEEE International

Conference on Neural Networks, 1942-1948. doi:10.1109/ICNN.1995.488968

9. Li, Y., Deng, S. and Xiao, D. (2011) A novel hash algorithm construction based on chaotic

neural network, Neural Computing and Applications, 20(1), 133–141. doi: 10.1007/s00521-

010-0432-2

10. Li-Jiang, Y. and Tian-Lun, C. (2002) Application of chaos in genetic algorithms,

Communications in Theoretical Physics, 38(2), 168. doi: 10.1088/0253-6102/38/2/168

11. Liang, J. J., Suganthan, P. N. and Hernandez-Diaz, A. G. (2013) Problem definitions and

evaluation criteria for the CEC 2013 special session on real-parameter optimization,

Zhengzhou University and Nanyang Technological University, 3-18. Technical

report:201212

12. Mirjalili, S., Mirjalili, S. M. and Lewis, A. (2014) Grey wolf optimizer, Advances in

Engineering Software, 69, 46-61. doi: 10.1016/j.advengsoft.2013.12.007

13. Pecora, L. and Carroll, T. (1990) Synchronization in chaotic system, Physical Review

Letters, 64(8), 821-824. doi: 10.1103/PhysRevLett.64.821

14. Saremi, S., Mirjalili, S. M. and Mirjalili, S. (2014) Chaotic krill herd optimization

algorithm, Procedia Techno, 12, 180-185. doi: 10.1016/j.protcy.2013.12.473

15. Schuster, H. G. and Just, W. (2006) Deterministic chaos: an introduction, John Wiley &

Sons, Germany.

16. Storn, R. and Price K. (1995) Differential evolution: A simple and efficient adaptive scheme

for global optimization over continuous spaces, International Computer Science Institute, 1-

12. Technical report:TR-95-012

17. Wang, N., Liu, L. M. and L. L. Liu. (2001) Genetic algorithm in chaos, Or Transactions,

5(5), 1-10.

https://doi.org/10.1016/j.chaos.2007.09.063
https://doi.org/10.1016/j.amc.2013.02.017
https://doi.org/10.1016/j.ins.2014.08.053
https://doi.org/10.1016/j.cnsns.2012.06.009
https://doi.org/10.1177%2F003754970107600201
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.protcy.2013.12.473

Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018

115

18. Wang, L. and Zhong, Y. (2015) Cuckoo search algorithm with chaotic maps, Mathematical

Problems in Engineering, 6(6), 546-554. doi: 10.1155/2015/715635

19. Wang,, G.-G., Guo, L., Gandomi, A., Hao, G.-S. and Wang, H. (2014) Chaotic krill herd

algorithm, Information Sciences, 274, 17-34. doi: 10.1016/j.ins.2014.02.123

20. Wolpert, D. H. and Macready, W. G. (1997) No free lunch theorems for optimization,

IEEE Transactions on Evolutionary Computation, 1(1), 67-82. doi: 10.1109/4235.585893

21. Yang, X-S. (2010) Nature-inspired Metaheuristic Algorithms, Luniver Press, UK.

22. Yang, X-S. and Deb, S. (2009) Cuckoo search via L´evy flights, Proceeding of World

Congress on Nature Biologically Inspired Computing, 210-214, doi:

10.1109/NABIC.2009.5393690

23. Yao, J. F., Mei, C., Peng, X. Q., Hu, Z. K. and Hu, J (2001) A new optimization approach-

chaos genetic algorithm, Systems Engineering, 1, 1-5.

24. Zaharie, D. (2003) Control of population diversity and adaptation in differential evolution

algorithms, Mendel 9th International Conference on Soft Computing, Brno, 41-46.

25. Zhenyu, G. Bo, Y. C. and Min, C. B. (2006) Self-adaptive chaos differential evolution,

International Conference on Natural Computation, 972-975. doi: 10.1007/11881070_128

https://doi.org/10.1016/j.ins.2014.02.123
https://doi.org/10.1109/4235.585893

116

