http://www.newtheory.org

ISSN: 2149-1402

Received: 19.04.2018 Published: 28.10.2018 Year: 2018, Number: 25, Pages: 50-58 Original Article

$\mathbf{B}\delta\mathbf{g} ext{-}\mathbf{Homeomorphisms}$

<solomonjuliet4@gmail.com> <bestasir@yahoo.com>

¹Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India ²Department of Mathematics, St. John's College, Palayamkottai, Tamil Nadu, India

Abstaract — In this paper we introduce two new classes of mappings called $B\delta g$ -homeomorphism and $B\delta g$ c-homeomorphism which are defined using $B\delta g$ -closed sets and study their basic properties. We also investigate its group structure of their subgroups. We also investigate its relationship with other types of mappings.

Keywords — Semi-generalized set, semi-homeomorphism mapping, $B\delta g$ -homeomorphism mapping, $B\delta g$ -closed set.

1 Introduction

Maki et al. [13] introduced the notions of generalized homeomorphism (briefly ghomeomorphism). Devi et al. [2] introduced two classes of mappings called generalized semi-homeomorphism (briefly gs-homeomorphism) and semi- generalized homeomorphism (briefly sg-homeomorphisms). In this present paper we introduce new class of generalization of homeomorphisms called B δ g-homeomorphisms using B δ gclosed sets. We further introduce generalization of homeomorphisms called B δ gchomeomorphism. Basic properties of these two mappings are studied and the relation between these types and other existing ones are established.

2 Preliminary

Throughout this paper, a space (X,τ) (or simply X) represents a topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, cl(A), int(A) and A^c denote the closure of A, the interior of A and

^{*} Corresponding Author.

the complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. (i) semi-open set [11] if $A \subseteq cl(int(A))$.

- (ii) preopen set [15] if $A \subseteq int(cl(A))$.
- (iii) α -open set [19] if $A \subseteq int(cl(int(A)))$.
- (iv) regular open set [23] if $A \doteq int(cl(A))$.

The complement of a semi-open (resp. preopen, -open) set is called semi-closed (resp. preclosed, -closed).

The α -closure (resp. semi-closure, preclosure) of $A \subseteq X$ is the smallest -closed (resp. semi-closed, preclosed) set containing A. cl(A) (resp. scl(A), pcl(A)) is called the -closure (resp. semi-closure, preclosure) of A.

Definition 2.2. The -interior [27] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by int_g (A). The subset A is called δ -open [27] if $A = int_g$ (A), i.e. a set is δ -open if it is the finite union of regular open sets. The complement of a δ -open set is called δ -closed. Alternatively, a set $A \subseteq (X, \tau)$ is called δ -closed[27] if $A = cl_{\delta}(A)$, where

$$cl_{\delta}(A) = \{ x \in X : int(cl(U) \bigcap A \neq \phi, U \in \tau \text{ and } x \in U \}$$

Definition 2.3. A subset A of a space (X, τ) is called a

(i) generalized closed (briefly g-closed) set [12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(ii) generalized semi-closed (briefly gs-closed) set [1] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .

(iii) α -generalized closed (briefly α g-closed) set [13] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

(iv) δ -generalized closed (briefly δ g-closed) set [3] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .

(v) \widehat{g} -closed set [26] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ).

(vi) \widehat{g} -closed (briefly $\delta \ \widehat{g}$ -closed) set [8] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is \widehat{g} -open in (X, τ) .

The complement of a g-closed (resp. gs-closed, α g-closed, δ g-closed, \hat{g} -closed and $\delta \hat{g}$ -closed)set is called g-open (resp. gs-open, α g-open, δ g-open, \hat{g} -open and $\delta \hat{g}$ -open)

Definition 2.4. A subset A of a space (X, τ) is called a

(i) t-set infinite(A) = int(cl(A))

(ii) B-set if $A = G \cap F$ where G is open and F is a t-set in X.

Definition 2.5. A space (X, τ) is called a

- (i) T_1 -space [12] if every g-closed set in it is closed.
- (ii) T_{3}^{2} [3] if every δg -closed set in it is δ -closed. (iii) $T_{3}^{\overline{4}}$ -space [8] if every $\delta \widehat{g}$ -closed set in it is δ - closed.

Definition 2.6. A map $f:(X,\tau) \to (Y,\sigma)$ is called

(i) g-continuous [2] if f⁻¹(V) is g-closed in (X,τ) for every closed set V of (Y,σ).
(ii) gs-continuous [2] if f⁻¹(V) is gs-closed in (X,τ) for every closed set V of (Y,σ).
(iii) δ ĝ-continuous [2] if f⁻¹(V) is δ ĝ-closed in (X,τ) for every closed set V of (Y,σ).

Definition 2.7. A map $f:(X,\tau) \to (Y,\sigma)$ is called

(i) generalized closed (briefly g-closed) (resp. g-open) [15] if the image of every closed (resp. open) set in (X,τ) is g-closed (resp. g-open) in (Y,σ) .

(ii) generalized semi-closed (briefly gs-closed) (resp. gs-open) [2] if the image of every closed (resp. open) set in (X,τ) is gs-closed (resp. gs-open) in (Y,σ) .

(iii) δ -closed [19] if f(V) is δ -closed in (Y, σ) for every δ -closed set V of (X, τ)

(iv) $\delta \widehat{g}$ -closed [8] if the image of every closed set in (X,τ) is $\delta \widehat{g}$ -closed in (Y,σ) .

Definition 2.8. A map $f:(X,\tau) \to (Y,\sigma)$ is called

(i) g-homeomorphism [13] if f is bijection, g-open and g-continuous.

(ii) gs-homeomorphism [2] if f is bijection, gs-open and gs-continuous.

(iii) δ -closed [19] if f(V) is δ -closed in (Y, σ) for every δ -closed set V of (X, τ)

(iv) $\delta \widehat{g}$ -homeomorphism [8] if f is bijection, $\delta \widehat{g}$ - open and $\delta \widehat{g}$ - continuous.

Proposition 2.9 (8). Every δ -closed set is $\delta \hat{g}$ -closed set.

3 Properties Of $B\delta g$ -homeomorphisms

Definition 3.1. A subset A of (X,τ) is called B δ g- closed if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is B-set

The Complement of $B\delta g$ - closed set is $B\delta g$ -open.

Definition 3.2. A bijection map $f:(X,\tau) \to (Y,\sigma)$ is called $B\delta g$ - continuous if f is both $B\delta g$ -continuous and $B\delta g$ -open.

Definition 3.3. A bijection map $f:(X,\tau) \to (Y,\sigma)$ is called $B\delta g$ - continuous if $f^{-1}(V)$ is $B\delta g$ -closed in (X,τ) for every closed set V of (Y,σ)

Definition 3.4. A bijection map $f:(X,\tau) \to (Y,\sigma)$ is called $B\delta g$ - irresolute if $f^{-1}(V)$ is $B\delta g$ -closed in (X,τ) for every closed set V of (Y,σ)

Definition 3.5. A bijection map $f:(X,\tau) \to (Y,\sigma)$ is called $B\delta g$ - closed if the image of closed set in (X,τ) is $B\delta g$ - closed in (Y,σ)

Definition 3.6. A bijection map $f:(X,\tau) \to (Y,\sigma)$ is called $B\delta g$ - homeomorphism if f is both $B\delta g$ - continuous and $B\delta g$ - open.

Definition 3.7. A space X is called a ${}_{B}T_{\delta g}$ - space if every B δg ? closed set in it is δ closed.

Theorem 3.8. Every Bg-homeomorphism is gs-homeomorphism..

Proof. Let $f:(X,\tau) \to (Y,\sigma)$ be B δ g-homeomorphism. Then f is bijective, B δ gcontinuous and B δ g-open map. Let V be an closed set in (Y,σ) . Then $f^{-1}(V)$ is B δ g-closed in (X,τ) . Every B δ g-closed set is gs-closed and hence $f^{-1}(V)$ is gsclosed in (X,τ) . This implies that f is gs-continuous. Let U be an open set in (X,τ) . Then f(U) is B δ g-open in (Y,σ) . This implies f is gs-open map. Hence f is gs-homeomorphism.

Remark 3.9. The following example shows that the converse of the above theorem need not be true.

Example 3.10. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{p\}, \{q\}, \{p, q\}, Y\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by f(a) = p; f(b) = q and f(c) = r. Clearly f is gs-homeomorphism but f is not B δ g-homeomorphism because $f(\{b\}) = f\{q\}$ is not a B δ g-open in (Y, σ) where $\{b\}$ is open in (X, τ)

Theorem 3.11. Every $B\delta g$ -homeomorphism is g-homeomorphism.

Proof. Follows from the fact that every $B\delta g$ - continuous map is g- continuous map and every $B\delta g$ -open map is g-open map.

Remark 3.12. The converse of the above theorem need not be true as it can be seen from the following example.

Example 3.13. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{p\}, \{p, r\}, Y\}$. Define $f:(X, \tau) \to (Y, \sigma)$ by f(a) = p; f(b) = r and f(c) = q. Clearly f is g-homeomorphism but f is not B δ g-homeomorphism because $f(\{a, b\}) = f\{p, r\}$ is not a B δ g-open in (Y, σ) where (a, b) is open in (X, τ)

Remark 3.14. Homeomorphisms and $B\delta g$ -homeomorphisms are independent of each other as shown in the following examples.

Example 3.15. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{p\}, \{r\}, \{p, r\}, \{q, r\}, Y\}$. Define a map $f:(X, \tau) \to (Y, \sigma)$ by f(a) = p; f(b) = q and f(c) = r. Then f is $B\delta g$ - open and $B\delta g$ - continuous. Hence f is a $B\delta g$ homeomorphism. However $f^{-1}(\{p, q\}) = \{a, b\}$ is not closed in (X, τ) where $\{p, q\}$ is closed in (Y, σ) and hence f is not continuous. Therefore, f is not homeomorphism.

Example 3.16. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{q\}, \{p, q\}, Y\}$. Define a function $f:(X, \tau) \to (Y, \sigma)$ by f(a) = q; f(b) = p and f(c) = r. Then f is a homeomorphism. The set $\{a, b\}$ is open in (X, τ) but $f(\{a, b\}) = \{p, q\}$ is not $B\delta g$ - open in (Y, σ) . This implies that f is not $B\delta g$ - open map. Hence f is not a $B\delta g$ - homeomorphism.

Remark 3.17. The concepts of $B\delta g$ -homeomorphism and $\delta \hat{g}$ -homeomorphism are independent of each other as shown in the following examples.

Example 3.18. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{q\}, Y\}$. Define a map $f:(X,\tau) \to (Y,\sigma)$ by f(a) = q; f(b) = p and f(c) = r. Then f is a δ \hat{g} -homeomorphism. Here the set $\{a\}$ is open in (X,τ) but $f(\{a\}) = \{q\}$ is not $B\delta g$ - open in (Y,σ) . This implies that f is not $B\delta g$ - open map. Hence f is not a $B\delta g$ - homeomorphism.

Example 3.19. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{r\}, \{p, q\}, Y\}$. Define a map $f:(X, \tau) \to (Y, \sigma)$ by f(a) = q; f(b) = p and f(c) = r. Then f is a B δ g-homeomorphism but f is not $\delta \widehat{g}$ -homeomorphism because $f(\{b, c\}) = \{p, r\}$ is not $\delta \widehat{g}$ - open in (Y, σ) where $\{b, c\}$ is open in (X, τ) .

Proposition 3.20. For any bijective map $f:(X,\tau) \to (Y,\sigma)$ the following statements are equivalent.

(i) $f^{-1}:(Y,\sigma) \rightarrow (X,\tau)$ is B δ g-continuous map.

(ii) f is a B δ g-open map.

(iii) f is a B δ g-closed map.

Proof. (i) \Rightarrow (ii) Let U be an open set in (X,τ) . Since, f^{-1} is B δ g continuous, $(f^{-1})^{-1}(U)$ is B δ g- open in (Y,σ) . Hence f is B δ g open map. (ii) \Rightarrow (iii). Let F be a closed set in (X,τ) . Then F^c is open in (X,τ) .Since f is B δ g open map, $f(F^c)$ is B δ g open set in (Y,σ) . But $f(F^c) = f(F^c)$ is B δ g open set in (Y,σ) . This implies that $f(F^c)$ is B δ g open set in (Y,σ) . Hence f is B δ g closed map.(iii)?(i).Let V be a closed set of (X,τ) .Since f is B δ g closed map, f(V) is B δ g closed in (Y,σ) . That is $(f^{-1})^{-1}(V)$ is B δ g closed set in (Y,σ) . Hence f^{-1} is B δ g continuous.

Theorem 3.21. Let $f:(X,\tau) \to (Y,\sigma)$ be a bijective and $B\delta g$ - continuous map. Then the following statements are equivalent.

(i) f is a B δ g-open map.

(ii) f is a B δ g-homeomorphism.

(iii) f is an B δ g-closed map.

Proof. (i) \Rightarrow (ii). Let f be B δ g-open map. By hypothesis, f is bijective and B δ gcontinuous. Hence f is B δ g-homeomorphism. (ii) \Rightarrow (iii). Let f be B δ g-homeomorphism. Then f is B δ g-open. By Proposition 3.19 f is B δ g-closed map.(iii) \Rightarrow (i). It is obtained from Proposition 3.19.

Remark 3.22. The composition of two B δ g-homeomorphisms need not be B δ g-homeomorphism as the following example shows.

Example 3.23. Let $X = \{a, b, c\} = Y = Z$ with the topologies $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{c\}, \{a, b\}, Y\}$ and $\eta = \{\phi, \{a\}, \{b\}, \{a, b\}, Z\}$. Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Z, \eta)$ be two identity maps. Then both f and g are $B\delta g$ -homeomorphism. The set $\{b, c\}$ is open in (X, τ) but $g \circ f$ $(\{b, c\}) = \{b, c\}$ is not $B\delta g$ - open in (Z, η) . This implies that $g \circ f$ is not $B\delta g$ - open and hence $g \circ f$ is not $B\delta g$ - homeomorphism.

We introduce the following definition.

Definition 3.24. A bijection map $f:(X,\tau) \to (Y,\sigma)$ is said to be $B\delta gc$ - homeomorphism if f is $B\delta g$ - irresolute and its inverse f^{-1} is $B\delta g$ - irresolute.

Remark 3.25. B δ gc - homeomorphisms and B δ g- homeomorphisms are independent notions as shown in the following examples.

Example 3.26. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{q\}, Y\}$. Define a map $f:(X,\tau) \to (Y,\sigma)$ by f(a) = p; f(b) = q and f(c) = r. Then f is a B δ g - homeomorphism. The set $\{q, r\}$ is B δ g - closed in (Y,σ) but $f^{-1}(\{q, r\}) = \{b, c\}$ is not B δ g - closed in (X,τ) . Therfore f is not B δ g irresolute and hence f is not a B δ gc - homeomorphism.

Example 3.27. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{b\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{r\}, \{p, r\}, Y\}$. Define a map $f:(X, \tau) \to (Y, \sigma)$ by f(a) = r; f(b) = q and f(c) = p. Then f is B δ gc - homeomorphism. But f is not B δ g - homeomorphism because $f(\{b, c\})$ is not B δ g - open in (Y, σ) where $\{b, c\}$ is open in (X, τ) .

Remark 3.28. From the above discussion we get the following diagram. $A \rightarrow B$ represents A implies B. A \rightarrow B represents A does not implies B.

Figure 1: 1. B δ g-Homeomorphism 2. gs-Homeomorphism 3. g-Homeomorphism 4. $\delta \hat{g}$ -Homeomorphism 5. B δ gc-Homeomorphism 6.Homeomorphism

Theorem 3.29. The composition of two $B\delta gc$ -homeomorphisms is $B\delta gc$ -homeomorphism.

Proof. Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be two Bδgc-homeomorphisms. Let *F* be a Bδg-closed set in (Z,η) . Since *g* is Bδg-irresolute map, $g^{-1}(F)$ is Bδg-closed in (Y,σ) . Since *f* is Bδg-irresolute, $f^{-1}(g^{-1}(F))$ is Bδg-closed in (X,τ) . That is $(g \bigcirc f)^{-1}(F)$ is Bδg-closed in (X,τ) . This implies $g \bigcirc f$ is Bδg-irresolute. Let *G* be Bδg-closed in (X,τ) . Since f^{-1} is Bδg-irresolute, $(f^{-1})^{-1}(G) = f(G)$ is Bδg-closed in (Y,σ) . Since g^{-1} is Bδg-irresolute, $(g^{-1})^{-1}(f(G))$ is Bδg-closed in (Z,η) . That is g(f(G)) is Bδg-closed in (Z,η) . Therefore $(g \bigcirc f)(G)$ is Bδg-closed in $(Z;?)(Z,\eta)$. This implies that $((g \bigcirc f)^{-1})^{-1}(G)$ is Bδg-closed in (Z,η) . This shows that $(g \bigcirc f)^{-1}$ is Bδg-irresolute. Hence $g \bigcirc f$ is Bδgc-homeomorphism.

4 Application

Theorem 4.1. Every $B\delta g$ -homeomorphism from a ${}_{B}T_{\delta g}$ -space into another ${}_{B}T_{\delta g}$ -space is a homeomorphism.

Proof. Let $f:(X,\tau) \to (Y,\sigma)$ be B δ g-homeomorphism. Then f is bijective, B δ g-open and B δ g-continuous maps. Let U be an open in (X,τ) . Since f is B δ g-open and since (Y,σ) is ${}_{B}T_{\delta g}$ - space, f(U) is open set in (Y,σ) . This implies f is open map. Let V be a closed set in (Y,σ) . Since f is B δ g-continuous and since (X,τ) is ${}_{B}T_{\delta g}$ -space, $f^{-1}(V)$ is closed in (X,τ) . Therefore f is continuous. Hence f is homeomorphism. \Box

Theorem 4.2. Let (Y,σ) be ${}_{B}T_{\delta g}$ -space. If $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ are B δ g-homeomorphism then $g \bigcirc f$ is B δ g-homeomorphism.

Proof. Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be two B δg - homeomorphism. Let U be an open set in (X,τ) . Since f is B δg -open map, f(U) is B δg -open in (Y,σ) . Since (Y,σ) is ${}_{B}T_{\delta g}$ -space, f(U) is open in (Y,σ) . Also since g is B δg -open map, g(f(U)) is B δg -open in (Z,η) . Hence $g \bigcirc f$ is B δg -open map. Let V be a closed set in (Z,η) . Since g is B δg -continuous and since (Y,σ) is ${}_{B}T_{\delta g}$ -space, $g^{-1}(V)$ is closed in (Y,σ) . Since f is B δg -continuous, $f^{-1}(g^{-1}(V)) = (g \bigcirc f)^{-1}(V)$ is B δg -closed set in (X,τ) . That is $g \bigcirc f$ is B δg -continuous. Hence $g \bigcirc f$ is B δg -homeomorphism. \Box

Theorem 4.3. Every B δ g-homeomorphism from a ${}_{B}T_{\delta g}$ -space into another ${}_{B}T_{\delta g}$ -space is $\delta \hat{g}$ -homeomorphism.

Proof. Let $f:(X,\tau) \to (Y,\sigma)$ be B δ g-homeomorphism. Then f is bijective, B δ g-open and B δ g-continuous maps. Let U be an open set (X,τ) . Since f is B δ g-open, and since (Y,σ) is ${}_{B}T_{\delta g}$ -space, f(U) is δ -closed. By Proposition 2.8 every δ -closed set is δ \hat{g} -closed. Hence f(U) is δ \hat{g} -closed in (Y,σ) . This implies f is δ \hat{g} -open. Let V be a closed set in (Y,σ) . Since f is B δ g-continuous and since $(X,\tau) {}_{B}T_{\delta g}$ -space, $f^{-1}(V)$ is δ \hat{g} -closed in (X,τ) . Therefore f is δ \hat{g} -continuous. Thus f is δ \hat{g} -homeomorphism. \Box

Theorem 4.4. Every $B\delta g$ -homeomorphism from a ${}_{B}T_{\delta g}$ -space into another ${}_{B}T_{\delta g}$ -space is $B\delta g$ c-homeomorphism.

Proof. Let $f:(X,\tau) \to (Y,\sigma)$ be B δ g-homeomorphism. Let U be B δ g-closed in (Y,σ) . Since (Y,σ) is ${}_{B}T_{\delta g}$ -space, U is closed in (Y,σ) . Also Since f is B δ g-continuous, $f^{-1}(U)$ is B δ g-closed in (X,τ) . Hence f is B δ g-irresolute map. Let V be B δ g-open in (X,τ) . Since (X,τ) is ${}_{B}T_{\delta g}$ -space, V is open in (X,τ) . Also since f is B δ g-open, f(V) is B δ g-open set in (Y,σ) . That is $(f^{-1})^{-1}(V)$ is B δ g-open in (Y,σ) and hence f^{-1} is B δ g-irresolute. Thus f is B δ gc- homeomorphism.

We shall introduce the group structure of the set of all B δ gc- homeomorphisms from a topological space (X, τ) onto itself by B δ gc-h (X, τ) .

Theorem 4.5. The set $B\delta gc-h(X,\tau)$ is a group under composition of mappings.

Proof. By Theorem 3.28 $g \bigcirc f \in B\delta gc-h(X,\tau)$ for all $f, g \in B\delta gc-h(X,\tau)$. We know that the composition of mappings is associative. The identity map belonging to $B\delta gc-h(X,\tau)$ acts as the identity element. If $f \in B\delta gc-h(X,\tau)$ then $f^{-1} \in B\delta gc-h(X,\tau)$ such that $f^{-1} \bigcirc f = f \bigcirc f^{-1} = I$ and so inverse exists for each element of $B\delta gc-h(X,\tau)$. Hence $B\delta gc-h(X,\tau)$ is a group under the composition of mappings. \Box **Theorem 4.6.** Let $f : B\delta gc-h(X,\tau) \rightarrow B\delta gc-h(Y,\sigma)$ be $B\delta gc$ -homeomorphism. Then f induces an isomorphism from the group $B\delta gc-h(X,\tau)$ onto the group $B\delta gc-h(Y,\sigma)$.

Proof. We define a map $f : B\delta gc-h(X,\tau) \to B\delta gc-h(Y,\sigma)$ by $f * (k) = f \bigcirc k \bigcirc f^{-1}$ for every $k \in B\delta gc-h(X,\tau)$. Then f is a bijection and also for all $k_1, k_2 \in B\delta gc-h(X,\tau)$, $f * (k_1 \bigcirc k_2) = f \bigcirc (k_1 \bigcirc k_2) \bigcirc f^{-1} = (f \bigcirc k_1 \bigcirc f^{-1}) \bigcirc (f \oslash k_2 \bigcirc f^{-1}) = f * (k_1) \bigcirc f * (k_2)$. Hence f * is homeomorphism and so it is an isomorphism induced by f.

References

- Arya S. P. and Nour T., "Characterizations of S-normal spaces", Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.
- [2] Devi R., Balachandran K. and Maki H., "On generalized-continuous and generalized continuous functions", For East J. Math Sci. Special Volume, Part I (1997), 1-15.
- [3] Dontchev J., "Contra-continuous functions and strongly S-closed spaces", International J. Math. Sci. 19 (1996), 303-310.
- [4] Dontchev J. and Ganster M., "On -generalized closed sets and T3=4-spaces", Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17 (1996), 15-31.
- [5] Dontchev J, Noiri T, "Contra-semi-continuous functions", Math. Pannonica 10 (1999), 159-168.
- [6] Ganster M., Reilly I. L., "Locally closed sets and alc-continuous functions", Internat. J. Math. Sci. 3 (1989), 417-424.
- [7] Lellis T. M., Meera D. B. and Hatir E., \hat{g} -closed sets in Topological spaces", Gem. Math. Notes, Vol 1, No.2, (2010), 17-25.
- [8] Lellis T. M., Meera D. B., "Some new class of generalised continuous functions "Proceedings of the ICMCS2011, 431-434.
- [9] Lellis T. M., Meera D. B., "Notes On Homeomorphisms Via \hat{g} -Sets." Journal of Advanced Studies in Topology, Vol.2, No.1 (2011), 34-40.
- [10] Lellis T. M., Meera D. B., "Notes on contra via \hat{g} -continuous functions", Bol. Soc. Paran. Mat Vol. 30 No.2, (2012), 109-116.
- [11] Levine N., "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly, 70 (1963), 36-41.
- [12] Levine N., "Generalized closed sets in Topology", Rend. Circ. Math. Palermo, 19 (2) (1970), 89-96.
- [13] Maki H., Devi R. and Balachandran K., "Associated topologies of generalized α -closed sets and α-generalized closed sets", Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15 (1994), 57-63.

- [14] Mashhour, A. S., Abd El-Monsef, M. E. and El-Debb. S. N., "On precontinuous and weak precontinuous mappings", Proc. Math. and Phys. Soc. Egypt 55 (1982), 47-53.
- [15] Malghan S. R., "Generalized closed maps", J. Karnatak Univ. Sci., 27(1982), 82-88.
- [16] Meera D. B., "Investigation of some new class of weak open sets in general Topology" PhD Thesis, Madurai Kamaraj University, Madurai (2012).
- [17] Munkres J. R., "Topology, A first course", Fourteenth Indian Reprint.
- [18] Njastad O., "On some classes of nearly open sets", Pacific. J. Math. 15(1965), 961-970.
- [19] Noiri T., "Super-continuity and some strong forms of continuity", Indian J. Pure. Appl Math., 15 (1984), 241-150.
- [20] Noiri T., "On continuous functions", J. Korean Math. Soc. 18 (1980), 161-166.
- [21] Ravi O., Lellis T. M., Balakrishnan M., "Quotient functions related Ekici's a-open sets", Antarctica Journal of Mathematics, 7 (1) (2010), 111-121.
- [22] Starum R., "The algebra of bounded continuous functions into a nonarchimedianeld", Pacific J. Math, 50(1974), 169-185.
- [23] Tong J., "On Decomposition of continuity in topological spaces", Acta Math. Hungar, 54 (12) (1989), 51-55.
- [24] Veera K. M. K. R. S., " \hat{g} -closed sets in topological spaces", Bull. Allah. Math. Soc., 18 (2003), 99-112.
- [25] Velicko N. V., "H-closed topological spaces", Amer. Math. Soc. Transl., 78 (1968), 103-118.