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Abstract

In this study, the Rosenau-Korteweg-de Vries-Redudagwave (Rosenau-KdV-RLW)
equation has been converted into a partial difféisdrequation system consisting of two
equations using a splitting technique. Then, niraésolutions for the Rosenau-KdV-
RLW equation system have been obtained using depatsoth cubic and quintic B-
spline finite element collocation method. For tiknowns in those equations, B-spline
functions at x-position and Crank-Nicolson typeténdifference approaches at time
positions are used. A test problem has been chtsearheck the accuracy of the
proposed discretized scheme. The basic consenvptaperties of the Rosenau-KdV-
RLW equation have been shown to be protected byrttiosed numerical scheme.
The results are compared with the analytical solutof the problem and the results
given in the literature. For the reliability oféhmethod the error nornis, andL,, are
calculated. It is seen that the proposed methagggharmonious results with exact
solutions.

Keywords: Rosenau-KdV-RLW, B-spline functions, collocatioethmod, splitting
technique.

Rosenau-KdV-RLW denklemi igin etkin bir sayisalék

Ozet

Bu calsmada, Rosenau Korteweg-de Vries dizenli uzun d@Rgsenau-KdV-RLW)
denklemi bir parcalama tekgii kullanilarak iki denklemden aofan bir kismi
diferansiyel denklem sistemine détiiitimistir. Daha sonra, Rosenau-KdV-RLW
denklem sistemi icin kibik ve kuintik B-spline soeleman kollakasyon yontemi
kullanilarak sayisal ¢ozumler Onerilstir. Bu denklemlerdeki bilinmeyenler icin x-
konumunda B-spline fonksiyonlar ve zaman konum@rdak-Nicolson tipi sonlu fark
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yaklasimlari kullaniimstir. Onerilen sayisajemalarin dgrulugunu kontrol etmek igin
bir test problemi secilngiir.  Rosenau-KdV-RLW denkleminin temel korunum
Ozelliklerinin 6nerilen sayisaemalar ile korundgu gortulmigtir. Elde edilen sonuclar
problemin analitik ¢6zimi ve literatirde verilen naglarla kagilagtiriimigtir.
Yontemin giivenilirfii icin L, ve Lo, hata normlari hesaplangtir. Onerilen yéntemin
tam ¢ozimlerle uyumlu sonuclar vefidgorulmdstar.

Anahtar kelimeler: Rosenau-KdV-RLW, B-spline fonksiyonlar, kollakasyaetodu,
parcalama tekri.

1. Introduction

In this paper, we will deal with the numerical d4@ua of the Rosenau-KdV-RLW
equation given by

Ur + auy + b(UP)yx — Cllyxr + dUyyy + €Usyrxr = 0 (1)
subject to the initial condition
u(x, 0) = up(x), x € [x, xg] (2)
and the boundary conditions

ulx,,t) =ulxg,t) =0
U, (x,t) = u,(xg,t) =0, t€(0,T], 3)
uxx(xL: t) = uxx(er t)=0

wherex andt denote the spatial and time variables, respegtiVeis final time,u(x, t)

Is the nonlinear wave profil@, b, ¢, d ande are non-negative real numbeng(x) is a
given smooth function ang, < 0 andxg = 0 which are both large [1]. tf,(x) tends

to zero whenx; < 0 and xz = 0, then the above initial-boundary value problem is
consistent, so the given boundary conditions aranmgful for the solitary solution of
the Rosenau-KdV-RLW Eg. (1) is obtained by comhgnthe Rosenau-KdV equation
and Rosenau-RLW equation. ko0, EQ. (1) becomes

U + auy, + b(UP), + diyyy + €Ussrnt = 0 (4)

which is the well known Rosenau-KdV equation. Egt{ds been solved numerically by
some methods [2-4]. Fo=0, Eg. (1) takes the form

U + Aty + b(UP )y — Clyxr + EUgyxxe = 0 (5)

which is the well known Rosenau-RLW equation. Thenarical solution of this
equation has been studied in the past years [, 5-7

The Rosenau-KdV-RLW equation (1) with the initid) @nd boundary conditions given
by (3) has been solved by several authors. Paretald [8] presented a new Crank-
Nicolson pseudo-compact conservative numericalraehr the Rosenau-KdV-RLW
equation. Korkmaz and Dereli [9] proposed a meshfmethod based on the
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collocation with radial basis functions to solve tRosenau-KdV-RLW equation. Wang
and Dai [4] proposed a three-level linear cons@rgamplicit finite difference scheme.
Ghilongi and Omrani [10] introduced some high-ordeacurate finite difference
schemes for the Rosenau-KdV-RLW equation. ForoatahEbadian [11] proposed the
modified Chebyshev rational approximations for Besenau-KdV-RLW equation on
the infinite intervals. Fernandez and Ramos [Ilywed numerically Rosenau-KdV-
RLW equation with second and fourth-order dissiaterms subject to homogeneous
boundary conditions and initial Gaussian conditidns means of a second-order
accurate trapezoidal procedure in time where trst, fsecond, third and fourth order
spatial derivatives are considered as unknownshand been discretized by means of
three-point, fourth-order accurate, compact fidiféerence formulae.

2. Mathematical model

In the present study, the numerical solutions efRlmsenau-KdV-RLW equation (1) are
going to be sought using separately both cubic @udtic B-spline finite element
collocation method together with the initial (2)daihe boundary conditions (3). First of
all, the Rosenau-KdV-RLW equation (1) is converiefth a system consisting of two
partial differential equations as follows

U + au, + pbuPu, — cvp + dvy + evyy = 0 (6)
Uy —V =0 (7)

The resulting equations (6)-(7) are going to béedathe Rosenau-KdV-RLW equation
system. Under these conditions, the Rosenau-KdWRiguation system is converted
into a new system of equation given by the follayunitial and boundary conditions.

u(x,0) =uo(x), v(x0)=uy(x),  x € [x;,xz] (8)
u(x,,t) =ulxg, t) =0, v(x,t) =v(xgt)=0,t€ (0,T] 9

In the Rosenau-KdV-RLW equations system (6)-(7),timg forward difference
equations in place of derivatives with respectiteetvariablet, and Crank-Nicolson
type finite difference approximations with respéetspace variablg, and assuming
Z = a + pbuP~1, we obtain the following system of equations

un+1 _ un un+1 + un vn+1 _ vn vn+1 + vn vn+1 _ vn
I —c————Fd———+e———— =0 (10)
un+1 +un vn+1 + UTL
XX xx —0. (11)

2 2

If we reorganize the above system of equations,olain the following relations
between th@ andn+1 time levels

kZ kd
u™tl 4 - ultlt — cp™tl 4 - v+l 4 eplitl
kZ

=u" ——uy —cv" —ﬁv" +ev} (12)
X X XX

2 2
ultl —pntl = 4 ™, (13)
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The approximate solutions corresponding to the tegalutionsu(x,t) andv(x,t) of
the Rosenau-KdV-RLW equation system (6)-(7) arengdb be denoted by (x, t)
and vy(x,t), respectively. The solution domain of the problasn taken as
[x;, xg]x[0,T]. An uniform grid structure is constructed on fwdution domain of the
problem by takingh = x,,,1 — x,,, form = 0(1)N — 1 on the space domajw;, xz] as
X=X <X <Xp < <xy_q<xy=xgandk =t,,;—t, forn=0(1)M -1 on
the time domain[0,T] as 0 =t, <t; <t, < <ty_1 <ty =T. Under these
conditions, the values afy (x,,, t,) andvy(x,,, t,) at the nodal point$x,,,t,) are
going to be denoted hy}, andv,}, respectively.

2.1. Scheme-I: Cubic B-spline collocation method

The first numerical scheme is going to be obtaibgdcubic B-spline finite element
collocation method. Cubic B-spline basis functighs(x) for m = —1(1)N + 1 are
defined as follows

(x — xm—z)g [Xm—2s X 1]
1 h® + 3h2(x — Xm-1) + 3h(x — xm—l)z —3(x— xm—1)3 Xm—1,xm]
Qm(x) = F h + 3hz(xm+1 - x) + 3h(xm+1 - x)z - 3(xm+1 - x)g ’ [xm: xm+1] (14)

I (xm+2 - x)3 , [xm+1'xm+2]
k 0 ,otherwise

[13]. Since the set of cubic B-spline basis fumtsi{@_,(x), @,(x),..., Oy ()}
constitutes a base for the smooth functions defioeer the domainx;,xz], the
approximate solutionsy (x, t,,) andvy(x, t,,) can be written as follows in terms of the
cubic B-spline basis functions

N+1 N+1
(0= ) B8O, v = ) 6. (15)
i=—1 i=—1

Heres;(t) anda;(t) are time dependent parameters to be determingdte $e cubic
B-spline basis functions and their derivatives zzm outside the domalw,,,_,, X, 421,
the approximations over the typical elemgny, x,,,.,] can be written in the following
form

m+2 m+2
W= ) 6O,  wEH= ) 6@a®. (16)
i=m-1 i=m-1

If we apply the local coordinate transformatibh= x — x,,,, 0 < & < 1 on the typical
element[x,,, x,,+1], the B-spline basis functions on the new intef@al]| in terms of
local variableé can be written as follows

Om-1 = (1 - 5)3;

On,=1+31-8)+3(1-8&2?-301-¢)3, (17)
Bmsr =1+ 38 + 382 — 383,
Dtz = 53-

The nodal values of the approximate functiengx,,,t) = u,,, vy (X, t) = v, and
their derivatives up to second order with respecpgace variablg for m = 0(1)N in
terms of parameteis,, anda,,, are obtained as follows
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Un = fgm—l + 40m + S Um = g—m—l + 40 + Oms1s

Un = n (_5m—1 + 5m+1)’ vr’n = E(_O_m—l + Um+1): (18)

rn 6 n 6
Um = ﬁ(é‘m—l - 2(Sm + 6m+1), Um = E(Gm—l - 2O-m + Jm+1)-

Here the superscript denotes the derivative wispeet to variable. If we write these
pointwise values in Eqgs. (12)-(13) and rearrangamttiorm = 0(1)N, we obtain the
following set of algebraic equations

A SRS + A8 + A3 + Biogtl + Byogtt + Baogitl =
C16m—1 + Co05 + C30 1+ D101 + Dyof + D3oy g (19)

Ei6hEy + E 60 + E36th + Fiohtl + Folitt + Foptt =
G101 + G0 + G365 .1 + Hio)y_ + Hyopr + Hyo0 1. (20)

The values of coefficients;, B;, C;, D;, E;, F;, G; andH; for i = 1(1)3 are given in the
the Table 1. This system of equations consist¢2bf+ 6) unknowns and (2+2)
equations. If the unknowrds ;, 6541, 0-1, dy4+1 €ncountered for values oEQON

Tablo 1. The values of the coefficients of the emmasystems given by EQs.
(19)-(20)

| Al Bi Ci Di Ei Fl Gi Hl
3kZ 3kd 6e 6 6

1 g 2Kem KA 0€ B > a1 -2 1
== TR TR et Pel h?
12e 12 12
3kZ 3kd 6e 6 6

3 q_2m o4 0 B, 2 a1 % 1
T 2n Rz YA 2 h?

are eliminated using the boundary conditions gignEq.(9), a system of k+-2)
equations in (R+2) unknowns are obtained. First of all, we wtite unknowns of this
system of equations in the form df = [§, 6,8, 0, ...0y oy |7 and arrange the both
sides of the equation in such a way that the adeffts matrices are in agreement with
d”. The newly obtained [{+2) dimensional square matricAsandB are used in the
system of equationdd™"! = Bd™ and finally they are solved using an appropriate
algorithm. The matricesA and B can be easily handled since they are six-band
matrices. In order to be able to calculate theupatersd™*?! | first of all, the initial
parameted® should be known. Using the initial conditionsegivtogether with Eq.(8)

3
(un)x(x,,0) = 7 (=62, +687) = ugp(xy)
uy (X, 0) = 801 + 4685 + 82,1 =up(x,), m=0(1)N 21

3
(un)x(xg,0) = E(_51(\J/—1 + 51(\)/+1) = ug(xg)

and
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3
(Wn)x(x,0) = E(_091 + 010) =ugy (x1)

Un(Xm, 0) = Oy + 40 + Omyg = U (), m=0(DN (22)

3
(vn)x(xg,0) = E(—Uz(\)/q + 01(\)1+1) =uqy (xg)

the above system of equations is obtained. Theisolof these systems of equations is
found by the initial parametel®. The following inner iteration has been appliedrte
nonlinear terms of the equation 3 or 5 times torowp the approximations

* n 1 n+1 n * n 1 n+1 n
O = O + > (G —=61) and oy, =on + E(Um — ap}). (23)

2.2. Stability analysis

The stability analysis of the numerical scheme Itegufrom the application of the
cubic B-spline finite element collocation methodth@ Rosenau-KdV-RLW equation
system is going to be implemented by the von Neumaethod. Because of this
reason, in place af in the nonlinear term?~'u, in Eq. (6) a local constadtis taken.
Under this condition, the ter#,, found in the coefficientd;, C; in Eq. (19) is going to
be a constant in the form of + phZP~1. Wherei is the imaginary unitgp is an
arbitrary real number, the amplification facipr= q(¢) is a complex numbeb;}, =
Pq™e'™® g = Wqme'™® special solutions are written in Egs. (19)-(20) #me Euler
formulae’ = cosg + ising is used and the following homogenous equationesys
IS obtained

[(A+iZB)q — (A—iZB)]P + [(D + iBd)q — (D — iBd)]W =0 (24)
(g +1)(CP— AW) =0 (25)

where A = 2(cosp +2), B= %Singo, C = :l—i(cosgo —1), D=—-Ac+Ce, Z=
maxZ,,. Itis known that this homogeneous equation sydtas at least one nonzero

solution when the determinant of the coefficienttnaof the system is zero. Under
this condition, from equations (24) and (25) we weaite
[-A% — CD —iB(AZ + Cd)]q + A*> + CD —iB(AZ+Cd) =0 or q+1=0. (26)

Then, the the amplification factor is found asdols

—A2 — CD + iB(AZ + Cd)
—A2 — CD — iB(AZ + Cd)

q= or q=-—1. (27)

As a conclusion, sincg| = 1, the method is unconditionally stable.

2.3. Scheme-II: Quintic B-spline collocation method

The second numerical scheme of the problem to hsidered in Section 2 is going to
be obtained by the quintic B-spline finite elemealiocation method. The quintic B-
spline basis functiond,,,(x) form = —2(1)N + 2 are defined as follows
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(qo = (X — Xpm_3)° s [Xmo3, Xm—2]
41 = qo — 6(x — Xpp_5)° s [Xm—2, Xm1]
1 q2 = q1 — 6(x — xm—z)5 + 15(x — xm—l)5 [ Xm—1,Xm]
Q)m(x) = F< 43 =42 — 6(x - xm—z)s_zo(x - xm)s ’ [xm; xm+1] (28)
qs = q3 — 6(x — Xp—3)° + 15(x — Xppp41)° s ema1, Xma2]
qs = g4 — 6(X — Xp—3)>—6(x — Xpm42)° s ema2) Xmas]
\ 0 ,otherwise

[13]. Since the set of quintic B-spline basis fims {@_,(x), @_,(x), ..., Oy42(x)}
constitutes a base for the smooth functions defioadthe domain[x;, xz], the
approximate solutionsy (x, t) andvy (x, t) are given as follows

N+2 N+2
w60 = ) 0060, D= ) 6:Da(®), 29)

Here §;(t) ando;(t) are time dependent parameters which are going timind out.
Since the quintic B-spline basis functions and rtlusrivatives are zero outside the
region [x,,—s3, xm+3], @ typical approximate solution can be writterf@®ws over the
region[x,,, x,+1] as follows

m+2 m+2
W= Y BHO,  wmEH= Y 8HO. (30)
i=m-2 i=m-2

If we apply the local transformatiohé = x — x,,, 0 <& <1, on a typical region
[xm Xm+1] @nd convert it into the regid®,1], the quintic B-spline basis functions over
the region0,1] are defined as follows in terms of the local Vialeaé

Omp =1 — 58 + 1082 — 1083 4+ 5&* — &5,
Bm1 = 26 — 50& + 2082 + 2083 — 20&* + 5&°,
@, = 66 — 60&2 + 308* — 105, (31
Oime1 = 26 + 508 + 2082 — 2083 — 20&* + 105,
Bz = 1+ 58 + 1082 + 1083 + 5&* — 585,
Dmsz = 55-

The pointwise values afy (x,,, t) = Uy, vy (X, t) = v, and their derivatives up to
second order fom = 0(1)N at the poini{(x,,, t) in terms of parametets,, andg,, are
given as follows

Uy = Sm_z + 265‘”7.—1 + 665m + 266m+1 + 6m+2, Um = Opm—2 + 26Um_1 + 660-m + 26Um+1 + Om+2,
5 5

u;n = E (_5m—2 - 106m—1 + 106m+1 + 5m+2)r 1JTIn = E (_Um—z — 1001 + 100,41 + O-m+2): (32)
20 20

u;yll = ﬁ((sm—z + 26m—1 - 65m + 26m+1 + 5m+2)r Urlrll = ﬁ(am—z + 2053,4 — 60, + 2O-m+1 + 0m+2)'

The upper indices in these formulae denote theval@re with respect tx. If these

nodal values are written in their places in EqR){13) and they are arranged
accordingly, the following systems of algebraic &ipns are obtained fen = 0(1)N
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ASIYL + A 6L + A6 + A0t + AgomtY
+B,0*tY + Byotl + Byott + Byottl + Bootl =
C10m—p + Ca0p 1 + C307, + Cobp 41 + Cs6p iz
+Dy0m—» + Dyoy_1 + D30y + Dyopiq + Dsoynyn,  (33)

E 6DYL + B804, + B0t + B 60L + EsSItY
+F ot + Foolttl + Fyott + Fyoltl + Foolttl =
G10m—2 + G001 + G365, + G401 + G567 47
+H,0}}_, + Hyo,}_1 + Hyop + Hyolh o1 + Hsoph oo (34)

The coefficients4;, B;, C;, D;, E;, F;, G; andH; for i = 1(1)5 are given in Table 2.
This system of equations consists dN¢210) unknowns and [+2) equations. If the
unknownsé_,, 6_1, 8y +1,0n+2 corresponding ton=0,1N-1,N are eliminated using the
boundary conditionsi, (x;,t) = 0, Uy, (x;,t) = ug (xy), ux(xg, t) =0, Upe(xg, t) =

ugy (xg) and the unknownsr_,,o_;,0yn41,0n4+2 are eliminated using the boundary

conditions v, (x;,t) = uy (x1), Uy (X, 1) = ug4) (x1), ve(xg, t) = uy' (xg),

Vyr(Xg, t) = u((f) (xg), then a system of [2) unknowns (R+2) equations is
obtained. First of all, we write the unknowns loistsystem of equations in the form of
d” =[6, 0,6, 0, ... 6y oy ]T and arrange the both sides of the equation in ausiay
that the coefficients matrices are in agreemenh dit. The newly obtained [&+2)
dimensional square matricAsandB are used in the system of equatida*! = Bd"
and finally they are solved using an appropriag@@ihm. SinceA andB matrices are
ten-diagonal matrices, they can be handled easilyrder to compute paramewdt+!

it is necessary to know the initial paramed® Using the initial conditions given in
Eq. (8), the following equations

20 0 0 0 0 0 "
(Upn) xx (x1,0) = ﬁ (62, + 282, — 685 + 267 + 63) = ug (x1),

5 0 0 0 0 '
(un)x(x,,0) = E(_S—z — 1062, + 1067 + 63) = ug(xy),
uy (X, 0) = 6,915_2 + 2662 _1 +668% + 26821 + 65,2 =us(xy), m=0(1)N (35)
(un)x(xg,0) = E (_51(\)1—2 - 1051(\)1—1 + 1051(\)1+1 + 51(\)1+2) = ugy(xg),

20 0 0 0 0 0 17
(Un) xx (X5, 0) = ﬁ(&v—z + 28y-1 — 66y + 26§11 + On+2) = ug (xg)
and

(W) xx (x1,0) = 2—2 (6%, +20% — 600 + 200 + 6d) = u(()4) (x),
5 "
(wpn)(x,0) = = (—02% — 1002, + 100 + o) = uy’' (x.),

vy (X, 0) = 00—, + 260701 + 660, + 26001 + 0z = uf (), m = 0(1)N (36)
(vn)x(xg, 0) = ﬁ(_az?/—z —100§_1 + 100341 + o542) = uy’ (%),

4
(UN)xx (xR, 0) = w2 (013—2 + 2<713—1 - 6013 + 2<71\9+1 + 0'13+2) = u(() )(XR)
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Tablo 2. The values of the coefficients of the e¢igumasystems given by Egs.(33)-
(34).

i A; B; ¢ D, E F G H
2 26—502kth —26c—5(2)%+% Ag_; By ;t_g —26 %‘;0 26
3 66 _66c_1ige Ae_; Beoi _1}12_20 —66 1}12_20 66
4 26+5021‘;IZ"1 —26c+5(2)%+% As—i Be_; ;t—g —26 _hto 26
5 1+5§# —c+¥+% As—i Be_; z—g -1 —h220 1

are obtained. The initial parametdf is found by the solution of these systems of
equations. The internal iteration given by equati®3) is applied 3 or 5 times at each
time step to the nonlinear terms of the equatiatesy, thus the approximate solution is
improved.

2.4. Stability analysis

The stability analysis of the difference equati¢d3) - (34) obtained by applying the
quintic B-spline finite element collocation methizdgoing be done by von Neumann
method. In place ofi in the nonlinear termx?~'u, in Eq. (6), a local constaidt is
going to be taken. In that condition, the tefip in the difference equation given by
Eq. (33) is going to be constant in the formucf pbZP~1, i is the imaginary unitp is

an arbitrary real number, the amplification factpe q(¢) is a complex number,
special solution$ = Pq"e'™®, g = Wq™e'™® are written in Egs. (33) - (34) and
the Euler formulae’” = cosg + ising is used and after some arrangements the
following homogenous equations system is obtained

[(A+iZB)q — (A—iZB)]P + [(D + iBd)q — (D — iBd)]W =0 (37)
(g+1)(CP — AW) =0 (38)

where A = 2(26cos@ + cos2¢ + 33), B = %i(lOsinq) + sin2¢), C = % (2cosp +
cos2¢ —3), D = —Ac + Ce, Z = maxZ,,. It is well known that this homogenous

equation system has at least one nonzero solutibenwhe determinant of the
coefficient matrix of the system is zero. Therefrom Eqs. (37)-(38) we can write
[-A%? — CD — iB(AZ + Cd)]q + A+ CD —iB(AZ+ Cd)=0o0rq+1=0. (39)

Then, the amplification factor is found as follows

—A? — CD +iB(AZ + Cd)
—A2 —-CD —iB(AZ + Cd)

q= or g =-1 (40)

As a conclusion, sincg| = 1, the method is unconditionally stable.
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3. Application of the methods and comparisons

In this section, the methods proposed in Sectifor fhe Rosenau-KdV-RLW equation
system have been applied to one example and nwuahedsults were obtained. To
demonstrate the efficiency and effectiveness optioposed methods, we have used the
fundamental conservation characteristics of theeRas-KdV-RLW equation defined as
follows

Q(t) = j u(x, t)dx = j u(x,0)dx =Q(0) (41)
E(t) = f (u?(x, t) + cuZ(x, t) + uZ(x,t))dx = E(0) (42)

XL

and known as mass and energy invariants, besideshave used the error norms
defined as follows

L, = max |u;1nalitik _ um’imerikl (43)

2
" ; i
1<isN

— N analitik __ , nimerik
L, = \/hzi=1|ui u;

If L represents one of these error norms, then thenoly formula

Rate
_ In(L(t, hy)/L(t, h3))
B In(hy/hy)

IS going to be used as a convergence rate.

(44)

Example: The exact solution of the Rosenau-KdV-RLW equatgomen by Eq. (1) for
parametric values @f=1,b=0.5,c=1,d=1,e=1,p=2is

u(x, t) = kysech*[k,(x — kst)] (45)

where  k; = —5(25 — 131/457) /456, k, =\ —13 +V457/V288, ks =
(241 + 13V457)/266 [1, 4, 14]. By takingt=0 in the exact solution, the initial
condition of the problem can be obtained. In Taldel4, the error norms, andL,, of

the numerical solutions obtained by cubic B-spliodocation methods and quintic B-
spline collocation methods at tinfe= 30 forx;, = —40, xzy = 100 and are compared
with those of some published ones in the literatus it is seen from Tables 3-4, the
errors of the numerical solutions obtained by thespnt methods are smaller than the
errors of the compared ones.
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Tablo 3. A comparison of numerical results errsing L, for
varioush=k andx € [—40,100] at timeT=30.

h=k Scheme-| Scheme-l| [1] [4]
0.25 2.55603E-1 2.37668E-1 2.94337E-0 1.86617E-0
0.125 6.46775E-2 6.00345E-2 8.05629E-1 5.18662E-1
0.0625 1.62185E-2 1.50476E-2 2.05276E-1 1.33174E-1

0.03125 4.05772E-3 3.76437E-3 5.15696E-2 3.35296E-2

Tablo 4. A comparison of numerical results errsing L., for
varioush=k andx € [—40,100]at timeT=0.

h=k Scheme-| Scheme-l| [1] [4]
0.25 9.85936E-2 9.10323E-2 9.86753E-1 6.99597E-1
0.125 2.49932E-2 2.30177E-2 2.14488E-1 1.97127E-1
0.0625 6.26876E-3 5.76980E-3 5.19201E-2 5.06954E-2

0.03125 1.56845E-3 1.44360E-3 1.28858E-2 1.27669E-2

In Table 5, the convergence rates for the erromsat, and L, of the numerical
solutions obtained by cubic B-spline collocation theel and quintic B-spline
collocation method at tim&=30 forx;, = —40, xz = 100 are calculated and displayed.
The convergence rates obtained by the present ohétdne been compared with those
obtained by Wang and Dai [4]. It is seen that ¢cbavergence rates of the proposed
methods are larger. It is also clearly seen thatgreatest convergence rate has been
obtained by the quintic B-spline collocation method

In Table 6, for values af, = —40, xz = 160, k=h=0.25 at timesI=0, 15, 30, 45, 60

mass and energy invariants have been calculated@ngared with those given in [1].
According to the results obtained, the fundamewrtabservation properties of the
Rosenau-KdV-RLW equation are preserved with thob&ined by the proposed
numerical schemes in the range [0,60].

Tablo 5. A comparison of convergence rated.foandL,, atT=30

h=k Scheme-| Scheme-II [4]
RateL, RateL, RateL, RateL, RateL, Ratel,,
0.5 s e e e e s
0.25 1.93025 1.92143 1.93992 1.92951 1.84721274@3
0.125 1.98257 1.97996 1.98508 1.98363 1.961495920
0.0625 1.99562 1.99528 1.99625 1.99838 1.989808915

Tablo 6. Acomparison of mass and energy invaritonte=k=0.25, x € [-40,100]
at timeT=30

T Scheme-I| Scheme-l| [1]16 = -1
E Q E E
0 21.67925844 43.70855146  21.67925844 43.7085514@1.67925844 43.70855146

15
30
45
60

21.67922349
21.67919030
21.67879169
21.68231910

43.70931861
43.70919982
43.70910121
43.70900042

21.67922326
21.67919310
21.67891685
21.68069226

43.714122321.68257703
43.7140166@1.68264127
43.7139100@1.68342617
43.7138034P1.67462536

43.72652015
43.72664228
43.72664409
43.72664408

11



OZER S.

In Figs. 1-2, the graphics of the exact and numaésolutions obtained using cubic and
quintic B-spline collocation method on the regieAd,100] for values oh=k=0.25 at
times T=10, T=20, T=30 are illustrated. In those graphics, numersmltions and
exact ones overlap in such a way that they aratinduishable.

3
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0 1 L L L S~
-40 -20 0 20 40 60 80 100

Figure 1. The graphics of exact and numerical gmstobtained using Scheme-I on the
region [-40,100] for values ¢=k=0.25 at time§=10,T=20 andT=30.

L L L L
-40 -20 0 20 40 60 80 100

Figure 2. The graphics of exact and numerical swmistobtained using Scheme-Il on
the region [-40,100] for values bfk=0.25 at time§=10,T=20 andT=30.

4. Conclusion

In this study, the Rosenau-KdV-RLW equation istlrsconverted into the partial
differential equation system given by Egs.(6)-(Mhen, the resulting system has been
solved separately by both the cubic and quinticpi3e finite element collocation
methods. The methods have been examined on anpexafsimulation of solitary
waves. The error norms and invariants have beempuated to determine the accuracy
of the proposed methods. The error norms have beempared by Refs.[1-4]. It is
seen that the error norms are smaller than ther aihes. The mass and energy
invariants for solved example are sufficiently dan$ during the simulation time for
given both methods. The stability analysis of thethods has been made by the von

12
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Neumann method. It is found that they are uncamually stable. The convergence
rates of the methods are found as nearly about tWtois obviously seen that the
obtained results are in very good agreement with ékact ones. Although both
methods produce close results, the quintic B-spiimié element collocation method
gives better results than the other one. Conselguéme presented methods can also be
applied to many partial differential equations udihg higher-order derivatives widely
encountered in engineering and science.
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