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Abstract 
 
In this study, the Rosenau-Korteweg-de Vries-Regular Longwave (Rosenau-KdV-RLW) 
equation has been converted into a partial differential equation system consisting of two 
equations using a splitting technique.  Then, numerical solutions for the Rosenau-KdV-
RLW equation system have been obtained using separately both cubic and quintic B-
spline finite element collocation method.  For the unknowns in those equations, B-spline 
functions at x-position and Crank-Nicolson type finite difference approaches at time 
positions are used.  A test problem has been chosen to check the accuracy of the 
proposed discretized scheme.  The basic conservation properties of the Rosenau-KdV-
RLW equation have been shown to be protected by the proposed numerical scheme.  
The results are compared with the analytical solution of the problem and the results 
given in the literature.  For the reliability of the method the error norms �� and �� are 
calculated.  It is seen that the proposed method gives harmonious results with exact 
solutions. 
 
Keywords: Rosenau-KdV-RLW, B-spline functions, collocation method, splitting 
technique. 
 
 

Rosenau-KdV-RLW denklemi için etkin bir sayısal teknik 
 
 
Özet 
 
Bu çalışmada, Rosenau Korteweg-de Vries düzenli uzun dalga (Rosenau-KdV-RLW) 
denklemi bir parçalama tekniği kullanılarak iki denklemden oluşan bir kısmi 
diferansiyel denklem sistemine dönüştürülmüştür.  Daha sonra, Rosenau-KdV-RLW 
denklem sistemi için kübik ve kuintik B-spline sonlu eleman kollakasyon yöntemi 
kullanılarak sayısal çözümler önerilmiştir.  Bu denklemlerdeki bilinmeyenler için x-
konumunda B-spline fonksiyonlar ve zaman konumunda Crank-Nicolson tipi sonlu fark 
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yaklaşımları kullanılmıştır.  Önerilen sayısal şemaların doğruluğunu kontrol etmek için 
bir test problemi seçilmiştir.  Rosenau-KdV-RLW denkleminin temel korunum 
özelliklerinin önerilen sayısal şemalar ile korunduğu görülmüştür.  Elde edilen sonuçlar 
problemin analitik çözümü ve literatürde verilen sonuçlarla karşılaştırılmıştır.  
Yöntemin güvenilirliği için �� ve �� hata normları hesaplanmıştır.  Önerilen yöntemin 
tam çözümlerle uyumlu sonuçlar verdiği görülmüştür.  
 
Anahtar kelimeler: Rosenau-KdV-RLW, B-spline fonksiyonlar, kollakasyon metodu, 
parçalama tekniği. 
 
 
1. Introduction  
 
In this paper, we will deal with the numerical solution of the Rosenau-KdV-RLW 
equation given by  
 �� � ��� � ������ � 	���� � 
���� � ������� � 0																																																										�1� 
 
subject to the initial condition  
 ���, 0� � �����, � ∈ ���, ���																																																																																												�2� 
 
and the boundary conditions  
 ����, �� � ����, �� � 0 �����, �� � �����, �� � 0,			� ∈ �0, ��,																																																																																				�3� ������, �� � ������, �� � 0 
 
where x and t denote the spatial and time variables, respectively, T is final time,	���, �� 
is the nonlinear wave profile, a, b, c, d and e are non-negative real numbers, ����� is a 
given smooth function and �� � 0 and �� � 0  which are both large [1].  If ����� tends 
to zero when �� � 0 and �� � 0, then the above initial-boundary value problem is 
consistent, so the given boundary conditions are meaningful for the solitary solution of 
the Rosenau-KdV-RLW Eq. (1) is obtained by combining the Rosenau-KdV equation 
and Rosenau-RLW equation. For c=0, Eq. (1) becomes  
 �� � ��� � ������ � 
���� � ������� � 0																																																																									�4� 
 
which is the well known Rosenau-KdV equation. Eq.(4) has been solved numerically by 
some methods [2-4].  For d=0, Eq. (1) takes the form  
 �� � ��� � ������ � 	���� � ������� � 0																																																																										�5� 
 
which is the well known Rosenau-RLW equation. The numerical solution of this 
equation has been studied in the past years [1, 5-7].  
 
The Rosenau-KdV-RLW equation (1) with the initial (2) and boundary conditions given 
by (3) has been solved by several authors.  Pan and et.al. [8] presented a new Crank-
Nicolson pseudo-compact conservative numerical scheme for the Rosenau-KdV-RLW 
equation.  Korkmaz and Dereli [9] proposed a meshfree method based on the 
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collocation with radial basis functions to solve the Rosenau-KdV-RLW equation. Wang 
and Dai [4] proposed a three-level linear conservative implicit finite difference scheme.  
Ghilongi and Omrani [10] introduced some high-order accurate finite difference 
schemes for the Rosenau-KdV-RLW equation.  Foroutan and Ebadian [11] proposed the 
modified Chebyshev rational approximations for the Rosenau-KdV-RLW equation on 
the infinite intervals.  Fernandez and Ramos [12] analyzed numerically Rosenau-KdV-
RLW equation with second and fourth-order dissipative terms subject to homogeneous 
boundary conditions and initial Gaussian conditions by means of a second-order 
accurate trapezoidal procedure in time where the first, second, third and fourth order 
spatial derivatives are considered as unknowns and have been discretized by means of 
three-point, fourth-order accurate, compact finite difference formulae.  
 
 
2. Mathematical model  
 
In the present study, the numerical solutions of the Rosenau-KdV-RLW equation (1) are 
going to be sought using separately both cubic and quintic B-spline finite element 
collocation method together with the initial (2) and the boundary conditions (3).  First of 
all, the Rosenau-KdV-RLW equation (1) is converted into a system consisting of two 
partial differential equations as follows  
 �� + ��� + �������� − ��� + ��� + 	���� = 0                                                                (6) ��� − � = 0                                                                                                                                   (7) 
 
The resulting equations (6)-(7) are going to be called the Rosenau-KdV-RLW equation 
system.  Under these conditions, the Rosenau-KdV-RLW equation system is converted 
into a new system of equation given by the following initial and boundary conditions.  
 �
�, 0� = ��
��,       �
�, 0� = ��		
��, � ∈ 
�
, ���                                                      (8) �
�
, �� = �
��, �� = 0,    �
�
, �� = �
��, �� = 0, � ∈ (0, ��                                           (9) 
 
In the Rosenau-KdV-RLW equations system (6)-(7), writing forward difference 
equations in place of derivatives with respect to time variable t, and Crank-Nicolson 
type finite difference approximations with respect to space variable x, and assuming � = � + ������,  we obtain the following system of equations  
 ��
� − ��� + � ���
� + ���

2 − � ��
� − ��� + � ���
� + ���
2 + 	 ����
� − ����� = 0        (10) 

 

 ����
� + ����
2 − ��
� + ��

2 = 0.                                                                                               (11) 

 
If we reorganize the above system of equations, we obtain the following relations 
between the n and n+1 time levels  
 ��
� + ��

2 ���
� − ���
� + ��
2 ���
� + 	����
� 

= �� − ��
2 ��� − ��� − ��

2 ��� + 	����     (12) ����
� − ��
� = −���� + �� .                                                                                                    (13) 
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The approximate solutions corresponding to the exact solutions ���, �� and ���, �� of 
the Rosenau-KdV-RLW equation system (6)-(7) are going to be denoted by �	��, �� 
and �	��, ��, respectively.  The solution domain of the problem is taken as ���, ���x�0, ��.  An uniform grid structure is constructed on the solution domain of the 
problem by taking � � �
�� � �
 for  � 0�1�! � 1 on the space domain ���, ��� as �� � �� " �� " �� " ⋯ " �	
� " �	 � �� and $ � ���� � �� for % � 0�1�& � 1 on 
the time domain �0, �� as 0 � �� " �� " �� " ⋯ " ��
� " �� � �.  Under these 
conditions, the values of �	��
, ��� and �	��
, ��� at the nodal points ��
 , ��� are 
going to be denoted by �
�  and �
� , respectively.  
 
2.1. Scheme-I: Cubic B-spline collocation method  
The first numerical scheme is going to be obtained by cubic B-spline finite element 
collocation method. Cubic B-spline basis functions ∅
��� for  � �1�1�! � 1 are 
defined as follows  
 

∅���� � 1���	

	� �� � ������																																																																																 , �����, ������� � 3���� � ����� � 3��� � ������ � 3�� � ������ , �����, ����� �	3������� � �� � 3������ � ��� � 3����� � ��� , ���, ���������� � ���																																																																																	 , �����, �����0																																																																																																				 , ���������

	�14� 
 
[13].  Since the set of cubic B-spline basis functions (∅
����,			∅����,… , ∅	�����* 
constitutes a base for the smooth functions defined over the domain ���, ���, the 
approximate solutions �	��, ��� and �	��, ��� can be written as follows in terms of the 
cubic B-spline basis functions  �	��, �� � + ∅����,����	��

��
�
, 													�	��, �� � + ∅����-����	��

��
�
.																																			�15� 

 
Here ,���� and -���� are time dependent parameters to be determined.  Since the cubic 
B-spline basis functions and their derivatives are zero outside the domain ��

�, �
���, 
the approximations over the typical element ��
 , �
��� can be written in the following 
form  �	��, �� � + ∅����,����
��

��

�
, 													�	��, �� � + ∅����-����
��

��

�
.																													�16� 

 
If we apply the local coordinate transformation �0 � � � �
, 0 � 0 � 1 on the typical 
element ��
, �
���, the B-spline basis functions on the new interval �0,1� in terms of 
local variable 0 can be written as follows  
 ∅

� � �1 � 0��, ∅
 � 1 � 3�1 � 0� � 3�1 � 0�� � 3�1 � 0��,																																																														�17� ∅
�� � 1 � 30 � 30� � 30�, ∅
�� � 0�. 
 
The nodal values of the approximate functions �	��
, �� � �
, �	��
 , �� � �
 and 
their derivatives up to second order with respect to space variable x for  � 0�1�! in 
terms of parameters ,
 and -
 are obtained as follows  
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 �
 � ,

� � 4,
 � ,
��,            �
 � -

� � 4-
 � -
��, �
� � �
� ��,

� � ,
���,               �
� � �

� ��-

� � -
���,																																							�18� �
�� � �
�� �,

� � 2,
 � ,
���,     �
�� � �

�� �-

� � 2-
 � -
���. 
 
Here the superscript denotes the derivative with respect to variable x.  If we write these 
pointwise values in Eqs. (12)-(13) and rearrange them for  � 0�1�!, we obtain the 
following set of algebraic equations  
 3�,

���� � 3�,
��� � 3�,
����� � 4�-

���� � 4�-
��� � 4�-
����� 	� 5�,

�� � 5�,
� � 5�,
��� �6�-

�� �6�-
� � 6�-
��� 															�19� 
 8�,

���� � 8�,
��� � 8�,
����� � 9�-

���� � 9�-
��� � 9�-
����� � :�,

�� � :�,
� � :�,
��� �;�-

�� �;�-
� �;�-
��� .										�20� 
 
The values of coefficients 3�, 4�, 5�, 6�, 8�, 9�, :� and ;� for < � 1�1�3 are given in the 
the Table 1.  This system of equations consists of (2N + 6) unknowns and (2N+2) 
equations.  If the unknowns ,
�, ,	��, -
�, -	��  encountered for values of m=0,N  
 

Tablo 1. The values of the coefficients of the equation systems given by Eqs. 
(19)-(20) 
 
i 3� 4� 5� 6� 8� 9� :� ;� 

1 1 � 3$=
2�  �	 � 3$
2� � 6��� 3�
� 4�
� 6�� -1 � 6�� 1 

2 4 �4	 � 12���  3�
� 4�
� �12�� -4 
12��  4 

3 1 � 3$=
2�  �	 � 3$
2� � 6��� 3�
� 4�
� 6�� -1 � 6�� 1 

 
are eliminated using the boundary conditions given by Eq.(9), a system of (2N+2) 
equations in (2N+2) unknowns are obtained.  First of all, we write the unknowns of this 
system of equations in the form of >� � �,�	-�	,�	-�…,		-		�� and arrange the both 
sides of the equation in such a way that the coefficients matrices are in agreement with >�.  The newly obtained (2N+2) dimensional square matrices ? and @ are used in the 
system of equations ?>��� � @>� and finally they are solved using an appropriate 
algorithm.  The matrices 	? and @ can be easily handled since they are six-band 
matrices.  In order to be able to calculate the parameters >��� , first of all, the initial 
parameter >� should be known.  Using the initial conditions given together with Eq.(8) 
 ��	�����, 0� � 3� ��,
�� � ,��� � ��� ���� �	��
, 0� � ,

�� � 4,
� � ,
��� � ����
�,  � 0�1�!																																				�21� ��	�����, 0� � 3� ��,	
�� � ,	��� � � ��� ���� 
 
and 
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����
�
, 0� = 3
ℎ 
−���� + ���� = ��			
�
� ��
�� , 0� = ����� + 4��� + ��
�� = ��	 
���, � = 0
1��                                    (22) 
����
��, 0� = 3
ℎ 
−����� + ��
�� � = ��			
��� 

 
the above system of equations is obtained.  The solution of these systems of equations is 
found by the initial parameter ��.  The following inner iteration has been applied to the 
nonlinear terms of the equation 3 or 5 times to improve the approximations  
 ��∗ = ��� + 1

2 
���
� − ��� �         and        ��∗ = ��� + 1
2 
���
� − ��� �.                           (23) 

 
2.2. Stability analysis  
The stability analysis of the numerical scheme resulting from the application of the 
cubic B-spline finite element collocation method to the Rosenau-KdV-RLW equation 
system is going to be implemented by the von Neumann method.  Because of this 
reason, in place of u in the nonlinear term ������ in Eq. (6) a local constant �� is taken.  
Under this condition, the term �� found in the coefficients ��, �� in Eq. (19) is going to 
be a constant in the form of � + �������.  Where i is the imaginary unit, � is an 
arbitrary real number, the amplification factor � = �(�) is a complex number  ��� =���	��� , ��� = ���	��� special solutions are written in Eqs. (19)-(20) and the Euler 
formula 	�� = �� � + ! !"� is used and the following homogenous equations systems 
is obtained 
 

� + !�#�� − 
� − !�#��� +  

$ + !#��� −  
$ − !#���� = 0                            (24) 

 
� + 1�
�� −  ��� = 0                                                                                                          (25) 
 

where  � = 2
�� � + 2�, # = ��
�  !"�, � = ��

�� 
�� � − 1�, $ = −�� + �	, � =�����.  It is known that this homogeneous equation system has at least one nonzero 
solution when the determinant of the coefficient matrix of the system is zero.  Under 
this condition, from equations (24) and (25) we can write  
 
−�� − �$ − !#
�� + ����� + �� + �$ − !#
�� + ��� = 0   or    � + 1 = 0.    (26) 
 
Then, the the amplification factor is found as follows  
 � = −�� − �$ + !#
�� + ���

−�� − �$ − !#
�� + ���    or    � = −1.                                                                  (27) 

 
As a conclusion, since |�| = 1, the method is unconditionally stable.  
 
2.3. Scheme-II: Quintic B-spline collocation method  
The second numerical scheme of the problem to be considered in Section 2 is going to 
be obtained by the quintic B-spline finite element collocation method.  The quintic B-
spline basis functions ∅�
�� for � = −2
1�� + 2 are defined as follows  
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∅
��� � �
��

ABB
CB
BDE� � �� � �

���																																																	 , ��

�, �

��E� � E� � 6�� � �

���																																					 , ��

�, �

��E� � E� � 6�� � �

��� � 15�� � �

���							 , ��

�, �
�E� � E� � 6�� � �

����20�� � �
��													 , ��
 , �
���E� � E� � 6�� � �

��� � 15�� � �
����			 , ��
��, �
���E� � E� � 6�� � �

����6�� � �
����							 , ��
��, �
���0																																																																												 , F���GH<I�

											�28�  
 
[13].  Since the set of quintic B-spline basis functions (∅
����,			∅
����,… , ∅	�����* 
constitutes a base for the smooth functions defined on the domain ���, ���, the 
approximate solutions �	��, �� and �	��, �� are given as follows  
 �	��, �� � + ∅����,����	��

��
�
, 													�	��, �� � + ∅����-����.	��

��
�
																																			�29� 

 
Here ,���� and -���� are time dependent parameters which are going to be found out.  
Since the quintic B-spline basis functions and their derivatives are zero outside the 
region ��

�, �
���, a typical approximate solution can be written as follows over the 
region ��
 , �
��� as follows  
 �	��, �� � + ∅����,����
��

��

�
, 													�	��, �� � + ∅����-����
��

��

�
.																													 �30� 

 
If we apply the local transformation �0 � � � �
, 0 � 0 � 1, on a typical region ��
 , �
��� and convert it into the region �0,1�, the quintic B-spline basis functions over 
the region �0,1� are defined as follows in terms of the local variable  0 
 ∅

� � 1 � 50 � 100� � 100� � 50� � 0�, ∅

� � 26 � 500 � 200� � 200� � 200� � 50�, ∅
 � 66 � 600� � 300� � 100�,																																																																																					�31� ∅
�� � 26 � 500 � 200� � 200� � 200� � 100�, ∅
�� � 1 � 50 � 100� � 100� � 50� � 50�, ∅
�� � 0�. 
 
The pointwise values of �	��
, �� � �
, �	��
, �� � �
 and their derivatives up to 
second order for  � 0�1�! at the point ��
 , �� in terms of parameters ,
 and -
  are 
given as follows  
 
�� � ���� � 26���� � 66�� � 26���� � ����, 						� � 
��� � 26
��� � 66
� � 26
��� � 
���, 
��
� � 5

� 
����� � 10���� � 10���� � �����, 						�� � 5
� 
�
��� � 10
��� � 10
��� � 
����, 
32� 

��
�� � 20

�� 
���� � 2���� � 6�� � 2���� � �����, 		��� �
20
�� 

��� � 2
��� � 6
� � 2
��� � 
����. 

 
The upper indices in these formulae denote the derivative with respect to x. If these 
nodal values are written in their places in Eqs. (12)-(13) and they are arranged 
accordingly, the following systems of algebraic equations are obtained for  � 0�1�!  
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�������
� + �������
� + �����
� + ����
��
� + ����
��
�  
+#������
� + #������
� + #����
� + #���
��
� + #���
��
�  = ������� + ������� + ����� + ����
�� + ����
��               

+$������ + $������ + $���� + $���
�� + $���
��  ,     (33) 
 &������
� + &������
� + &����
� + &���
��
� + &���
��
�  
+'������
� + '������
� + '����
� + '���
��
� + '���
��
� = (������ + (������ + (���� + (���
�� + (���
��           

+)������ + )������ + )���� + )���
�� + )���
�� .     (34)  
 
The coefficients ��, #�, ��, $�, &�, '�, (� and )� for ! = 1(1)5  are given in Table 2.  
This system of equations consists of (2N+10) unknowns and (2N+2) equations.  If the 
unknowns ���, ���,��
�,��
� corresponding to m=0,1,N-1,N are eliminated using the 
boundary conditions ��
�
, �� = 0, ���
�
, �� = ��		
�
�, ��
��, �� = 0, ���
��, �� =��		
��� and the unknowns ���, ���,��
�, ��
� are eliminated using the boundary 

conditions ��
�
, �� = ��			
�
�, ���
�
, �� = ��(�)
�
�, ��
��, �� = ��			
���, ���
��, �� = ��(�)
���, then a system of (2N+2) unknowns (2N+2) equations is 
obtained.  First of all, we write the unknowns of this system of equations in the form of �� = 
�� �� �� �� …�� �� �� and arrange the both sides of the equation in such a way 
that the coefficients matrices are in agreement with ��.  The newly obtained (2N+2) 
dimensional square matrices * and + are used in the system of equations *��
� = +�� 
and finally they are solved using an appropriate algorithm.  Since * and + matrices are 
ten-diagonal matrices, they can be handled easily.  In order to compute parameter ��
� 
it is necessary to know the initial parameter ��.  Using the initial conditions given in 
Eq. (8), the following equations 
 

���������, 0� = 20
ℎ� ����� + 2���� − 6��� + 2��� + ���� = ��������, 

��������, 0� = 5
ℎ �−���� − 10���� + 10��� + ���� = ��� ����, 

����	, 0� = �	��
� + 26�	��

� + 66�	� + 26�	
�
� + �	
�

� = ����	�, � = 0�1��       (35) 
�������� , 0� = 5

ℎ �−����
� − 10����

� + 10��
�
� + ��
�

� � = ��� ����, 
���������, 0� = 20

ℎ� �����
� + 2����

� − 6��� + 2��
�
� + ��
�

� � = �������� 
 
and 
 
���������, 0� = ��

�� �	��� + 2	��� − 6	�� + 2	�� + 	��� = ��(
)����, 
��������, 0� = �

�
�−	��� − 10	��� + 10	�� + 	��� = ���������, 

����	, 0� = 		��
� + 26		��

� + 66		� + 26		
�
� + 		
�

� = ������	�,� = 0�1�� (36) 

��������, 0� = 5
ℎ �−	���

� − 10	���
� + 10	�
�

� + 	�
�
� � = ���������, 

��������� , 0� = 20
ℎ� �	���

� + 2	���
� − 6	�� + 2	�
�

� + 	�
�
� � = ��(
)���� 
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Tablo 2. The values of the coefficients of the equation systems given by Eqs.(33)-
(34). 
 
i 3� 4� 5� 6� 8� 9� :� ;� 

1 1 � 5$=
2�  �	 � 5$
2� � 20���  3�
� 4�
� 20�� �1 �20��  1 

2 26 � 50$=
2�  �26	 � 50$
2� � 40���  3�
� 4�
� 40�� �26 �40��  26 

3 66 �66	 � 120���  3�
� 4�
� �120��  �66 120��  66 

4 26 � 50$=
2�  �26	 � 50$
2� � 40���  3�
� 4�
� 40�� �26 �40��  26 

5 1 � 5$=
2�  �	 � 5$
2� � 20���  3�
� 4�
� 20�� �1 �20��  1 

 
are obtained. The initial parameter >� is found by the solution of these systems of 
equations.  The internal iteration given by equation (23) is applied 3 or 5 times at each 
time step to the nonlinear terms of the equation system, thus the approximate solution is 
improved. 
 
2.4. Stability analysis  
The stability analysis of the difference equations (33) - (34) obtained by applying the 
quintic B-spline finite element collocation method is going be done by von Neumann 
method.  In place of u in the nonlinear term ��
��� in Eq. (6), a local constant =J is 
going to be taken.  In that condition, the term =
 in the difference equation given by 
Eq. (33) is going to be constant in the form of � � K�=J�
�, i  is the imaginary unit, L is 
an arbitrary real number, the amplification factor E � E�L� is a complex number, 
special solutions ,
� � ME���
�, -
� � NE���
� are written in Eqs. (33) - (34) and 
the Euler formula ��� � 	FIL � <I<%L is used and after some arrangements the 
following homogenous equations system is obtained  
 ��3 � <=4�E � �3 � <=4��M �	��6 � <4
�E �	�6 � <4
��N � 0																												�37� 

 �E � 1��5M � 	3N� � 0																																																																																																										�38� 
 

where 3 � 2�26	FIL � 	FI2L � 33�, 4 � ��
� <�10I<%L � I<%2L�, 5 � ��

�� �2	FIL �	FI2L � 3�, 6 � �3	 � 5�, = �  ��=
. It is well known that this homogenous 
equation system has at least one nonzero solution when the determinant of the 
coefficient matrix of the system is zero.  Therefore from Eqs. (37)-(38) we can write  
 ��3� � 56 � <4�3= � 5
��E � 3� � 56 � <4�3= � 5
� � 0	or	E � 1 � 0.									�39� 
 
Then, the amplification factor is found as follows  
 E � �3� � 56 � <4�3= � 5
��3� � 56 � <4�3= � 5
� 		or		E � �1																																																																						�40� 
 
As a conclusion, since |E| � 1, the method is unconditionally stable.  
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3. Application of the methods and comparisons  
 
In this section, the methods proposed in Section 2 for the Rosenau-KdV-RLW equation 
system have been applied to one example and numerical results were obtained. To 
demonstrate the efficiency and effectiveness of the proposed methods, we have used the 
fundamental conservation characteristics of the Rosenau-KdV-RLW equation defined as 
follows  
 

,
�� = - �
�, ���� = - �
�, 0��� =
��

��

��

��
,
0�                                                                   (41) 

&
�� = - .��
�, �� + ����
�, �� + ���� 
�, ��/�� =
��

��
&
0�                                                 (42) 

 
and known as mass and energy invariants, besides, we have used the error norms 
defined as follows  
 �� = 0ℎ ∑ 2���������� − ���ü�����2�����   ,   �� = max� � �2���������� − ���ü�����2       (43) 

 
If L represents one of these error norms, then the following formula  
 3��	
= ln 
�(�, ℎ�)/�(�, ℎ�)�4"
ℎ� ℎ�⁄ �                                                                                                             (44) 

 
is going to be used as a convergence rate.  
 
Example: The exact solution of the Rosenau-KdV-RLW equation given by Eq. (1) for 
parametric values of a=1, b=0.5, c=1, d=1, e=1, p=2 is  
 �
�, �� = �� 	�ℎ�
��
� − �����                                                                                            (45) 
 

where �� = − 5(25 − 13√457) 456⁄ ,  �� = 7−13 + √457 √2888 , �� =.241 + 13√457/ 266⁄  [1, 4, 14].  By taking t=0 in the exact solution, the initial 
condition of the problem can be obtained.  In Tables 3-4, the error norms �� and �� of 
the numerical solutions obtained by cubic B-spline collocation methods and quintic B-
spline collocation methods at time T =  30 for �
 = −40, �� = 100 and are compared 
with those of some published ones in the literature.  As it is seen from Tables 3-4, the 
errors of the numerical solutions obtained by the present methods are smaller than the 
errors of the compared ones.  
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Tablo 3.  A comparison of numerical results error using �� for 
various h=k and � ∈ 
−40,100� at time T=30. 
 

h=k Scheme-I Scheme-II [1] [4] 
0.25 2.55603E-1 2.37668E-1 2.94337E-0 1.86617E-0 
0.125 6.46775E-2 6.00345E-2 8.05629E-1 5.18662E-1 
0.0625 1.62185E-2 1.50476E-2 2.05276E-1 1.33174E-1 
0.03125 4.05772E-3 3.76437E-3 5.15696E-2 3.35296E-2 

 
Tablo 4.  A comparison of numerical results error using �� for 
various h=k and � ∈ 
−40,100�at time T= 0. 
 

h=k Scheme-I Scheme-II [1] [4] 
0.25 9.85936E-2 9.10323E-2 9.86753E-1 6.99597E-1 
0.125 2.49932E-2 2.30177E-2 2.14488E-1 1.97127E-1 
0.0625 6.26876E-3 5.76980E-3 5.19201E-2 5.06954E-2 
0.03125 1.56845E-3 1.44360E-3 1.28858E-2 1.27669E-2 

 
In Table 5, the convergence rates for the error norms �� and �� of the numerical 
solutions obtained by cubic B-spline collocation method and quintic B-spline 
collocation method at time T=30 for �
 = −40, �� = 100 are calculated and displayed.  
The convergence rates obtained by the present method have been compared with those 
obtained by Wang and Dai [4].  It is seen that the convergence rates of the proposed 
methods are larger.  It is also clearly seen that the greatest convergence rate has been 
obtained by the quintic B-spline collocation method.  
 
In Table 6, for values of �
 = −40, �� = 160, k=h=0.25 at times T=0, 15, 30, 45, 60 
mass and energy invariants have been calculated and compared with those given in [1].  
According to the results obtained, the fundamental conservation properties of the 
Rosenau-KdV-RLW equation are preserved with those obtained by the proposed 
numerical schemes in the range [0,60].  
 
Tablo 5.  A comparison of convergence rates for �� and �� at T=30 
 

h=k  Scheme-I   Scheme-II   [4]  
  Rate �� Rate ��  Rate �� Rate ��  Rate �� Rate �� 

0.5  ----- -----  ----- -----  ----- ----- 
0.25  1.93025 1.92143  1.93992 1.92951  1.84721 1.82740 
0.125  1.98257 1.97996  1.98508 1.98363  1.96149 1.95920 
0.0625  1.99562 1.99528  1.99625 1.99838  1.98980 1.98945 

 
 
Tablo 6.  Acomparison of mass and energy invariants for h=k=0.25,  � ∈ 
−40,100� 
at time T=30 
 

T Scheme-I   Scheme-II   [1] 9 = −1 
          Q        E           Q        E           Q        E 
0 21.67925844 43.70855146  21.67925844 43.70855146  21.67925844 43.70855146 
15 21.67922349 43.70931861  21.67922326 43.71412237  21.68257703 43.72652015 
30 21.67919030 43.70919982  21.67919310 43.71401660  21.68264127 43.72664228 
45 21.67879169 43.70910121  21.67891685 43.71391006  21.68342617 43.72664409 
60 21.68231910 43.70900042  21.68069226 43.71380341  21.67462536 43.72664408 
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In Figs. 1-2, the graphics of the exact and numerical solutions obtained using cubic and 
quintic B-spline collocation method on the region [-40,100] for values of h=k=0.25 at 
times T=10, T=20, T=30 are illustrated.  In those graphics, numerical solutions and 
exact ones overlap in such a way that they are indistinguishable.  

 

Figure 1. The graphics of exact and numerical solutions obtained using Scheme-I on the 
region [-40,100] for values of h=k=0.25 at times T=10, T=20 and T=30.  

 

 

Figure 2. The graphics of exact and numerical solutions obtained using Scheme-II on 
the region [-40,100] for values of h=k=0.25 at times T=10, T=20 and T=30. 
 
 
4. Conclusion  
 
In this study, the Rosenau-KdV-RLW equation is firstly converted into the partial 
differential equation system given by Eqs.(6)-(7).  Then, the resulting system has been 
solved separately by both the cubic and quintic B-spline finite element collocation 
methods.  The methods have been examined on an example of simulation of solitary 
waves.  The error norms and invariants have been computed to determine the accuracy 
of the proposed methods.  The error norms have been compared by Refs.[1-4].  It is 
seen that the error norms are smaller than the other ones.  The mass and energy 
invariants for solved example are sufficiently constant during the simulation time for 
given both methods.  The stability analysis of the methods has been made by the von 
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Neumann method.  It is found that they are unconditionally stable.  The convergence 
rates of the methods are found as nearly about two.  It is obviously seen that the 
obtained results are in very good agreement with the exact ones.  Although both 
methods produce close results, the quintic B-spline finite element collocation method 
gives better results than the other one.  Consequently, the presented methods can also be 
applied to many partial differential equations including higher-order derivatives widely 
encountered in engineering and science.  
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