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Abstract 

 

This paper simulates the 2D transient magnetohydrodynamic (MHD) flow in a 

rectangular duct in terms of the velocity of the fluid and the induced magnetic field by 

using the radial basis function (RBF) approximation.  The inhomogeneities in the 

Poisson’s type MHD equations are approximated using the polynomial functions (1+r) 

and the particular solution is found satisfying both the equations and the boundary 

conditions (no-slip and insulated walls).  The Euler scheme is used for advancing the 

solution to steady-state with a time increment and a relaxation parameter which are 

determined for achieving stable solution.  It is shown that, as Hartmann number 

increases, the fluid becomes stagnant at the center of the duct, the flow is flattened and 

boundary layers are developed on the Hartmann and side walls.  These are the well-

known characteristics of the MHD duct flow.  The stability analysis is also carried in 

terms of the spectral radius of the coefficient matrix of the discretized coupled system.  

Stable solutions are obtained with RBF by using quite large time increment and suitable 

relaxation parameters on the expense of explicit Euler time-integration scheme used. 
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Zamana bağımlı MHD kanal akışının nümerik çözümü ve 

kararlılık analizi 
 

 

Özet 

 

Bu çalışmada, dikdörtgen kesit içerisindeki iki boyutlu zamana bağlı olan MHD akışı, 

sıvının hızı ve indüklenen manyetik alan cinsinden radyal baz fonksiyon yaklaştırımı 

kullanılarak sunulmuştur.  Poisson tipinde olan MHD denklemlerindeki homojen 

olmayan kısımlar, polinom fonksiyonları (1+r) ile yaklaştırılmıştır ve hem denklemleri 
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hem de kaymaz ve iletken olmayan sınır koşullarını sağlayan özel bir çözüm bulunmuştur.  

Euler yöntemi, kararlı çözümü veren zaman aralığı ve yumuşama katsayıları ile 

kullanılmıştır. Hartmann sayısı artıkça sıvının kanal ortasında durgunlaştığı, akışın 

düzleştiği, Hartmann ve yan duvarlardaki sınır tabakalarının geliştiği gösterilmiştir.  

Bunlar MHD kanal akışının en iyi bilinen özellikleridir.  Ayrıca, kararlılık analizi, 

ayrıklaştırılmış birbirine bağlı olan sistemdeki katsayı matrisinin spektral yarıçapı 

doğrultusunda yapılmıştır.  Açık Euler zaman integrasyonu yöntemi kullanılmasına 

rağmen RBF ile oldukça geniş zaman aralığı ve uygun yumuşama parametreleri 

kullanılarak kararlı çözümler elde edilmiştir. 

 

Anahtar kelimeler: MHD kesit akışı, RBF, Euler zaman integrasyonu, kararlılık 

analizi. 

 

 

1. Introduction 

 

The study of magnetohydrodynamic (MHD) flow in channels has many industrial 

applications such as MHD generators, MHD flowmeters, nuclear reactors and 

electromagnetic pumps.  The MHD equations, governed by the Navier-Stokes equations 

and Maxwell equations of electromagnetism through Ohm’s law have been solved by 

several numerical methods. Tezer-Sezgin et al. [1] considered the steady MHD flow in a 

rectangular duct with arbitrarily conducting walls. The numerical results are obtained by 

using boundary element method (BEM) for moderate values of Hartmann number (1 ≤ 
M ≤ 10).  Dual reciprocity boundary element method (DRBEM) is implemented to solve 

MHD duct flow with insulating boundary in [2].  The right hand side function is 

approximated by using osculating radial basis functions (RBF).  Tezer-Sezgin [3] 

proposed the polynomial and Fourier based differential quadrature method (DQM) for 

solving the steady MHD flow under the effect of a transverse external oblique magnetic 

field.  The numerical results are presented in terms of velocity and induced magnetic field 

for several values of Hartmann number.  In the references [4, 5], BEM is employed to 

solve MHD flow for large values of Hartmann number (M ≤ 300).  Carabineau et al. [6] 

developed the pseudospectral collocation method for obtaining numerical solution of 

MHD flow in the cross-section of square and circular ducts.  An exponential higher-order 

compact (EHOC) difference scheme is applied for solving coupled MHD equations for 

several values of Hartmann number by Li et al. [7]. 

 

The unsteady two-dimensional MHD flows in channels are also studied.  Bozkaya et al. 

[8] solved transient MHD flow problem in a rectangular duct with insulating walls by 

using DRBEM in space and DQM in time.  They found that as Hartmann number 

increases, the steady-state solutions are reached at a faster rate.  In the work [9], the 

numerical results for the unsteady MHD duct flow with arbitrarily conducting walls are 

obtained by using a meshless local Petrov-Galerkin (MLPG) method.  Dehghan [10] 

implemented the method of variably scaled radial kernels to solve MHD flow for different 

geometries of the duct cross-section.  The Crank-Nicolson scheme and the method of lines 

(MOL) are used for the time discretization. 

 

The stability analysis of the BEM solution of the Diffusion equation is studied by Sharp 

in [11].  It is observed that as the time step decreases, the quality of the approximation 

deteriorates showing the state of the instability.  Ramesh [12] et al. performed the stability 



BAUN Fen Bil. Enst. Dergisi, 20(3) Özel Sayı, 53-61, (2018) 

55 

 

analysis of unsteady heat conduction flow by using the eigenvalue decomposition of the 

coefficient matrix of the multiple reciprocity discretized system. 

 

In this study, the unsteady MHD flow in a rectangular duct with insulating walls is solved 

by using the RBF approximation in space and Euler scheme in time.  The effect of the 

magnetic field on the velocity and the induced magnetic field is investigated.  It is found 

that, the increase in the Hartmann number develops the boundary layers which is the well-

known behavior of the MHD duct flow.  The numerical stability analysis is carried for the 

RBF approximation of the time-dependent convection-diffusion type MHD flow equations 

when the explicit Euler time integration scheme is used with relaxation parameters.  The 

numerical stability of the velocity and the induced magnetic field is shown in terms of 

maximum eigenvalues of the discretized coefficient matrices which is the main 

contribution of this study.  The optimal choices of the time increment, relaxation 

parameter for certain values of the Hartmann number are found numerically to achieve 

stable solutions.  It is observed that the numerical results are stable for the choice of 

relaxation parameter in the range  0.5 ≤ 𝛼𝑢1
< 1 for all M ≤100. 

 

 

2.  The physical problem and mathematical formulation 

 

The unsteady, laminar, fully-developed flow of a viscous, incompressible, electrically 

conducting fluid is considered in a square duct Ω=[-1,1]×[-1,1].  The fluid is driven by 

a constant applied pressure gradient in the pipe-axis (z-axis) direction and the flow is 

subjected to a uniform magnetic field in the y-direction. The non-dimensional coupled 

MHD duct flow equations [13] are given in terms of the velocity V (x, y, t)  and the 

induced magnetic field B(x, y, t) as 

 

∇2𝑉 + 𝑀
𝜕𝐵

𝜕𝑦
= −1 +

𝜕𝑉

𝜕𝑡
               (1) 

 

∇2𝐵 + 𝑀
𝜕𝑉

𝜕𝑦
=

𝜕𝐵

𝜕𝑡
                (2) 

 

In Ω × [0,∞) with zero initial, and no-slip insulated walls boundary conditions shown in 

Figure 1, 

 

𝑉(𝑥, 𝑦, 0) = 𝐵(𝑥, 𝑦, 0) = 0,             (𝑥, 𝑦) ∈ Ω            (3) 

 

𝑉(𝑥, 𝑦, 𝑡) = 𝐵(𝑥, 𝑦, 𝑡) = 0,             (𝑥, 𝑦) ∈ 𝜕Ω,      𝑡 ≥ 0           (4) 

 

where 𝑀 = 𝐵0𝐿 √𝜎/𝜈𝜌  is the Hartmann number.  Here, 𝐿, 𝐵0, 𝜎, 𝜈 and 𝜌 are the characteristic 

length, the external magnetic field intensity, electrical conductivity, kinematic viscosity 

and the density of the fluid, respectively. 
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Figure 1.  Square duct and boundary conditions. 

 

The decoupled form of the MHD flow equations (1)-(2) is obtained  

 

∇2𝑈1 + 𝑀
𝜕𝑈1

𝜕𝑦
= −1 +

𝜕𝑈1

𝜕𝑡
               (5) 

 

∇2𝑈2 − 𝑀
𝜕𝑈2

𝜕𝑦
= −1 +

𝜕𝑈2

𝜕𝑡
                (6) 

 

with the initial and boundary conditions 

 

𝑈1(𝑥, 𝑦, 0) = 𝑈2(𝑥, 𝑦, 0) = 0,             (𝑥, 𝑦) ∈ Ω            (7) 

 

𝑈1(𝑥, 𝑦, 𝑡) = 𝑈2(𝑥, 𝑦, 𝑡) = 0,             (𝑥, 𝑦) ∈ 𝜕Ω,      𝑡 ≥ 0            (8) 

 

by the change of variables 

 

𝑈1 = 𝑉 + 𝐵,      𝑈2 = 𝑉 − 𝐵.               (9) 

 

 

3.  Radial basis function approximation (RBF) 

 

The decoupled convection-diffusion type MHD flow equations (5) and (6) can be 

considered as Poisson’s type when all the terms except Laplacian are taken as 

inhomogeneity.  Thus, the RBF method is described on the Poisson’s type equation 

 ∇2𝑢 = ℎ(𝑥, 𝑦) +
𝜕𝑢

𝜕𝑡
= 𝑓(𝑥, 𝑦, 𝑡) with the boundary condition 𝐵𝑢 = 𝑔(𝑥, 𝑦, 𝑡)  where 

ℎ(𝑥, 𝑦) = −1 −
𝜕𝑈1

𝜕𝑦
  and  ℎ(𝑥, 𝑦) = −1 +

𝜕𝑈2

𝜕𝑦
 , respectively for equations (5) and (6). 

The boundary operator B is given identity (B=I) and 𝑔(𝑥, 𝑦, 𝑡) = 0.  The inhomogeneity 

function 𝑓(𝑥, 𝑦, 𝑡) and the particular solution 𝑢(𝑥, 𝑦, 𝑡) are approximated by the radial 

basis functions 𝜑𝑗(𝑟) and Ψ𝑗(𝑟) as 

 

𝑓(𝑥, 𝑦, 𝑡) = ∑𝑎𝑗(𝑡)𝜑𝑗

𝒏

𝑗=1

(𝑟),    𝑢(𝑥, 𝑦, 𝑡) = ∑𝑎𝑗(𝑡)Ψ𝑗

𝒏

𝑗=1

(𝑟),    (𝑥, 𝑦) ∈ Ω                    (10) 
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where ∇2Ψ𝑗(𝑟) = 𝜑𝑗(𝑟), 𝑟 = ((𝑥 − 𝑥𝑗)
2 + (𝑦 − 𝑦𝑗)

2)1/2  being the Euclidean distance 

and 𝑛 is the number of unknown coefficients. In this method [14], the approximate 

particular solution u becomes the solution of the original equation satisfying the 

boundary condition 

 

∑𝑎𝑗(𝑡)𝐵Ψ𝑗

𝒏

𝑗=1

(𝑟) = 𝑔(𝑥, 𝑦, 𝑡),       (𝑥, 𝑦) ∈ 𝜕Ω.                                                                   (11) 

 

 

Discretizing the boundary and the domain by taking  𝑁𝑏  boundary and 𝑁𝑖   interior 

points, we get the solution vector  𝒖 = 𝑼𝒂 where 𝑈𝑖𝑗 = Ψ𝑗(𝑟𝑖),   1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 

the unknown vector 𝒂, depending on time, is the solution of the linear system  Ca = 

d  obtained from the collocation of the equations (10)-(11).  The nonsingular coefficient 

matrix Cn×n   [15]  and the right hand side vector dn×1 are given as 

 

𝑪 =

[
 
 
 
 
 

𝐵Ψ1(𝑟1) 𝐵Ψ2(𝑟1) ⋯ 𝐵Ψ𝑛(𝑟1)
⋮ ⋮ ⋱ ⋮

𝐵Ψ1(𝑟𝑁𝑏
) 𝐵Ψ2(𝑟𝑁𝑏

) ⋯ 𝐵Ψ𝑛(𝑟𝑁𝑏
)

𝜑1(𝑟𝑁𝑏+1) 𝜑2(𝑟𝑁𝑏+1) ⋯ 𝜑𝑛(𝑟𝑁𝑏+1)

⋮ ⋮ ⋱ ⋮
𝜑1(𝑟𝑛) 𝜑2(𝑟𝑛) ⋯ 𝜑𝑛(𝑟𝑛) ]

 
 
 
 
 

 ,              𝒅 =

[
 
 
 
 
 

𝑔(𝑥1, 𝑦1, 𝑡)
⋮

𝑔(𝑥𝑁𝑏
, 𝑦𝑁𝑏

, 𝑡)

𝑓(𝑥𝑁𝑏+1
, 𝑦𝑁𝑏+1, 𝑡)

⋮
𝑓(𝑥𝑛, 𝑦𝑛, 𝑡) ]

 
 
 
 
 

 . 

 

 

 

The solution 𝒖 = 𝑼𝑪−1𝒅  can be rearranged as partitioning the contributions coming 

from the boundary condition and interior solution [16] 

 

𝒖 = 𝒈𝒖 + 𝑲𝒇               (12) 

 

where 𝒇 = {𝑓𝑖} = {ℎ𝑖} + {
𝜕𝑢𝑖

𝜕𝑡
} , 1 ≤ 𝑖 ≤ 𝑁𝑏 + 𝑁𝑖, 𝒈𝒖 = 𝑹𝟏𝒖𝒃𝒄  and  𝑲 = [ 𝟎 

𝑛×𝑁𝑏

𝑹𝟐
𝑛×𝑁𝑖

]. 

Here, R1 and R2 are the submatrices of UC-1
  as 𝑼𝑪−1 = [ 𝐑𝟏 

𝑛×𝑁𝑏

𝑹𝟐 ],
 𝑛×𝑁𝑖

 and 𝒖𝒃𝒄 is the vector 

containing boundary values of the solution 𝒖. 

 

The application of the RBF approximation to unsteady MHD duct flow equations (5)-(6) 

gives 

 

𝑼𝟏 = 𝒈𝒖𝟏
− 𝑀𝑲

𝜕𝑭

𝜕𝑦
𝑭−1𝑼𝟏 − 𝑲𝒍 + 𝑲

𝜕𝑼𝟏

𝜕𝑡
           (13) 

 

𝑼𝟐 = 𝒈𝒖𝟐
+ 𝑀𝑲

𝜕𝑭

𝜕𝑦
𝑭−1𝑼𝟐 − 𝑲𝒍 + 𝑲

𝜕𝑼𝟐

𝜕𝑡
           (14) 

 

where F is the coordinate matrix constructed from 𝐹𝑖𝑗 = 𝜑𝑗(𝑟𝑖) and 𝑙𝑖𝑗 = 1, 1 ≤ 𝑖, 𝑗 ≤

𝑛. 
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The explicit Euler method is used for the time derivatives in the equations (13)-(14) with 

the relaxation parameters 𝛼𝑢1
 and 𝛼𝑢2

, we obtain the final discretized system for the 

unsteady MHD duct flow equations 

 

 

𝑪𝒖𝟏
𝑼𝟏

(𝑚+1)
= 𝒃𝒖𝟏

(𝑚)
− 𝑳𝒖𝟏

𝑼𝟏
(𝑚)

            (15) 

 

𝑪𝒖𝟐
𝑼𝟐

(𝑚+1)
= 𝒃𝒖𝟐

(𝑚)
− 𝑳𝒖𝟐

𝑼𝟐
(𝑚)

            (16) 

 

 

where  

 

𝑪𝒖𝟏
= 𝛼𝑢1

𝑺𝒖𝟏
−

1

∆𝑡
𝑲,        𝑳𝒖𝟏

= (1 − 𝛼𝑢1
)𝑺𝒖𝟏

−
1

∆𝑡
𝑲, 

 

𝑪𝒖𝟐
= 𝛼𝑢2

𝑺𝒖𝟐
−

1

∆𝑡
𝑲,        𝑳𝒖𝟐

= (1 − 𝛼𝑢2
)𝑺𝒖𝟐

−
1

∆𝑡
𝑲, 

 

𝑺𝒖𝟏
= 𝑰 + 𝑀𝑲

𝜕𝑭

𝜕𝑦
𝑭−1,       𝑺𝒖𝟐

= 𝑰 − 𝑀𝑲
𝜕𝑭

𝜕𝑦
𝑭−1,    

 

𝒃𝒖𝟏
 = 𝒈𝒖𝟏

− 𝑲𝒍,                 𝒃𝒖𝟐
 = 𝒈𝒖𝟐

− 𝑲𝒍.  

 

The iteration continues until the stopping criteria ‖𝒛(𝑚+1) − 𝒛(𝑚)‖
∞

< 10−6  is satisfied 

for reaching steady-state where z denotes U1 and U2 for the solutions of (15) and (16), 

respectively. The solutions, the velocity and the induced magnetic field are obtained from 

the back transformation  V = (U1            +U2) /2  and B = (U1 − U2) /2. In the equations (15)-

(16), the vectors 𝒃𝒖𝟏

(𝑚)
 and 𝒃𝒖𝟐

(𝑚)
  are known and do not contribute to the stability analysis. 

Thus, the stability conditions for the RBF space – Euler time discretized system of MHD 

duct flow equations are [12] 

 

𝜌(𝑪𝒖𝟏
−1𝑳𝒖𝟏

) < 1                         (17) 

 

𝜌(𝑪𝒖𝟐
−1𝑳𝒖𝟐

) < 1                (18) 

 

 

where 𝜌(𝑪𝒖𝟏
−1𝑳𝒖𝟏

) and 𝜌(𝑪𝒖𝟐
−1𝑳𝒖𝟐

)  are the spectral radius of the matrices 𝑪𝒖𝟏
−1𝑳𝒖𝟏

 and 

𝑪𝒖𝟐
−1𝑳𝒖𝟐

, respectively. These matrices differ only in the ± sign of the matrices 𝑺𝒖𝟏
 and 𝑺𝒖𝟐

. 

 

 

4.  Numerical results 

 

In the RBF space discretization for the MHD duct flow equations (15)-(16), we use the 

polynomial function 𝜑 = 1 + 𝑟. In order to obtain smooth numerical results the boundary 

is discretized by taking Nb=100, 156, 236 and 336 points for the Hartmann number values 

M=10, 30, 50 and 100, respectively, with the fixed time increment ∆𝑡 = 0.1 and the 

relaxation parameters 𝛼𝑢1
= 𝛼𝑢2

= 0.6. Steady-state solutions of the velocity and the 

induced magnetic field are shown in terms of equivelocity and current lines in Figure 2. 

It is observed that velocity contours are symmetric with respect to center lines x=0 and 
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y=0. The flow attains its maximum value through the center of the duct making one vortex 

at the center. As the Hartmann number increases, fluid shows flattening tendency which 

is an expected behavior of the MHD duct flow. The increase in the magnetic field intensity 

develops the boundary layers for the flow near the walls with the thickness O(1/M) on 

the Hartmann walls and 𝑂(1/√𝑀) on the side walls. 

 

Induced magnetic loops are anti-symmetric with respect to the centerline y=0.  As M 

increases, boundary layers are also developed for induced magnetic field on the walls 

parallel to the applied magnetic field.  The magnitude of the induced magnetic field 

decreases due to the convection dominance in the equation (2) as M increases. 

 

In order to show that numerical results of MHD duct flow obtained from the RBF space-

Euler time discretized systems (15)-(16) are stable, the spectral radius (maximum 

eigenvalue in magnitude) of the coefficient matrices 𝑪𝒖𝟏
−1𝑳𝒖𝟏

 and 𝑪𝒖𝟐
−1𝑳𝒖𝟐

 are computed for 

several values of the time increment ∆𝑡, relaxation parameters 𝛼𝑢1
= 𝛼𝑢2

 and the 

Hartmann number M.  The maximum eigenvalues in magnitude (𝜌 = max
1≤𝑗≤𝑛

|𝜆𝑗|) are 

presented in Tables 1-2. 

 

 
Figure 2. Velocity and induced magnetic field contours for ∆𝑡 = 0.1. 

 

 

Table 1 shows the effects of the relaxation parameters and the time increment on the 

spectral radius of the coefficient matrices 𝑪𝒖𝟏
−1𝑳𝒖𝟏

 or 𝑪𝒖𝟐
−1𝑳𝒖𝟐

 for a fixed Hartmann number 

M=1 and Nb=100. It is found that as relaxation parameter decreases, the maximum 

eigenvalue increases and for the choice of 𝛼𝑢1
≤ 0.5 the method becomes unstable. This 

is an expected result since Euler method with a relaxation parameter tends to be explicit 

scheme with the small value of  𝛼𝑢1
 (𝑢 

(𝑚+1) = (1 − 𝛼𝑢1
)𝑢 

(𝑚) − 𝛼𝑢1
𝑢 

(𝑚), u representing 

U1 and U2 in (15) and (16), respectively). As ∆𝑡 decreases, spectral radius increases but 

still does not exceed 1 for 0.6 ≤ 𝛼𝑢1
< 1. 
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Table 1. Spectral radius 𝜌 for Nb=100, M=1. 

 

𝛼\∆𝑡 0.9 0.8 0.5 0.1 0.01 

0.9 0.111 0.124 0.222 0.646 0.950 

0.8 0.250 0.250 0.250 0.633 0.950 

0.7 0.429 0.429 0.429 0.620 0.950 

0.6 0.667 0.667 0.667 0.667 0.950 

 

In Table 2, the maximum eigenvalues are obtained for different values of M and ∆𝑡 with 

a fixed 𝛼𝑢1
= 0.9. An increase in the Hartmann number decreases the spectral radius of 

the coefficient matrix. The variation of 𝑀 ≥ 5 gives always the same eigenvalue which 

is less than one for the choice of ∆𝑡 ≤ 0.5. This shows that for large values of Hartmann 

number one does not require smaller time increment to achieve stable solution. 

 

Table 2. Spectral radius 𝜌 for 𝛼𝑢1
= 0.9. 

 

∆𝑡 M=1 M=5 M=10 M=50 M=100 

0.01 0.950 0.898 0.771 0.266 0.111 

0.1 0.646 0.443 0.197 0.111 0.111 

0.5 0.222 0.111 0.111 0.111 0.111 

0.8 0.124 0.111 0.111 0.111 0.111 

0.9 0.111 0.111 0.111 0.111 0.111 

 

 

5.  Conclusion 

 

In this study, the RBF approximation is developed for solving the equations of unsteady 

MHD flow in a rectangular duct with insulating walls.  The Euler scheme with a 

relaxation parameter is used for the time integration in the MHD equations.  The impact 

of the external magnetic field is analyzed on the behaviors of the flow and the induced 

magnetic field by simulating equivelocity and equal current lines.  Numerical results 

show that as the Hartmann number increases, boundary layers are formed and the flow is 

flattened.  Numerical stability analysis of RBF space - Euler time approximation is also 

performed in terms of spectral radius of related coefficient matrices of the discretized 

system.  It is found that quite large time increment can be used for achieving stable 

numerical results when suitable relaxation parameters are used for a certain Hartmann 

number. 
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