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Abstract 

 

In this paper, we consider some linear/nonlinear differential equations (DEs) 

containing conformable derivative operator. We obtain approximate solutions of these 

mentioned DEs in the form of infinite series which converges rapidly to their exact 

values by using and homotopy analysis method (HAM) and modified homotopy 

perturbation method (MHPM). Using the conformable operator in solutions of different 

types of DEs makes the solution steps are computable easily. Especially, the 

conformable operator has been used in modelling DEs and identifying particular 

problems such as biological, engineering, economic sciences and other some important 

fields of application. In this context, the aim of this study is to solve some illustrative 

linear/nonlinear problems as mathematically and to compare the exact solutions with 

the obtained solutions by considering some plots. Moreover, it is an aim to show the 

authenticity, applicability, and suitability of the methods constructed with the 

conformable operator. 
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Lokal türev operatörlü lineer/lineer olmayan diferansiyel 

denklemler için homotopi metotları 
 

 

Özet 

 

Bu çalışmada conformable (uyumlu) türev operatörü (CTO) içeren bazı lineer/lineer 

olmayan diferansiyel denklemler ele alınmıştır. Homotopi analiz metodunu (HAM) ve 

modifiyeli homotopi pertürbasyon metodunu (MHPM) kullanarak bu bahsi geçen 

denklemlerin sonsuz seri formunda yaklaşık çözümleri elde edilmiştir. CTO kullanılması 

farklı türden diferansiyel denklemlerin çözümlerini elde etmede çözüm adımlarının 

kolay bir şekilde hesaplanmasını sağlamaktadır. Özellikle CTO mühendislik, fiziksel 

bilimler, ekonomi ve diğer bazı alanlardaki problemleri modellemede kullanılmaktadır. 

Bu bağlamda, bu çalışmanın amacı bazı lineer/lineer olmayan diferansiyel denklemleri 

matematiksel olarak çözmek ve çözüm grafiklerini kullanarak elde edilen yaklaşık 

çözümler ile tam çözümleri karşılaştırmaktır. Ayrıca CTO ile yeniden tanımlanan HAM 

ve MHPM metotlarının güvenirliğini, uygulanabilirliğini ve elverişliliğini göstermektir. 

 

Anahtar kelimeler: Yaklaşık çözüm, uyumlu operatör, homotopi analiz metodu, 

modifiyeli homotopi pertürbasyon metodu, lineer olmayan diferansiyel denklemler. 

 

 

1. Introduction 

 

In the last decade, several numerical, approximate and analytical methods have been 

investigated to get solutions of linear/nonlinear fractional PDEs.  Especially, in the 

physics and engineering areas, numerous applications and theoretical aspects of 

fractional calculus have been studied. For example, in [1-10] researchers solved some 

important problems modelled with fractional DEs. Furthermore, conformable derivative 

operator defined in 2014 [11], is preferred by some researchers [12-19] to apply it to 

FDEs and to model some special physical, chemical and engineering problems. 

Moreover, the mentioned approximate methods have been applied extensively to real- 

life problems by taking these theoretical aspects into consideration. For instance, 

approximate-analytical methods have included homotopy analysis method (HAM) [20-

22], Adomian decomposition method (ADM) [23-25], differential transform method 

(DTM) [26, 27], homotopy perturbation method (HPM) [28, 29], modified homotopy 

perturbation method (MHPM) [30], variational iteration method (VIM) [31], sine-

Gordon expansion method [32], q-homotopy analysis method (q-HAM), [33], etc.  

 

 

2.  Conformable derivative operator 

 

2.1. Definition 

Given a function  : 0, .R    Then the conformable derivative of   order  0,1    

is defined for all 0t   by [11] 
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0
lim .t

t t t
T t
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2.2. Definition 

The   fractional integral of   is defined by  

 

    
 

 1 1

1
, 0,1 .

t

t a

a

x
I t I t dx

x

 




  

 
  

 
 

2.3. Theorem 

Let  0,1   and ,   be    differentiable at a point 0.t   Then [11]; 

(i)       t t tT a b aT bT           for all , ,a b R  

(ii)   k k

tT t kt 

   for all ,k R  

(iii)     0tT t    if   ,t k   

(iv)        ,t t tT T T           

(v)   
   

2
/ ,

t t

t

T T
T

 

    
 



 




  

(vi)  If  t  is differentiable, then     1 .t

d
T t t t

dt

  

   

 

2.4. Lemma  

Consider   as an n  times differentiable at .t  Then we have      ,tT t t t
    

      
   

for all  0, , 1t n n    [11]. 

 

 

3.  Homotopy analysis method in the conformable sense 
 

This section of the study proposes the solution strategies that are generated by 

homotopy analysis method in the conformable-type derivative (CHAM). Firstly, we 

take the following general form of a nonlinear equation: 

  

 , 0x t   N                        (1) 

 

where  .N  is a nonlinear operator. Then, the deformation equation is presented as, 

 

      
   

01 , ; ,

, , ;

p L x t p x t

p H x t x t p

 



   

   N
                        (2) 

 

Let  0 ,x t  show an initial estimation value of the exact solution of Eq. (1),  0,1p  

is an embedding parameter, 0  is an supporting parameter, ( , ) 0H x t   is an 

supporting function, and 
tL T

  an supporting linear operator. It is free to choose the 

supporting parameters by applying the suggested method. Clearly, if 0p   and 1p  , 

Eq.(2) turns out to be 
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       0, ;0 , , , ;1 ,x t x t x t x t                    (3) 

 

respectively. Thus, p  increases from 0 to 1, the solution  , ;x t p  varies from the 

initial value  0 ,x t  to the solution  , .x t  Then, we consider the Taylor series 

expansion of  , ;x t p  with respect to p , we get 

 

     0

1

, ; , , ,m

m

m

x t p x t x t p  




                      (4) 

where 

 

 
 

0

, ;1
,
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m

m m

p

x t p
x t
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                    (5) 

If the supporting parameters mentioned above are chosen appropriately, the solution of 

Eq. (3) exists for  0,1 .p  Then we have 

 

   
0

, , .m

m

x t x t 




                                                                         (6) 

 

If we take the vector 

 

      0 1, , , , , , ,n nx t x t x t                                                  (7) 

 

we obtain m th-order altered equation as 

 

        1 1, , , , ,m m m m mL x t x t H x t x t                                          (8) 

 

where 
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                                         (9) 

 

and 

 

0, 1,

1, 1.
m

m

m



 


                                                                  (10) 

 

Finally, operating the conformable integral operator defined in Definition 2.2. on both 

side of Eq. (8), we have 
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4.  Modified homotopy perturbation method in the conformable sense 

 

In this section we illustrate the solution strategies that are generated by modified 

homotopy perturbation method in conformable-type derivative (CMHPM). Now we 

introduce a solution algorithm in an effective way for the general nonlinear PDEs. In 

this regard, firstly, we consider the following nonlinear equation:  

 

       , , , , , , , 0,t x xx x xxT u x t L u u u N u u u f x t t

                                                   (12)

  

where L  is a linear operator, N  is a nonlinear operator, f  is a known analytical 

function and , 1 ,tT n n      shows the conformable derivative of order .  We also 

have the initial conditions 
 

   ,0 , 0,1, , 1.k

ku x g x k n                           (13) 

 

In view of the homotopy perturbation method (HPM), we can derive the following 

homotopy: 
 

         (1 ) , , , , , , , 0,t t x xx x xxp T u x t p T u x t L u u u N u u u f x t 

 
              (14) 

 
or 

 

       , , , , , , 0.t x xx x xxT u x t p L u u u N u u u f x t

                            (15) 

 

Therefore, we get the solution of Eq. (15) by using the powers of :p  

 
2

0 1 2 .u u pu p u       (16) 

 

The modified form of the HPM which was proposed by Odibat [34] can be established 

based on the assumption that the function  ,f x t  in Eq. (12) can be divided into parts,  

 

 
0

, ( , ).n

n

f x t f x t




               (17) 

 

Then we have the following homotopy: 

 

           
0

1 , , , , , , , ,n

t t x xx x xx n

n

p T u x t p T u x t L u u u N u u u p f x t 


 



              (18) 

 

or 
 

       
0

, , , , , , ,n

t x xx x xx n

n

T u x t p L u u u N u u u p f x t






                          (19) 

 

where  0,1p . If we set  0 , 0,f x t      1 , ,f x t f x t  for 0n   or 2n  , then the 

homotopy Eq. (18) or Eq. (19) reduces to the homotopy Eq. (14) or Eq. (15), 
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respectively. The form of homotopy Eq. (19) allows us to obtain the individual terms 

0 1 2, , ,u u u  in Eq. (16). Substituting Eq. (16) in Eq. (15) and collecting the terms with 

the same powers of ,p  we get 
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p T u f x t u x g x

p T u L u N u f x t u x

p T u L u N u u f x t u x













 

    

    

                           (20) 

At this step, by applying the conformable integral operator on both side of Eq. (20), the 

first few terms of the MHPM solution can be given by 
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         (21) 

 

Then we get the solution in the series form as 

 

   
0

, , .n

n

u x t u x t




   

 

 

5. Numerical examples 

 

5.1. Example 

We consider the one-dimensional linear Klein-Gordon equation [35] 
 

     
 

 
3

3 3 3

`, , , 6 6 , 0, , 1 2,
4

t xx

t
T u x t u x t u x t x x x t t x R


 





         
 

    (22) 

 

with the initial conditions 

 

   ,0 0, ,0 0.tu x u x               (23) 

 

Firstly, we will solve this problem by using the mentioned HAM. Choosing the operator 
 

    , ; , ;tL x t p T x t p   

 

with the property that   0,L k  k  is a constant. We use the initial approximation 

 ,0 0.u x   Choosing  , 1,H x t   we can construct the .m  order modified equation as 
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      1 1, , ,m m m m mL u x t u x t u x t                 (24) 

 

where 
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u x t T u u u x x x t


 





    

 
        

  
    (25) 

 

Therefore, the solution of Eq. (24) for 1m   becomes 
 

      1 1, , , .m m m t m mu x t u x t I u x t                (26) 

From Eqs. (23), (25) and (26), we obtain 
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Then the approximate solution of Eq. (22) is presented by 
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Then the exact solution of the Eq. (22) subject to the initial conditions Eq. (23) for 

2,   is obtained with HAM as   3 3, .u x t x t   
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Figure 1. Comparison the HAM and the exact solutions at 2,   0.5.x   

 

Secondly, we solve the Eq. (22) by using the MHPM. Let us take the initial conditions 

in Eq. (23) into consideration and use the homotopy in Eq. (19) and finally set 
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 The form of 

homotopy in Eq. (19) allows us to obtain the individual terms 0 1 2, , ,u u u  in Eq. (16). 

Substituting Eq. (16) in Eq. (19) and collecting the terms with the same powers of ,p  

we obtain 
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                   (27) 

 

Now, by applying the operator 
tI  on both side of Eq. (27), the first few terms of the 

MHPM solution can be given by 
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In this way, the rest terms of the series can be calculated. The approximate solution of 

Eq. (22) is given by 
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Then the exact solution of the Eq. (22) subject to the initial conditions Eq. (23) for 

special case of 2,   is obtained with MHPM as   3 3, .u x t x t  

 

 
 

Figure 2. HAM sol. with 1.4   and 1.8   for Example 1 
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Figure 3. HAM solution and exact solution with 2   for Example 1. 

 

 

5.2. Example 

Now let us consider the following nonlinear differential equation [36] 

 

   
 

2
2 2 4, , 2 , 0, 0 1, 0 1,

3
t

t
T u x t u x t x x t t x


 





        
 

       (28) 

 

with the initial condition 

 

 ,0 0,u x                 (29) 

 

and the boundary conditions 

 

    20, 0, 1, .u t u t t               (30) 

 

Firstly, we will apply the HAM to the problem. Choosing  , 1,H x t   we can construct 

the .m  order modified equation as 

 

      1 1, , ,m m m m mL u x t u x t u x t                 (31) 

 

where 

 

    
 

2
2 2 4

1 1 1, 1 2 .
3

m m t m m m

t
u x t T u u x x t


 





   

 
      

  
                    (32) 

 

Now the solution of Eq. (28) for 1m   becomes 
 

      1 1, , , .m m m t m mu x t u x t I u x t                (33) 

 



BAUN Fen Bil. Enst. Dergisi, 20(3) Özel Sayı, 75-89, (2018) 

 85 

From Eqs. (29), (32) and (33), we get 
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These steps give that the approximate solution of Eq. (28) as 
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Then the exact solution of Eq. (28) for 1   is obtained with the HAM as   2, .u x t xt  

Secondly, we solve the mentioned problem by applying the MHPM to it. Considering 

the initial condition in Eq. (29) and the homotopy in Eq. (19), we set 
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                     (34) 

 

Following the same solution steps in the Example 1, the first few terms of the MHPM 

solution can be obtained as 
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The rest parts of the series can be given as the same way. Then the approximate solution 

of Eq. (33) is given by 
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The last equation means that the exact solution of the Eq. (28) for 1   is obtained 

with the proposed MHPM as   2, .u x t xt  
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Figure 4. Comparison the numerical solutions with the exact solution at 1, 0.2.t    
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6. Conclusion 

 

In this work, approximate-analytical solutions of some linear/nonlinear PDEs are 

obtained by using the HAM and MHPM methods considering the conformable 

derivative operator. The fundamental solutions for non-homogeneous Klein-Gordon 

equation and a nonlinear PDE have been investigated by applying these suggested 

methods. The results of numerical computations have been illustrated by the figures 

under the variation of order ,  time value ,t  distance term x  and the auxiliary 

parameter .  The results of this study find out that the HAM and MHPM in the 

conformable derivative mean are applicable and suitable methods that can evaluate the 

components of infinite series smoothly and with ease in short notice even in nonlinear 

PDEs and the results have proven the accuracy and influence of these mentioned 

methods. 
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