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Abstract
There are various forms of Tychonoff objects for an arbitrary set-based topological category. In this paper,
any explicit characterization of each of the Tychonoff Objects is given in the topological category of
Cauchy spaces. Moreover, we characterize each of them for the category of Cauchy spaces and investigate
the relationships among the various Ti, i = 0, 1, 2, 3, 4, PreT2, and T2 (we will refer to it as the usual one)
structures are examined in this category.
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1. Introduction
In general topology and analysis, a Cauchy space is a generalization of metric spaces and uniform spaces. The

theory of Cauchy spaces was initiated by H. J. Kowalsky [20]. Cauchy spaces were introduced by H. Keller [17] in
1968.

In 1970, the study of regular Cauchy completions was initiated by J. Ramaley and O. Wyler [31]. Later, D. C. Kent
and G. D. Richardson ([18, 19]) characterized the T3 Cauchy spaces which have T3 completions and constructed a
regular completion functor.

In 1968, Keller [17] introduced the axiomatic definition of Cauchy spaces, which is given briefly in the prelimi-
naries section.

Filter spaces are generalizations of Cauchy spaces. If we exclude the last of three Keller’s [17] axioms for a
Cauchy space, then the resulting space is what we call a filter space. In [13], it is shown that the category FIL of
filter spaces is isomorphic to the category of filter meretopic spaces which were introduced by Katětov [16]. The
category of Cauchy spaces is also known to be a bireflective, finally dense subcategory of FIL [30].

All our preliminary information on Cauchy spaces and more information can be found in [24].
The notions of "closedness" and "strong closedness" in set based topological categories are introduced by Baran

[2, 4] and it is shown in [9] that these notions form an appropriate closure operator in the sense of Dikranjan and Giuli
[14] in some well-known topological categories. Moreover, various generalizations of each of Ti, i = 0, 1, 2 separation
properties for an arbitrary topological category over Set, the category of sets are given and the relationship among
various forms of each of these notions are investigated by Baran in [2, 7, 8, 10, 11].

The main goal of this paper is

1. to give the characterization of each of the Tychonoff objects in the topological category of Cauchy spaces,

2. to examine how these generalizations are related, and
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3. to show that specific relationships that arise among the various Ti, i = 0, 1, 2, 3, 4, PreT2, and T2 (we will
refer to it as the usual one) structures are examined in the topological category of Cauchy spaces.

2. Preliminaries
The followings are some basic definitions and notations which we will use throughout the paper.
Let E and B be any categories. The functor U : E −→ B is said to be topological or that E is a topological category

over B if U is concrete (i.e., faithful, amnestic and transportable), has small (i.e., sets) fibers, and for which every
U-source has an initial lift or, equivalently, for which each U-sink has a final lift [1].

Note that a topological functor U : E −→ B is said to be normalized if constant objects, i.e., subterminals, have a
unique structure [1, 5, 10, 26, 29].

Recall in [1, 29], that an object X ∈ E (where X ∈ E stands for X ∈Ob E), a topological category, is discrete iff
every map U(X) → U(Y ) lifts to a map X → Y for each object Y ∈ E and an object X ∈ E is indiscrete iff every
map U(Y )→ U(X) lifts to a map Y → X for each object Y ∈ E .

Let E be a topological category and X ∈ E . A is called a subspace of X if the inclusion map i : A → X is an
initial lift (i.e., an embedding) and we denote it by A ⊂ X .

A filter on a set X is a collection of subsets of X , containing X , which is closed under finite intersection and
formation of supersets (it may contain ∅). Let F(X) denote the set of filters on X. If α, β ∈ F (X), then β ≥ α if
and only if for each U∈ α, ∃V∈ β such that V ⊆ U , that is equivalent to β ⊃ α. This defines a partial order relation
on F (X) .

·
x = [{x}] is the filter generated by the singleton set {x} where [·] means generated filter and α∩β =

[{ U ∪ V | U ∈ α, V ∈ β }] . If U∩V 6= ∅, for all U∈ α and V∈ β, then α ∨ β is the filter [{U ∩ V | U ∈ α, V ∈ β }] . If
∃U∈ α and V∈ β such that U∩V=∅, then we say that α ∨ β fails to exist.

Let A be a set and q be a function on A that assigns to each point x of A a set of filters (proper or not, where a
filter δ is proper iff δ does not contain the empty set, ∅, i.e., δ 6= [∅]) (the filters converging to x) is called a convergence
structure on A ((A, q) a convergence space (in [29], it is called a convergence space)) iff it satisfies the following three
conditions ([28] p. 1374 or [29] p. 142):

1. [x] = [{x}] ∈ q (x) for each x ∈ A (where [F ] = {B ⊂ A : F ⊂ B}).
2. β ⊃ α ∈ q (x) implies β ∈ q (x) for any filter β on A.
3. α ∈ q(x)⇒ α ∩ [x] ∈ q(x).
A map f : (A, q) → (B, s) between two convergence spaces is called continuous iff α ∈ q (x) implies f (α) ∈

s (f (x)) (where f (α) denotes the filter generated by {f (D) : D ∈ α}). The category of convergence spaces and
continuous maps is denoted by Con (in [29] Conv).

For filters α and β we denote by α ∪ β the smallest filter containing both α and β.

Definition 2.1. (cf. [17]) Let A be a set and K ⊂ F (A) be subject to the following axioms:
1. [x] = [{x}] ∈ K for each x ∈ A (where [x] = {B ⊂ A : x ∈ B});
2. α ∈ K and β ≥ α implies β ∈ K (i.e., β ⊃ α ∈ K implies β ∈ K for any filter β on A);
3. if α, β ∈ K and α ∨ β exists (i.e., α ∪ β is proper), then α ∩ β ∈ K.
Then K is a precauchy (Cauchy) structure if it obeys 1-2 (resp. 1-3) and the pair (A,K) is called a precauchy

space (Cauchy space), resp. Members of K are called Cauchy filters. A map f : (A,K)→ (B,L) between Cauchy
spaces is said to be Cauchy continuous (Cauchy map) iff α ∈ K implies f (α) ∈ L (where f (α) denotes the filter
generated by {f (D) : D ∈ α}). The concrete category whose objects are the precauchy (Cauchy) spaces and whose
morphisms are the Cauchy continuous maps is denoted by PCHY (CHY), respectively.

Definition 2.2. A source {fi : (A,K)→ (Ai,Ki) , i ∈ I} in CHY is an initial lift iff α ∈ K precisely when fi (α) ∈
Ki for all i ∈ I [24, 30, 32].

Definition 2.3. An epimorphism f : (A,K)→ (B,L) in CHY (equivalently, f is surjective) is a final lift iff α ∈ L
implies that there exists a finite sequence α1, ..., αn of Cauchy filters in K such that every member of αi intersects

every member of αi+1 for all i < n and such that
n
∩
i=1
f (αi) ⊂ α [24, 30, 32].

Definition 2.4. Let B be set and p ∈ B. Let B ∨p B be the wedge at p ([2] p. 334), i.e., two disjoint copies of
B identified at p, i.e., the pushout of p : 1 → B along itself (where 1 is the terminal object in Set). An epi sink
{i1, i2 : (B,K)→ (B ∨p B,L) } , where i1, i2 are the canonical injections, in CHY is a final lift if and only if the
following statement holds. For any filter α on the wedge B ∨p B, where either α ⊃ ik(α1) for some k = 1, 2 and
some α1 ∈ K, or α ∈ L, we have that there exist Cauchy filters α1, α2 ∈ K such that every member of α1 intersects
every member of α2 (i.e., α1 ∪ α2 is proper) and α ⊃ i1α1 ∩ i2α2. This is a special case of Definition 2.3.
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Definition 2.5. The discrete structure (A,K) on A in CHY is given by K = {[a] | a ∈ A} ∪ {[∅]} [24, 30].

Definition 2.6. The indiscrete structure (A,K) on A in CHY is given by K = F (A) [24, 30].

CHY is a normalized topological category. The category of Cauchy spaces is cartesian closed, and contains the
category of uniform spaces as a full subcategory [30].

3. T2-Objects

Recall, in [2, 11], that there are various ways of generalizing the usual T2 separation axiom to topological
categories. Moreover, the relationships among various forms of T2-objects are established in [11].

Let B be a nonempty set, B2 = B ×B be cartesian product of B with itself and B2 ∨∆ B2 be two distinct copies
of B2 identified along the diagonal. A point (x, y) in B2 ∨∆ B2 will be denoted by (x, y)1(or (x, y)2) if (x, y) is in
the first (or second) component of B2 ∨∆ B2, respectively. Clearly, (x, y)1 = (x, y)2 iff x = y [2].

The principal axis map A : B2 ∨∆ B2 → B3 is given by A(x, y)1 = (x, y, x) and A(x, y)2 = (x, x, y). The
skewed axis map S : B2 ∨∆ B2 → B3 is given by S(x, y)1 = (x, y, y) and S(x, y)2 = (x, x, y) and the fold map,
∇ : B2 ∨∆ B2 → B2 is given by ∇(x, y)i = (x, y) for i = 1, 2. Note that π1S = π11 = π1A, π2S = π21 = π2A,
π3A = π12, and π3S = π22, where πk : B3 → B the k-th projection k = 1, 2, 3 and πij = πi + πj : B2 ∨∆ B2 → B,
for i, j ∈ {1, 2} [2].

Definition 3.1. (cf. [2, 4, 10, 11]) Let U : E → Set be a topological functor, X an object in E with U(X) = B.

1. X is T0 iff the initial lift of the U-source {A : B2 ∨∆ B2 → U(X3) = B3 and ∇ : B2 ∨∆ B2 → UD(B2) = B2}
is discrete, where D is the discrete functor which is a left adjoint to U .

2. X is T ′0 iff the initial lift of the U-source {id : B2 ∨∆ B2 → U(B2 ∨∆ B2)
′

= B2 ∨∆ B2 and ∇ : B2 ∨∆ B2 →
UD(B2) = B2} is discrete, where (B2 ∨∆ B2)

′
is the final lift of the U -sink {i1, i2 : U(X2) = B2 → B2 ∨∆ B2}

and D(B2) is the discrete structure on B2. Here, i1 and i2 are the canonical injections.

3. X is T0 iff X does not contain an indiscrete subspace with (at least) two points [25, 34].

4. X is T1 iff the initial lift of the U-source {S : B2 ∨∆ B2 → U(X3) = B3 and ∇ : B2 ∨∆ B2 → UD(B2) = B2}
is discrete.

5. X is PreT2 iff the initial lifts of the U-source {A : B2 ∨∆ B2 → U(X3) = B3} and {S : B2 ∨∆ B2 → U(X3) =
B3} coincide.

6. X is PreT ′2 iff the initial lift of the U-source {S : B2 ∨∆ B2 → U(X3) = B3} and the final lift of the U-sink
{i1, i2 : U(X2) = B2 → B2 ∨∆ B2} coincide, where i1 and i2 are the canonical injections.

7. X is T2 iff X is T0 and PreT2.

8. X is T ′2 iff X is T ′0 and PreT ′2.

9. X is ST2 iff ∆, the diagonal, is strongly closed in X2.

10. X is ∆T2 iff ∆, the diagonal, is closed in X2.

11. X is KT2 iff X is T ′0 and PreT2.

12. X is LT2 iff X is T0 and PreT ′2.

13. X is MT2 iff X is T0 and PreT ′2.

14. X is NT2 iff X is T0 and PreT2.

Remark 3.1. Note that for the category Top of topological spaces, T0, T ′0, T0, or T1, or PreT2, PreT ′2, or all of the
T2’s in Definition 3.1 reduce to the usual T0, or T1, or PreT2 (where a topological space is called PreT2 if for
any two distinct points, if there is a neighbourhood of one missing the other, then the two points have disjoint
neighbourhoods), or T2 separation axioms, respectively [2].

Definition 3.2. A Cauchy space (A,K) is said to be T2 (we will refer to it as the usual one) if and only if x = y,
whenever [x] ∩ [y] ∈ K [33].
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Theorem 3.1. (cf. [21]) Let (A,K) be a Cauchy space. Then,
(1)(A,K) in CHY is T 0 iff it is T0 iff it is T1 iff for each distinct pair x and y in A, we have [x] ∩ [y] /∈ K.
(2) All objects (A,K) in CHY are T ′0.

(3) All objects (A,K) in CHY are Pre
−
T2.

(4) (A,K) is PreT ′2 iff for each pair of distinct points x and y in A, we have [x] ∩ [y] ∈ K(equivalently, for each finite
subset F of A, we have [F ] ∈ K).

(5) (A,K) is
−
T2 iff for each distinct pair x and y in A, we have [x] ∩ [y] /∈ K.

(6) (A,K) is T ′2 iff for each distinct points x and y in A, we have [x] ∩ [y] ∈ K(equivalently, for each finite subset F of A,
we have [F ] ∈ K).

Remark 3.2. (cf. [21])

(1) If a Cauchy space (A,K) is
−
T0 or T0 (T1) then it is T ′0. However, the converse is not true generally. For

example, let A = {x, y} and K = {[x] , [y] , [{x, y}] , [∅]}. Then (A,K) is T ′0 but it is not
−
T0 or T0 (T1).

(2) If a Cauchy space (A,K) is PreT ′2 then it is Pre
−
T2. However, the converse is not true, in general. For example,

let A = {x, y} and K = {[x] , [y] , [∅]}. Then (A,K) is Pre
−
T2 but it is not PreT ′2.

Remark 3.3. (A,K) be in CHY. By Theorem 3.1, the following are equivalent:

(a) (A,K) is
−
T2 and T ′2.

(b) A is a point or the empty set [21].

Corollary 3.1. Let (A,K) be in CHY. (A,K) is ST2 iff it is ∆T2 iff for each pair of distinct points x and y in A and for
any α, β ∈ K, α ∪ β is improper if α ⊂ [x] and β ⊂ [y] [21].

Remark 3.4. (A,K) be in CHY. By Remark 4.5 (2) of [22], (A,K) is
−
T2 iff (A,K) is ST2 or ∆T2.

Remark 3.5. ([3], p. 106) Let α and β be filters on A. If f : A→ B is a function, then f (α ∩ β) = fα ∩ fβ.
Let (A,K) be in CHY, and F be a nonempty subset of A. Let q : (A,K)→ (A/F,L) be the quotient map that

identifying F to a point, ∗ [2].

Theorem 3.2. (cf. [23])
(1) If (A,K) is T ′2, then (A/F,L) is T ′2.

(2) If (A,K) is
−
T2, then (A/F,L) is

−
T2.

(3) If (A,K) is Pre
−
T2, then (A/F,L) is Pre

−
T2.

(4) If (A,K) is PreT ′2, then (A/F,L) is PreT ′2

Theorem 3.3. Let (A,K) be in CHY. ∅ 6= F ⊂ A is closed iff for each a ∈ A with a /∈ F and for all α ∈ K, α ∪ [F ] is
improper or α * [a] [21].

Theorem 3.4. Let (A,K) be in CHY. ∅ 6= F ⊂ A is strongly closed iff for each a ∈ A with a /∈ F and for all α ∈ K,
α ∪ [F ] is improper or α * [a] [21].

Theorem 3.5. (cf. [23])
(1) If (A,K) is ST2 (or ∆T2) and F is (strongly) closed, then (A/F,L) is ST2 (or ∆T2).
(2) All objects (A,K) in CHY are KT2.
(3) (A,K) in CHY is LT2 iff A is a point or the empty set.
(4) (A,K) in CHY is MT2 iff A is a point or the empty set.
(5) (A,K) in CHY is NT2 iff for each distinct pair x and y in A, [x] ∩ [y] /∈ K.

Remark 3.6. (cf. [23])
(1) If a Cauchy space (A,K) is LT2(MT2) then it is KT2. However, the converse is not true, in general. For

example, let A = {x, y} and K = {[x] , [y] , [∅]}. Then (A,K) is KT2 but it is not LT2(MT2).
(2) If a Cauchy space (A,K) is NT2 then it is KT2. However, the converse is not true, in general. For example,

let A = {x, y} and K = {[x] , [y] , [{x, y}] , [∅]}. Then (A,K) is KT2 but it is not NT2.
(3) If a Cauchy space (A,K) is LT2(MT2) then it is NT2. However, the converse is not true, in general. For

example, let A = {x, y} and K = {[x] , [y] , [∅]}. Then (A,K) is NT2 but it is not LT2(MT2).
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Theorem 3.6. Let (A,K) be a Cauchy space and B ⊂ A.

(1) If (A,K) is Pre
−
T2, then (B,K1) is also Pre

−
T2.

(2) If (A,K) is PreT ′2, then (B,K1) is also PreT ′2.

(3) If (A,K) is
−
T2, then (B,K1) is also

−
T2.

(4) If (A,K) is T ′2, then (B,K1) is also T ′2.

Proof. Let f : B ↪→ A be the inclusion map defined by f(x) = x for x ∈ B andK1 be the initial lift of f : B ↪→ (A,K).

(1) Suppose that (A,K) is Pre
−
T2 and x ∈ B. By Definition 2.2 and Theorem 3.1(3), (B,K1) is also Pre

−
T2.

(2) Let (A,K) is PreT ′2 and x, y be any two distinct points of B. Since B ⊂ A and (A,K) is PreT ′2, by Theorem
3.1 (4), we have [x] ∩ [y] ∈ K and f ([x] ∩ [y])=f ([x]) ∩ f([y])= [x] ∩ [y] ∈ K. Hence by Definition 2.2, [x] ∩ [y] ∈ K1

and by Theorem 3.1 (4), (B,K1) is PreT ′2.

(3) Suppose that (A,K) is
−
T2 and x, y be any two distinct points of B. Since B ⊂ A and (A,K) is

−
T2, by Theorem

3.1 (5), we have [x] ∩ [y] /∈ K and f ([x] ∩ [y])=f ([x]) ∩ f([y])= [x] ∩ [y] /∈ K. Hence by Definition 2.2, [x] ∩ [y] /∈ K1

and by Theorem 3.1 (5), (B,K1) is
−
T2.

The proof (4) is similar to the proof of (2) by using Theorem 3.1 (6).

4. T3-Objects

We now recall, ([2, 7, 12]), various generalizations of the usual T3 separation axiom to arbitrary set based
topological categories and characterize each of them for the topological categories CHY.

Definition 4.1. (cf. [2, 7, 12]) Let U : E → Set be a topological functor, X an object in E with U(X) = B. Let F be a
non-empty subset of B.

1. X is ST3 iff X is T1 and X/F is PreT2 for all strongly closed F 6= ∅ in U (X).

2. X is ST ′3 iff X is T1 and X/F is PreT ′2 for all strongly closed F 6= ∅ in U (X).

3. X is T3 iff X is T1 and X/F is PreT2 for all closed F 6= ∅ in U (X).

4. X is T ′3 iff X is T1 and X/F is PreT ′2 for all closed F 6= ∅ in U (X).

5. X is KT3 iff X is T1 and X/F is PreT2 if it is T1, where F 6= ∅ in U (X).

6. X is LT3 iff X is T1 and X/F is PreT ′2 if it is T1, where F 6= ∅ in U (X).

7. X is ST3 iff X is T1 and X/F is ST2 if it is T1, where F 6= ∅ in U (X).

8. X is ∆T3 iff X is T1 and X/F is ∆T2 if it is T1, where F 6= ∅ in U (X).

Remark 4.1. 1. For the category Top of topological spaces, all of the T3’s reduce to the usual T3 separation axiom (cf.
[2, 12? ]).

2. If U : E → B, where B is a topos [15], then Parts (1), (2), and (5)-(8)of Definition 4.1 still make sense since
each of these notions requires only finite products and finite colimits in their definitions. Furthermore, if B has
infinite products and infinite wedge products, then Definition 4.1 (4), also, makes sense.

Theorem 4.1. (cf. [23])

(1) (A,K) in CHY is
−
ST3 iff for each distinct pair x and y in A, [x] ∩ [y] /∈ K.

(2) (A,K) in CHY is ST ′3 iff A is a point or the empty set.

(3) (A,K) in CHY is
−
T3 iff for each distinct pair x and y in A, [x] ∩ [y] /∈ K.

(4) (A,K) in CHY is T ′3 iff A is a point or the empty set.
(5) (A,K) in CHY is KT3 iff for each distinct pair x and y in A, [x] ∩ [y] /∈ K.
(6) (A,K) in CHY is LT3 iff A is a point or the empty set.
(7) (A,K) in CHY is ST3 iff for each pair of distinct points x and y in A and for any α, β ∈ K, α ∪ β is improper if

α ⊂ [x] and β ⊂ [y].
(8) (A,K) in CHY is ∆T3 iff for each pair of distinct points x and y in A and for any α, β ∈ K, α ∪ β is improper if

α ⊂ [x] and β ⊂ [y].
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Theorem 4.2. If (A,K) is KT3, then (A/F,L) is KT3.

Proof. Suppose (A,K) is KT3. Let a and b be any distinct pair of points in A/F . By Theorem 4.1 (5), we only need
to show that [a] ∩ [b] /∈ L, where L is the structure on A/F induced by q. Suppose that a 6= ∗ and [a] , [∗] ∈ L
implies ∃ [a] , [y] ∈ K such that [a] ⊇ q([a]), [∗] ⊇ q([y]), and x = qx = a, qy = ∗ for any y ∈ F . If [a] ∩ [∗] ∈ L,
then [a] ∩ [y] ∈ K, by definition of the quotient map and Remark 3.5. But [a] ∩ [y] /∈ K since (A,K) is KT3. Hence
[a] ∩ [∗] /∈ L. Similarly, if a 6= b 6= ∗ and [a] , [b] ∈ L implies ∃ [a] , [b] ∈ K such that [a] ⊇ q([a]), [b] ⊇ q([b]), and
x = qx = a, qb = b. If [a] ∩ [b] ∈ L, then [a] ∩ [b] ∈ K, by definition of the quotient map and Remark 3.5. But
[a] ∩ [b] /∈ K since (A,K) is KT3. Hence [a] ∩ [b] /∈ L.

Consequently for each distinct points a and b in A/F , we have [a] ∩ [b] /∈ L. Hence by Theorem 4.1 (5), (A/F,L)
is KT3.

Theorem 4.3. If (A,K) is ∆T3, then (A/F,L) is ∆T3.

Proof. It follows from Theorem 4.2.

5. T4-Objects

We now recall various generalizations of the usual T4 separation axiom to arbitrary set based topological
categories that are defined in [2, 7, 12], and characterize each of them for the topological categories CHY.

Definition 5.1. (cf. [2, 7, 12]) Let U : E → Set be a topological functor and X an object in E with U(X) = B. Let F
be a non-empty subset of B.

1. X is ST4 iff X is T1 and X/F is ST3 for all strongly closed F 6= ∅ in U (X).

2. X is ST ′4 iff X is T1 and X/F is ST ′3 for all strongly closed F 6= ∅ in U (X).

3. X is T4 iff X is T1 and X/F is T3 for all closed F 6= ∅ in U (X).

4. X is T ′4 iff X is T1 and X/F is T ′3 for all closed F 6= ∅ in U (X).

5. X is ∆T4 iff X is T1 and X/F is ∆T3 if it is T1, where F 6= ∅ in U (X).

6. X is KT4 iff X is T1 and X/F is KT3 if it is T1, where F 6= ∅ in U (X).

7. X is LT4 iff X is T1 and X/F is LT2 if it is T1, where F 6= ∅ in U (X).

Remark 5.1. 1. For the category Top of topological spaces, all of the T4’s reduce to the usual T4 separation axiom
([2, 7, 12]).

2. If U : E → B, where B is a topos [15], then Definition 5.1 still makes sense since each of these notions requires
only finite products and finite colimits in their definitions.

Theorem 5.1. (cf. [23])

(1) (A,K) in CHY is
−
ST4 iff for each distinct pair x and y in A, [x] ∩ [y] /∈ K.

(2) (A,K) in CHY is ST ′4 iff A is a point or the empty set.

(3) (A,K) in CHY is
−
T4 iff for each distinct pair x and y in A, [x] ∩ [y] /∈ K.

(4) (A,K) in CHY is T ′4 iff A is a point or the empty set.

Theorem 5.2. (A,K) in CHY is ∆T4 iff for each pair of distinct points x and y in A and for any α, β ∈ K, α ∪ β is
improper if α ⊂ [x] and β ⊂ [y].

Proof. It follows from Definition 5.1 (5), Theorem 3.1 (1) and Theorem 4.3.

Theorem 5.3. (A,K) in CHY is KT4 iff for each distinct pair x and y in A, [x] ∩ [y] /∈ K.

Proof. It follows from Definition 5.1 (6), Theorem 3.1 (1) and Theorem 4.2.

Theorem 5.4. (A,K) in CHY is LT4 iff A is a point or the empty set.

Proof. It follows from Definition 5.1 (7) and Theorem 3.5 (3).
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Remark 5.2. Let (A,K) be a Cauchy space. It follows from Theorem 3.5, Theorem 4.1, Theorem 5.1, Theorem 5.2 and

Theorem 5.3 that (A,K) is NT2 iff (A,K) is
−
ST3 iff (A,K) is

−
T3 iff (A,K) is KT3 iff (A,K) is

−
ST4 iff (A,K) is

−
T4 iff

(A,K) is KT4 iff (A,K) is ∆T4 iff for each distinct pair x and y in A, [x] ∩ [y] /∈ K.

Remark 5.3. Let (A,K) be a Cauchy space. It follows from Theorem 3.5, Theorem 4.1, Theorem 5.1 and Theorem 5.4
that (A,K) is ST ′3 iff (A,K) is T ′3 iff (A,K) is LT2 iff (A,K) is MT2 iff (A,K) is LT3 iff (A,K) is ST ′4 iff (A,K) is T ′4
iff (A,K) is LT4 iff A is a point or the empty set.

6. Tychonoff objects

In this section, the characterization of Tychonoff objects in this category is given. Furthermore, we investigate the
relationships between Tychonoff objects and ST2, ∆T2, ST3, ∆T3, generalized separation properties and separation
properties at a point p in this category.

Definition 6.1. (cf. [7, 12]) Let U : E −→ Set be a topological functor and X an object in E with U(X) = B.

1. X is ∆T3 1
2

iff X is a subspace of ∆T4.

2. X is ST3 1
2

iff X is a subspace of ST4.

3. X is T ′
3 1

2

iff X is a subspace of T ′4.

4. X is ST ′
3 1

2

iff X is a subspace of ST ′4.

5. X is C∆T3 1
2

iff X is a subspace of a compact ∆T2.

6. X is CST3 1
2

iff X is a subspace of a compact ST2.

7. X is LT3 1
2

iff X is a subspace of a compact T ′2.

8. X is S∆T3 1
2

iff X is a subspace of a strongly compact ∆T2.

9. X is SST3 1
2

iff X is a subspace of a strongly compact ST2.

10. X is SLT3 1
2

iff X is a subspace of a strongly compact T ′2.

Remark 6.1. For the category Top of topological spaces, all six of the properties defined in Definition 6.1 are
equivalent and reduce to the usual T3 1

2
= Tychonoff, i.e, completely regular T1 spaces [27], Remark 5.2, and Remark

6.2.

Lemma 6.1. (cf. [21]) All objects in CHY are (strongly) compact.

Theorem 6.1. Let (A,K) be a Cauchy space. Then the followings are equivalent:
(1) (A,K) is ∆T3 1

2
,

(2) (A,K) is ST3 1
2

,
(3) (A,K) is C∆T3 1

2
,

(4) (A,K) is CS∆T3 1
2

,
(5) (A,K) is S∆T3 1

2
,

(6) (A,K) is SST3 1
2

,
(7) for each distinct pair x and y in A, we have [x] ∩ [y] /∈ K.

Proof. It follows from Corollary 3.1, Theorem 5.1, Theorem 5.2, Definition 6.1 and Lemma 6.1.

Example 6.1. Let X = {a, b}, δ = {(X,X), ({a}, {a}), ({b}, {b}), (X, {a}), ({a}, X), (X, {b}), ({b}, X)} and δ1 =
{(X,X), ({a}, {a}), ({b}, {b}), (X, {a}), ({a}, X), (X, {b}), ({b}, X), ({a}, {b}), ({b}, {a})}. Then (X, δ) isC∆T3 1

2
, but

(X, δ1) is not C∆T3 1
2

, since ({a}, {b}) ∈ δ with a 6= b.
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Theorem 6.2. Let (A,K) be a Cauchy space. Then the followings are equivalent:
(1) (A,K) is T ′

3 1
2

,
(2) (A,K) is ST ′

3 1
2

,
(3) A is a point or the empty set.

Proof. It follows from Theorem 5.1 and Definition 6.1.

Theorem 6.3. Let (A,K) be a Cauchy space. Then the followings are equivalent:
(1) (A,K) is LT3 1

2
,

(2) (A,K) is SLT3 1
2

,
(3) for each pair of distinct points x and y in A, we have [x] ∩ [y] ∈ K(equivalently, for each finite subset F of A, we have

[F ] ∈ K).

Proof. It follows from Theorem 3.1, Definition 6.1 and Lemma 6.1.

We can infer the following results.

Remark 6.2. Let (A,K) be in CHY. The followings are equivalent;

1. By Theorems 3.1, 4.1 and 6.1, Corollary 3.1, (A,K) is T1 iff it is T0 iff it is T 0 iff (A,K) is
−
ST3 iff it is

−
T3 iff it is

KT3 iff (A,K) is
−
ST4 iff it is

−
T4 iff (A,K) is ST2 or ∆T2 iff (A,K) is ST3 or ∆T3 iff (A,K) is NT2 iff (A,K) is ∆T3 1

2

iff (A,K) is ST3 1
2

iff (A,K) is C∆T3 1
2

iff (A,K) is CS∆T3 1
2

iff (A,K) is S∆T3 1
2

iff (A,K) is SST3 1
2

.

2. By Theorems 3.1, 4.1 and 6.1, Corollary 3.1, (A,K) is
−
T2 iff (A,K) is

−
ST3 iff (A,K) is

−
T3 iff (A,K) is KT3 iff

(A,K) is
−
ST4 iff (A,K) is

−
T4 iff (A,K) is ST2 or ∆T2 iff (A,K) is ST3 or ∆T3 iff (A,K) is NT2 iff (A,K) is ∆T3 1

2
iff

(A,K) is ST3 1
2

iff (A,K) is C∆T3 1
2

iff (A,K) is CS∆T3 1
2

iff (A,K) is S∆T3 1
2

iff (A,K) is SST3 1
2

.

3. By Theorems 3.1, 4.1 and 6.1, Corollary 3.1, if (A,K) is
−
ST3 or

−
T3 or KT3 or

−
ST4 or

−
T4 or ST2 or ∆T2 or ST3

or ∆T3 or NT2 or ∆T3 1
2

or ST3 1
2

or C∆T3 1
2

or CS∆T3 1
2

or S∆T3 1
2

or SST3 1
2

, then (A,K) is T ′0. But the converse of
implication is not true, in general. For example, let A = {x, y} and K = {[x] , [y] , [{x, y}] , [∅]}. Then (A,K) is

T ′0 but it is not
−
ST3 or

−
T3 or KT3 or

−
ST4 or

−
T4 or ST2 or ∆T2 or ST3 or ∆T3 or NT2 or ∆T3 1

2
or ST3 1

2
or C∆T3 1

2
or

CS∆T3 1
2

or S∆T3 1
2

or SST3 1
2

.

4. By Theorems 3.1, 4.1 and 6.1, Corollary 3.1, if (A,K) is
−
ST3 or

−
T3 or KT3 or

−
ST4 or

−
T4 or ST2 or ∆T2 or ST3 or

∆T3 or NT2 or ∆T3 1
2

or ST3 1
2

or C∆T3 1
2

or CS∆T3 1
2

or S∆T3 1
2

or SST3 1
2

, then (A,K) is Pre
−
T2. But the converse

of implication is not true, in general. For example, let A = {x, y} and K = {[x] , [y] , [{x, y}] , [∅]}. Then (A,K) is

Pre
−
T2 but it is not

−
ST3 or

−
T3 or KT3 or

−
ST4 or

−
T4 or ST2 or ∆T2 or ST3 or ∆T3 or NT2 or ∆T3 1

2
or ST3 1

2
or C∆T3 1

2

or CS∆T3 1
2

or S∆T3 1
2

or SST3 1
2

.
5. By Theorems 3.1, 4.1 and 6.2, Corollary 3.1, the followings are equivalent:

(a) (A,K) is PreT ′2 (T ′2), LT3 1
2

, SLT3 1
2

, and is
−
ST3 or

−
T3 or KT3 or

−
ST4 or

−
T4 or ST2 or ∆T2 or ST3 or ∆T3 or

NT2 or ∆T3 1
2

or ST3 1
2

or C∆T3 1
2

or CS∆T3 1
2

or S∆T3 1
2

or SST3 1
2

.
(b) A is a point or the empty set.

6. By Theorems 3.1, 4.1 and 6.1, Corollary 3.1 and Definition 3.2, (A,K) is
−
ST3 or

−
T3 or KT3 or

−
ST4 or

−
T4 or ST2

or ∆T2 or ST3 or ∆T3 or NT2 or ∆T3 1
2

or ST3 1
2

or C∆T3 1
2

or CS∆T3 1
2

or S∆T3 1
2

or SST3 1
2

iff (A,K) is T2 (we will
refer to it as the usual one).
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