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Abstract
In this paper, we consider bicomplex numbers and bicomplex matrices. Firstly, we give some properties
of bicomplex numbers.After that we investigate bicomplex matrices using properties of complex ma-
trices.Then we define the complex adjoint matrix of bicomplex matrices and we describe some of their
properties. Furthermore, we give the definition of q-determinant of bicomplex matrices.

Keywords: Complex number; Bicomplex number; Complex matrix; Bicomplex matrix.

AMS Subject Classification (2010): 15B33; 11E88; 11R52.

*Corresponding author

1. Introduction
The subject of multiple imaginary units was examined in the 1840s. In a long series "On quaternions; or on a

new system of imaginaries in algebra" beginning in 1844 in Philosophical Magazine, William Rowan Hamilton
communicated a system multiplying according to the quaternion group. In 1848 Thomas Kirkman reported on
his correspondence with Arthur Cayley regarding equations on the units determining a system of hypercomplex
numbers.

It is possible to arrive to bicomplex numbers by means of purely algebraic considerations. For example, if in a
complex number a+ ib we replace the real numbers a and b by complex numbers z1 = a1 + ia2 and z2 = b1 + ib2,
then we get just another complex number:

z1 + iz2 = (a1 + ia2) + i(b1 + ib2) = (a1 − b2) + i(a2 + b1).

If we want to obtain a new type of number, then we must use another imaginary unit, say j, with j2 = −1, and set

z1 + jz2 = (a1 + ia2) + j(b1 + ib2)

which gives a new object, outside the field of complex numbers.
If we want to be able to operate with these new numbers, we need to define the product of the two imaginary

units. This was a problem that was solved by Hamilton by requiring that they anticommute, and his solution led to
the introduction of quaternions. Hamilton’s decision was influenced by many considerations, including the desire
to obtain a field, which of course the quaternions form (a skew field). But one could explore what happens if we
assume that the two new imaginary units commute. In this case we obtain a new and lesser known object, the
algebra of bicomplex numbers.

The set BC of bicomplex numbers is therefore defined as follows:

BC = {z1 + jz2 | z1, z2 ∈ C} , (1.1)

where i and j are commuting imaginary units i.e ij = ji , i2 = j2 = −1 and which C is the set of complex numbers
with the imaginary unit i. Thus bicomplex numbers are “complex numbers with complex coefficients”, which
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explains the name of bicomplex, and in what follows we will try to emphazise the deep similarities between the
properties of complex and bicomplex numbers. We should probably point out that bicomplex numbers were
apparently first introduced in 1892 by Corrado Segre, that the origin of their function theory is due to the Italian
school of Scorza-Dragoni and that a first theory of differentiability in BC was developed by Price.

Now the addition and the multiplication of bicomplex numbers are introduced in a natural way: given
Z1 = z1 + jz2 and Z2 = z3 + jz4 in BC, then

Z1 + Z2 := (z1 + z3) + j (z2 + z4)

and
Z1.Z2 := (z1 + jz2) (z3 + jz4) = (z1z3 − z2z4) + j (z1z4 + z2z3) .

So (BC,+, .) is a commutative ring, i.e.
1) The addition is associative, commutative, with identity element 0 = 0 + j0, and all bicomplex numbers have

an additive inverse. This is to say that (BC,+)is an Abelian group.
2) The multiplication is associative, commutative, with identity element 1 = 1 + j0.
3) The multiplication is distributive with respect to the addition i.e. for any Z,Z1, Z2 ∈ BC, we have:

Z(Z1 + Z2) = ZZ1 + ZZ2.

The complex conjugation plays an extremely important role for both algebraic and geometric properties of C,
and for analysis of complex functions. It appears that there are three conjugations in BC which is not surprising:
indeed, the complex conjugation is totally given by its action over the imaginary unit; thus one expects at least two
conjugations on BC but one more candidate could arise from composing them. Consider these ideas in more detail.

Bicomplex conjuations with respect to i ,j , ij are determined respectively by the formulas

Z(i) : = z1 + jz2 = z1 + jz2

Z(j) : = z1 + jz2 = z1 − jz2
Z(ij) : = z1 + jz2 = z1 − jz2.

2. Bicomplex Matrices and Their Adjoints

The set Mm×n (BC) denotes all m× n type matrices with bicomplex numbers entries.If m = n, then the set of
bicomplex matrices is denoted by Mn (BC). The ordinary matrix addition and multiplication are defined. With
these operations Mn (BC)is a ring with a unit. The left (right) scalar multiplication is defined as, for A = (ast) ∈
Mm×n (BC) , Z ∈ BC

ZA = (Zast)

AZ = (astZ) .

But it is easy to see that
ZA = AZ

for bicomplex matrices because the product of bicomplex numbers is commutative.
For A = (ast) ∈ Mm×n (BC), A = (ast) ∈ Mm×n (BC) is the conjugate of A ; AT = (ats) ∈ Mn×m (BC) is the

transpose of A ; A∗ =
(
A
)T ∈ Mn×m (BC) is the conjugate transpose of A.For a square matrix A ∈ Mn (BC) if

AA∗ = A∗A then A is called a normal matrix; if A = A∗ then A is called a Hermitian matrix; is AA∗ = I then A is
called a unitary matrix; for B ∈Mn (BC) if AB = BA = I then A is an invertible matrix.

Theorem 2.1. Let A,B ∈Mn (BC) .Then the followings are satisfied.

i)
(
AT
)−1

=
(
A−1

)T
ii)a)

(
A(i)

)−1
= (A−1)(i)

b)
(
A(j)

)−1
= (A−1)(j)

c)
(
A(ij)

)−1
= (A−1)(ij)

iii)a)AB(i) = A(i)B(i)

b)AB(j) = A(j)B(j)

c)AB(ij) = A(ij)B(ij)

iv) (AB)
T
= BTAT
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Proof. Let A = A1 +A2j and B = B1 +B2j, where A1,A2, B1 and B2 are complex matrices.Now we will prove the
theorem.

i) We can easily show that the inverse of bicomplex matrix A is

A−1 =
detA1

detA
(A1)

−1
+ j

detA2

detA
(A2)

−1
.

So,using the properties of transpose and inverse we get

AT = (A1 +A2j)
T
= AT

1 +AT
2 j

and (
AT
)−1

=
(
AT

1 +AT
2 j
)−1

=
detAT

1

detAT

(
AT

1

)−1
+ j

detAT
2

detAT

(
AT

2

)−1
.

On the other hand,we can write (
A−1

)T
=

detA1

detA

(
AT

1

)−1
+ j

detA2

detA

(
AT

2

)−1

(
A−1

)T
=

detAT
1

detAT

(
AT

1

)−1
+ j

detAT
2

detAT

(
AT

2

)−1

since detA = detAT .Thus,we obtain (
A−1

)T
=
(
AT
)−1

.

ii) a)According to the definition of bicomplex conguate of bicomplex number, we know

A(i) = A1 +A2j.

After that we have (
A(i)

)−1
=

detA1

detA(i)

(
A1

)−1
+ j

detA2

detA(i)

(
A2

)−1
. (2.1)

Furthermore,

(A−1)(i) =

(
detA1

detA
(A1)

−1

)
+ j

(
detA2

detA
(A2)

−1

)
(A−1)(i) =

detA1

detA(i)

(A1)
−1

+ j
detA2

detA(i)

(A2)
−1

(A−1)(i) =
detA1

detA(i)

(
A1

)−1
+ j

detA2

detA(i)

(
A2

)−1
. (2.2)

So from the eq. (2.1) and (2.2) we find that (
A(i)

)−1
= (A−1)(i) .

Conjugates of matrix A respect to j and ij has also the same property.The proof of the case (b) and (c) are easily
shown like the case (a).

iii) a) Since A and B are bicomplex matrices we have

A.B = A1B1 −A2B2 + (A1B2 +B1A2) j

A.B(i) = A1B1 −A2B2 +
(
A1B2 +B1A2

)
j.

From another direction,we can obtain

A(i).B(i) = A1B1 +A1B2j +B1A2j −A2B2

A(i).B(i) = A1B1 −A2B2 +
(
A1B2 +B1A2

)
j.
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Thus, we can write
AB(i) = A(i)B(i).

This property also applies to conjugates according to j and ij.
iv) If we calculate AB for A and B we have

A.B = A1B1 +A1B2j +B1A2j −A2B2

A.B = A1B1 −A2B2 + (A1B2 +A2B1) j.

and using AT = AT
1 +AT

2 j and BT = BT
1 +BT

2 j we get

(A.B)
T
= BT

1 A
T
1 −BT

2 A
T
2 +

(
BT

2 A
T
1 +BT

1 A
T
2

)
j. (2.3)

On the other hand
BTAT = BT

1 A
T
1 +BT

1 A
T
2 j +BT

2 A
T
1 j −BT

2 A
T
2

BTAT = BT
1 A

T
1 −BT

2 A
T
2 +

(
BT

2 A
T
1 +BT

1 A
T
2

)
j. (2.4)

Thus, by using the eq. (2.3) and (2.4) we get

(AB)
T
= BTAT .

Theorem 2.2. Let A,B ∈Mn (BC) .Then the followings hold.

i)a)
(
A(i)

)T
= (AT )(i)

b)
(
A(j)

)T
= (AT )(j)

c)
(
A(ij)

)T
= (AT )(ij)

ii)a) (AB)
∗
= B∗A∗ ⇒

(
AB(i)

)T
=
(
B(i)

)T (
A(i)

)T
b) (AB)

∗
= B∗A∗ ⇒

(
AB(j)

)T
=
(
B(j)

)T (
A(j)

)T
c) (AB)

∗
= B∗A∗ ⇒

(
AB(ij)

)T
=
(
B(ij)

)T (
A(ij)

)T
iii) (AB)

−1
= B−1A−1if A and B are invertible.

iv)a)
(
A∗

(i)

)−1

=
(
A−1

)∗
(i)
⇒
((
A(i)

)T)−1

=
(
(A−1)(i)

)T
b)
(
A∗

(j)

)−1

=
(
A−1

)∗
(j)
⇒
((
A(j)

)T)−1

=
(
(A−1)(j)

)T
c)
(
A∗

(ij)

)−1

=
(
A−1

)∗
(ij)
⇒
((
A(ij)

)T)−1

=
(
(A−1)(ij)

)T
Proof. As before, we write A and B as A = A1 + A2j ,B = B1 + B2j, where A1,A2, B1 and B2 are n× n complex
matrices.

i) a)It is easy to verify that
A(i) = A1 +A2j(

A(i)

)T
=
(
A1

)T − (A2

)T
j (2.5)

AT = AT
1 +AT

2 j

(AT )(i) =
(
AT

1

)
+
(
AT

2

)
j =

(
A1

)T − (A2

)T
j. (2.6)

By using the eq. (2.5) and (2.6) we obtain (
A(i)

)T
= (AT )(i).

The same property also applies to conjugates according to j and ij.The proof of the case (b) and (c) are easily shown
like the case (a).

ii) a) For

A∗ =
(
A(i)

)T
=
(
A1 +A2j

)T
(i)

=
(
A1

)T
+
(
A2

)T
j

B∗ =
(
B(i)

)T
=
(
B1 +B2j

)T
(i)

=
(
B1

)T
+
(
B2

)T
j
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we calculate
B∗A∗ =

((
B1

)T
+
(
B2

)T
j
)((

A1

)T
+
(
A2

)T
j
)

B∗A∗ =
(
B1

)T (
A1

)T
+
(
B1

)T (
A2

)T
j +

(
B2

)T (
A1

)T
j −

(
B2

)T (
A2

)T
. (2.7)

If we calculate AB for A and B we have

AB = (A1 +A2j) (B1 +B2j) = A1B1 +A1B2j +A2B1j −A2B2

then the conjugate transpose of AB

(AB)
∗
=
(
AB(i)

)T
=
(
A1B1 +A1B2j +A2B1j −A2B2

)T
(AB)

∗
=
(
B1

)T (
A1

)T
+
(
B1

)T (
A2

)T
j +

(
B2

)T (
A1

)T
j −

(
B2

)T (
A2

)T
. (2.8)

From using the eq. (2.5) and (2.6) the proof is completed.
Notice that the same property also applies to conjugates according to j and ij.
iii) Since

B−1A−1AB = B−1IB = I = ABB−1A−1

so
(AB)

−1
= B−1A−1.

iv) a)Using the features of transpose and inverse we can obtain

((
A(i)

)T)−1

=
det
(
A1

)T
det
(
A(i)

)T ((A1

)T)−1

+ j
det
(
A2

)T
det
(
A(i)

)T ((A2

)T)−1

. (2.9)

On the other hand,

A−1 =
detA1

detA
(A1)

−1
+ j

detA2

detA
(A2)

−1

A−1
(i) =

detA1

detA(i)
(A1)

−1
+ j

detA2

detA(i)
(A2)

−1

A−1
(i) =

detA1

detA(i)

(A1)
−1

+ j
detA2

detA(i)

(A2)
−1

A−1
(i) =

detA1

detA(i)

(
A1

)−1
+ j

detA2

detA(i)

(
A2

)−1

(
A−1

(i)

)T
=

det
(
A1

)T
det
(
A(i)

)T ((A1

)−1
)T

+ j
det
(
A2

)T
det
(
A(i)

)T ((A2

)−1
)T

(
A−1

(i)

)T
=

det
(
A1

)T
det
(
A(i)

)T ((A1

)T)−1

+ j
det
(
A2

)T
det
(
A(i)

)T ((A2

)T)−1

. (2.10)

Therefore, we get (
A∗

(i)

)−1

=
(
A−1

)∗
(i)
⇒
((
A(i)

)T)−1

=
(
(A−1)(i)

)T
by using eq.(2.9) and (2.10)

Conjugates of matrix A respect to j and ij has also the same property.The proof of the case (b) and (c) are easily
shown like the case (a).

Now we will define the complex adjoint matrix of a bicomplex matrix. After that we will give some relations
between bicomplex matrices and their complex adjoint matrices.
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Definition 2.1. Let A = A1 +A2j ∈Mn (BC) where A1, A2 ∈Mn (C).The 2n× 2n matrix(
A1 A2

−A2 A1

)
is called the bicomplex adjoint matrix of A and detoned χA.

Example 2.1. Let A =

(
1 i
ij i+ j

)
is a bicomplex matrix.

A = A1 +A2j

A =

(
1 i
0 i

)
+

(
0 0
i 1

)
j

The bicomplex adjoint matrix of A is

χA =

(
A1 A2

−A2 A1

)
=


1 i 0 0
0 i i 1
0 0 1 i
−i −1 0 i

 .

Theorem 2.3. Let A,B∈Mn (BC)Then the followings hold;

i)χIn = I2n
ii)χA+B = χA + χB

ii)χAB = χAχB

iv)χA−1 = (χA)
−1
if A−1 exist;

v)χA∗ 6= (χA)
∗
in general

vi)χA is unitary, hermitian or normal if and only if A is unitary, hermitian or normal,respectively.

Proof. i)

In =


1 0

.
.
.

0 1

 = In + 0j = A1 +A2j

Now we get the following equation;

χIn =

(
A1 A2

−A2 A1

)
=

(
In 0
0 In

)
= I2n.

ii) If we take A = A1 +A2j and B = B1 +B2j (A1, A2,B1B2 ∈Mn (C))

χA =

(
A1 A2

−A2 A1

)
and χB =

(
B1 B2

−B2 B1

)
A+B = (A1 +B1) + (A2 +B2) j

thus, we have;

χA+B =

(
A1 +B1 A2 +B2

−A2 −B2 A1 +B1

)
. (2.11)

So for the complex adjoint matrix of A+B we can write

χA + χB =

(
A1 +B1 A2 +B2

−A2 −B2 A1 +B1

)
. (2.12)

From the eq. (2.11) and (2.12) we obtain
χA+B = χA + χB .



52 C. Ölçek & S.K. Nurkan

iii)We know

AB = (A1 +A2j) (B1 +B2j) = A1B1 +A1B2j +A2B1j −A2B2

AB = (A1B1 −A2B2) + (A1B2 +A2B1) j

this equations are hold.Then we can find the complex adjoint matrix of AB

χAB =

(
A1B1 −A2B2 A1B2 +A2B1

−A1B2 −A2B1 A1B1 −A2B2

)
. (2.13)

From the definition of complex adjoint of a bicomplex matrix and the product of matrices we get

χAχB =

(
A1 A2

−A2 A1

)(
B1 B2

−B2 B1

)
=

(
A1B1 −A2B2 A1B2 +A2B1

−A1B2 −A2B1 A1B1 −A2B2

)
. (2.14)

So the proof is completed by using the equations (2.13) and (2.14) .
iv)Since AA−1 = I we have

AA−1 = I ⇔ χAχA−1 = I

⇔ χAχA−1 (χA−1)
−1

= I (χA−1)
−1

⇔ χAI = I (χA−1)
−1

⇔ χA = (χA−1)
−1

⇔ (χA)
−1

= χA−1 .

v)If we calculate complex adjoint of A with respect to i,then

A∗
(i) =

(
A(i)

)T
=
(
A1 +A2j

)T
=
(
A1

)T
+
(
A2

)T
and

χA∗
(i)

=

( (
A1

)T (
A2

)T
−
(
A2

)T (
A1

)T
)
. (2.15)

From another point of view,

χA =

(
A1 A2

−A2 A1

)
⇒ χA(i) =

(
A1 A2

−A2 A1

)
⇒

(
χA(i)

)T
=

(
A1 −A2

A2 A1

)
and we get

(χA)
∗
(i) =

(
A1 −A2

A2 A1

)
. (2.16)

From the eq. (2.15) and (2.16), we find this
χA∗

(i)
6= (χA)

∗
(i) .

vi)Let χA be a unitary matrix,then

χA (χA)
∗
(i) = I2n =

(
I 0
0 I

)
=

(
A1 A2

−A2 A1

)( (
A1

)T (
A2

)T
−
(
A2

)T (
A1

)T
)

and

χA (χA)
∗
(i) =

(
A1

(
A1

)T −A2

(
A2

)T
A1

(
A2

)T
+A2

(
A1

)T
−A2

(
A1

)T −A1

(
A2

)T
A2

(
A2

)T −A1

(
A1

)T
)

=

(
I 0
0 I

)
. (2.17)
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From the eq (2.17) we have

A1

(
A1

)T −A2

(
A2

)T
= I and A1

(
A2

)T
+A2

(
A1

)T
= 0. (2.18)

On the other hand,

A.A∗
(i) = (A1 +A2j)

((
A1

)T
+
(
A2

)T
j
)

A.A∗
(i) = A1

(
A1

)T −A2

(
A2

)T
+
(
A1

(
A2

)T
+A2

(
A1

)T)
j.

Now it is easy to verify that
A.A∗

(i) = I

by using the eq. (2.17) and (2.18) .
Let χA be a hermitian matrix,then

χA = (χA)
∗
(i) ⇔

(
A1 A2

−A2 A1

)
=

( (
A1

)T (
A2

)T
−
(
A2

)T (
A1

)T
)

A1 =
(
A1

)T ⇒ A1 = A∗
1

A2 =
(
A2

)T ⇒ A2 = A∗
2

A = A1 +A2j and A∗
(i) =

(
A1

)T
+
(
A2

)T
j

By using above equations we can get
A = A∗

(i).

Let χA be a normal matrix,then

χA. (χA)
∗
(i) = (χA)

∗
(i) .χA ⇔

(
A1 A2

−A2 A1

)
.

( (
A1

)T (
A2

)T
−
(
A2

)T (
A1

)T
)

=

( (
A1

)T (
A2

)T
−
(
A2

)T (
A1

)T
)
.

(
A1 A2

−A2 A1

)
(A1 +A2j)

((
A1

)T
+
(
A2

)T
j
)

=
((
A1

)T
+
(
A2

)T
j
)
(A1 +A2j)

⇔ A.A∗
(i) = A∗

(i).A.

Note that this proof is also satisfied for conjugate of matrix A respect to j and ij

Theorem 2.4. Let A ∈Mn×n (BC) . Then the followings are equivalent:

i)A is invertible,
ii)AX = 0 has a unique solution 0,
iii) |χA| 6= 0, i.e., χA is an invertible,
iv)A has no zero eigenvalue.More precisely if AX = λX or AX = Xλ
for some bicomplex number λ and some bicomplex vector
X 6= 0 then λ 6= 0.

Proof. (i)⇒ (ii)This part is trivial.
(ii)⇒ (iii)Let A = A1 +A2j,X = x1 + x2j whereA1, A2 are complex matrices and x1, x2are complex column

vectors.Then,

AX = (A1 +A2j) (x1 + x2j)

AX = (A1x1 −A2x2) + (A1x2 +A2x1) j

From we can write,
A1x1 −A2x2 = 0 and A1x2 +A2x1 = 0
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These equations give us the equations

A1x1 −A2x2 = 0

−A1x2 −A2x1 = 0

So we get that

AX = 0 if and only if
(
A1 A2

−A2 A1

)(
x1
−x2

)
= 0

That is χA. (x1,−x2)T = 0 since AX = 0 has an unique solution.χA. (x1,−x2)T = 0 has an unique solution.Thus,
since χA is a bicomplex matrix, χA is an invertible.

(ii)⇒ (iv)Let AX = 0 has an unique solution 0 for A ∈Mn×n (BC) .Suppose that A has a zero eigenvalue.Then
for some bicomplex vector X 6= 0 the equation AX = λX has a zero eigenvalue.Thus AX = 0,and so by our
assumption X = 0,this is a contradiction.Now suppose that A has no zero eigenvalue.If we have AX = 0 = λX
then by our assumption X = 0.

(iii)⇒ (i)If χA is an invertible, then for A = A1 +A2j there exist a complex matrix
(
B1 B2

B3 B4

)
such that;

(
B1 B2

B3 B4

)(
A1 A2

−A2 A1

)
=

(
I 0
0 I

)
B1A1 −B2A2 = I

B1A2 +B2A1 = 0

Using this equations, we can write

(B1A1 −B2A2) + (B1A2 +B2A1) j = I

That is BA = I for B1 = B1 +B2j.So A is an invertible bicomplex matrix.

3. Eigenvalues of Bicomplex Matrix

Definition 3.1. Let A ∈Mn (BC) and λ ∈ BC.If λ holds the equation Ax = λx (Ax = xλ)
for some nonzero bicomplex column vector x, then λ is called the left(right) eigenvalue of A.The set of the left

eigenvalues δl (A) = {λ ∈ BC : Ax = λx, for some x 6= 0}is called left spectrum of A.Similarly,the set of the right
eigenvalues δr (A) = {λ ∈ BC : Ax = xλ, for some x 6= 0}is called right spectrum of A.

Theorem 3.1. If A is a bicomplex n× n matrix,then the left and right eigenvalues of A coincide;that is

δl (A) = δr (A) .

Proof. Let λ be a left eigenvalue of A, i.e.,Ax = λx for some x 6= 0.For any bicomplex q 6= 0,we have;(
qAq−1

)
qx =

(
qλq−1

)
qx

Aqx =
(
qλq−1

)
qx

since A is real.Taking 0 6= q ∈ BCsuch that qAq−1 is a complex number and writing qx = y = y1 + y2j,we have

Ay1 = y1qλq
−1and Ay2 = y2qλq

−1

It follows that λ is a right eigenvalue of A.Similarly one can prove that every right eigenvalue is also a left
eigenvalue.

Definition 3.2. Let A ∈Mn (BC) and χA be the complex adjoint matrix of A.We define the q-determinant of A by
|A|q = |χA| .Here |χA| is the usual determinant of χA.It is immediate that,

i)|A|q = |A| .
∣∣Ai

∣∣
ii)|A|q = |A| .

∣∣Aj

∣∣
iii)|A|q 6= |A| .

∣∣Aij

∣∣
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Example 3.1. Let A =

(
1 0
ij i+ j

)
is a bicomplex matrix then |A| = i+ j

Ai =

(
1 0
−ij −i+ j

)
⇒
∣∣Ai

∣∣ = −i+ j

|A|
∣∣Ai

∣∣ = (i+ j) (−i+ j) = −i2 + j2 = 0

Aj =

(
1 0
−ij −i+ j

)
⇒
∣∣Aj

∣∣ = i− j

|A| .
∣∣Aj

∣∣ = (i+ j) (i− j) = i2 − j2 = 0

Aij =

(
1 0
ij −i− j

)
⇒
∣∣Aij

∣∣ = −i− j
|A| .

∣∣Aij

∣∣ = (i+ j) (−i− j) = −i2 − ij − ij − j2 = 2− 2ij

A = A1 +A2j =

(
1 0
0 i

)
+

(
0 0
i 1

)
j

XA =


1 0 0 0
0 i i 1
0 0 1 0
−i −1 0 i

⇒ |XA| = 1.

∣∣∣∣∣∣
i i 1
0 1 0
−1 0 i

∣∣∣∣∣∣ = 1.

∣∣∣∣ i 1
−1 i

∣∣∣∣ = i2 + 1 = 0

|XA| = |A|q = |A|
∣∣Ai

∣∣
|XA| = |A|q = |A|

∣∣Aj

∣∣
|XA| = |A|q 6= |A|

∣∣Aij

∣∣ .
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