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Abstract
Kung-Traub conjecture states that an iterative method without memory for locating the zero of a scalar
equation could achieve convergence order 2d−1, where d is the total number of function evaluations, but
proposed algorithm produces convergence order of r+2, where r is a positive integer with three function
evaluations for solving quadratic equations, which is better than expected maximum convergence order.
Therefore, we show that the conjecture fails for quadratic equations. Also, we extend proposed algorithm
to solving systems which involving quadratic equations. We test our methods with some numerical
experiments including application to one dimensional and two dimensional Bratu problems.
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1. Introduction
It is accepted that a boundary value problems among theory of gases, elasticity and different applied area are for

the most part reduced in one variable nonlinear equations. The zeros of nonlinear equations is also real or complex.
Generally, there are two eccentric of technique acting offered to seek out the zeros of scalar nonlinear equations.
First, direct technique, that don’t seem to be continually applicable to seek out the roots and second, iterative
technique acting supported the idea of consecutive approximations. In this case, the ultimate procedure is to begin
out with one or additional initial approximations to the zero and attain a sequence of iterates whose the limit
converges to the reality solution. Multipoint iterative methods for locating nonlinear equations are of nice sensible
importance since they overcome theoretical limits of one-point methods concerning the order of convergence and
computational potency. Here, we have a tendency to specializing in finding the simple root of nonlinear equations
by an iterative method.

One of the simplest root-finding strategies is Newton’s iteration methodology for finding a nonlinear equation.
The order of convergence of Newton’s methodology 2 and it’s optimal with two function evaluations per iterative
step. In recent years, varied higher order iterative methods are developed and analyzed for finding nonlinear
equations that improve classical strategies similar to Newton’s, Euler’s, Chebyshev-Halley’s methods, etc. Recently,
the order of convergence of the many variants of Newton’s methodology has been improved victimisation constant
range of functional evaluations by suggests that of weight functions [2, 4, 5, 12, 13, 15, 16, 19, 20]. The aim of such
analysis is to develop best methods that satisfy Kung-Traub’s conjecture [13]. Conjecture says that the order of
convergence of any multi-point method without memory with d evaluations cannot exceed the bound 2d−1, the
optimal order.

Let x(k+1) = ψ(x(k)) define an Iterative Function (I.F.).
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Definition 1.1. [22] If the sequence {x(k)} tends to a limit x∗ in such a way that

lim
n→∞

x(k+1) − x∗

(x(k) − x∗)p
= C

for p ≥ 1, then the order of convergence of the sequence is said to be p, and C is known as the asymptotic error
constant. If p = 1, p = 2 or p = 3, the convergence is said to be linear, quadratic or cubic, respectively.
Let ε(k) = x(k) − x∗, then the relation

ε(k+1) = C (ε(k))p +O
(
ε(k)
)p+1

= O
(
ε(k)
)p
. (1.1)

is called the error equation. The value of p is called the order of convergence of the method.

Definition 1.2. [18] The Efficiency Index is given by

EI = p
1
d , (1.2)

where d is the total number of new function evaluations per iteration.

Let x(k+1) be determined by new information at x(k), φ1(x(k)), ..., φi(x(k)), i ≥ 1.
No old information is reused. Thus,

x(k+1) = ψ(x(k), φ1(x
(k)), ..., φi(x

(k))). (1.3)

Then ψ is called a multi-point I.F without memory.
Kung-Traub’s Conjecture [13]
Let ψ be an I.F. without memory with d evaluations. Then

p(ψ) ≤ popt = 2d−1, (1.4)

where popt is the maximum order.
The second order Newton I.F. (2ndNR) is given by

ψ2ndNR(x) = x− n(x), n(x) = f(x)

f ′(x)
. (1.5)

The 2ndNR I.F. is satisfies the Kung-Traub conjecture with d = 2. Thus, EI2ndNR = 1.414. Let us consider two-step
third order I.F. (3rdCM) [7] is given by

ψ3rdCM (x) = x− 1

2
(3− η(x))n(x), η(x) =

f ′(x− 2
3n(x))

f ′(x)
. (1.6)

The 3rdCM I.F. with three function evaluations and it is not satisfies the conjecture. According to conjecture,
not possible to derive an I.F. without memory more than order four with three function evaluations. Recently,
Ahmad [1] and Babajee [3] developed two-step eighth order methods using weight functions, also both are showed
Kung-Traub’s conjecture is fails for solving quadratic equations. They termed as 8thBQIM and it is given below

ψ(8)thBQIM (x) = x−H(η(x), 6)n(x), (1.7)

whereH(η(x), 6) = 1− 3
4 (η(x)−1)+

9
8 (η(x)−1)

2− 135
64 (η(x)−1)3+ 567

128 (η(x)−1)
4− 5103

512 (η(x)−1)5+ 24057
1024 (η(x)−1)6.

Thukral [21], demonstrated that the Kung and Traub conjecture fails for a particular case, that is when the simple
root of a nonlinear equation is equal to zero. Madhu [14], author developed two-step iterative methods with three
function evaluations reaching convergence order r + 3, where r is a positive integer. In this paper, we develop
two-step higher order iterative methods for solving quadratic equations and study Kung-Traub’s conjecture for
proposed methods.

The rest of the paper is organized as follows. Section 2 presents the development of the new methods and its
convergence analysis for scalar equation. In section 3, we extend these methods to systems of quadratic equations
and derived its convergence analysis. Section 4 carries out the tests on the numerical examples and compare the
present methods with Newton’s method and 8thBQIM. Section 5 gives application on 1-D and 2-D bratu problems.
Finally, section 6 gives conclusions on our work.
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2. Developments of the methods

Let us consider the proposed scheme as,

ψ(r+2)thKM (x) = x− 1

2
(3− η(x))H(η(x), r)n(x), (2.1)

where

H(η(x), r) = 1 +

r∑
i=1

ai(η(x)− 1)i,

where ai’s are constants. If r = 6, then the error equation of the I.F. (2.1) is as follows

ψ(x)− x∗ = 1

3
(c2 + 4c2a1)(ε

(k))
2
− 2

9
(c22(−3 + 20a1 + 8a2))(ε

(k))
3

+
2

27
c32(−63 + 150a1 + 152a2 + 32a3)(ε

(k))
4

− 4

81
(c42(−351 + 432a1 + 948a2 + 448a3 + 64a4))(ε

(k))
5

+
8

243
c52(729a1 + 2(−810 + 2367a2 + 1920a3 + 592a4 + 64a5))(ε

(k))
6

+
16

729
c62(1701a1 − 2(10017a2 + 2(−1701 + 6408a3 + 3216a4 + 736a5 + 64a6)))(ε

(k))
7

− 32

2187
(c72(26973 + 25515a1 − 72009a2 − 145098a3 − 106272a4 − 38688a5 − 7040a6))(ε

(k))
8

+O(ε(k))
9
,

where c2 = f ′′(x∗)/2f ′(x∗).

Eliminating the terms in (ε(k))
j
, j = 2, 3, 4, 5, 6, 7 and we obtain the following system of linear equations

4
3a1 = − 1

3 ,
− 40

9 a1 −
16
9 a2 = − 2

3 ,
300
27 a1 +

304
27 a2 +

64
27a3 = 126

27 ,
300
27 a1 +

304
27 a2 +

64
27a3 = 126

27 ,
− 1728

81 a1 − 3792
81 a2 − 1792

81 a3 − 256
81 a4 = − 1404

81 ,
5832
243 a1 +

37872
243 a2 +

30720
243 a3 +

9472
243 a4 +

1024
243 a5 = 12960

243 ,
27216
729 a1 − 320544

729 a2 − 410112
729 a3 − 205824

729 a4 − 47104
729 a5 − 4096

729 a6 = − 108864
729 .

The solutions of system of linear equation can obtained easily from first equation. The solutions are a1 = − 1
4 , a2 = 1,

a3 = − 103
64 , a4 = 29

8 , a5 = − 4175
512 and a6 = 9941

512 .
In this approach, we tend to get a family of higher order I.F.s ((r + 2)ndKM) for solving quadratic equations.

Consider first six members of proposed family (2.1) with their error equation,

1. r = 1: two-step 3rdKM I.F.

H(η(x), 1) = 1− 1

4
(η(x)− 1).

ψ3rdKM (x)− x∗ =
(
16

9
c2

2

)
(ε(k))

3
+O

(
(ε(k))

4
)
.

2. r = 2: two-step 4thKM I.F.

H(η(x), 2) = 1− 1

4
(η(x)− 1) + (η(x)− 1)2.

ψ4thKM (x)− x∗ =
(
103

27
c2

3

)
(ε(k))

4
+O

(
(ε(k))

5
)
.
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3. r = 3: two-step 5thKM I.F.

H(η(x), 3) = 1− 1

4
(η(x)− 1) + (η(x)− 1)2 − 103

64
(η(x)− 1)3.

ψ5thKM (x)− x∗ =
(
928

81
c2

4

)
(ε(k))

5
+O

(
(ε(k))

6
)
.

4. r = 4: two-step 6thKM I.F.

H(η(x), 4) = 1− 1

4
(η(x)− 1) + (η(x)− 1)2 − 103

64
(η(x)− 1)3 +

29

8
(η(x)− 1)4.

ψ6thKM (x)− x∗ =
(
8350

243
c2

5

)
(ε(k))

6
+O

(
(ε(k))

7
)
.

5. r = 5: two-step 7thKM I.F.

H(η(x), 5) = 1− 1

4
(η(x)− 1) + (η(x)− 1)2 − 103

64
(η(x)− 1)3 +

29

8
(η(x)− 1)4 − 4175

512
(η(x)− 1)5.

ψ7thKM (x)− x∗ =
(
79528

729
c2

6

)
(ε(k))

7
+O

(
(ε(k))

8
)
.

6. r = 6: two-step 8thKM I.F.

H(η(x), 6) = 1− 1

4
(η(x)−1)+(η(x)−1)2− 103

64
(η(x)−1)3+ 29

8
(η(x)−1)4− 4175

512
(η(x)−1)5+ 9941

512
(η(x)−1)6.

ψ8thKM (x)− x∗ =
(
779167

2187
c2

7

)
(ε(k))

8
+O

(
(ε(k))

9
)
.

Note that we’ve got obtained associate eighth order with only three function evaluations for solving quadratic
equations.

2.1 Convergence Analysis
Theorem 2.1. Let a sufficiently smooth function f : D ⊂ R → R has a simple root x∗ in the open interval D. Then the
six members of two-step (r + 2)rdKM’s family in (2.1) (r = 1, 2, 3, 4, 5, 6) are of local third to eighth order convergence,
respectively.

Proof. We will prove the third and eighth order convergence, fourth to seventh order I.F.s follow on similar lines.
It’s straightforward to examine that for a quadratic function,

f(x) = f ′(x∗)
[
ε(k) + c2(ε

(k))2
]
,

and
f ′(x) = f ′(x∗)

[
1 + 2c2 ε

(k)
]
.

By Taylor expansion and using computer algebra software MATHEMATICA

n(x) = ε(k) − c2(ε(k))
2
+ 2 c2

2(ε(k))
3
− 4 c2

3(ε(k))
4
+ 8 c2

4(ε(k))
5
− 16 c2

5(ε(k))
6

+ 32 c2
6(ε(k))

7
− 64 c2

7(ε(k))
8
+ 128 c2

8(ε(k))
9
+ ... ,

(2.2)

so that

η(x) = 1− 4

3
c2 ε

(k) + 4 c2
2(ε(k))

2
− 32

3
c2

3(ε(k))
3
+

80

3
c2

4(ε(k))
4
− 64 c2

5(ε(k))
5
+

448

3
c2

6(ε(k))
6

− 1024

3
c2

7(ε(k))
7
+ 768 c2

8(ε(k))
8
+ ... .

(2.3)
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Now,
H(η(x), 1) = 1 + c2 ε

(k) − 3 c2
2(ε(k))

2
+ 8 c2

3(ε(k))
3
+ ... . (2.4)

Using eqs. (2.2), (2.3) and (2.4), we have

1

2
(3− η(x)) H(η(x), 1) n(x) = ε(k) −

(
16

9
c2

2

)
(ε(k))

3
+O

(
(ε(k))

4
)
,

which leads to the error equation for the two-step 3rdKM I.F.
Similarly,

H(η(x), 6) = 1 + c2 ε
(k) − c22(ε(k))

2
+ c2

3(ε(k))
3
− c24(ε(k))

4
+ c2

5(ε(k))
5
− c26(ε(k))

6
− 428c2

7(ε(k))
7
+ ... .

(2.5)
Using eqs. (2.2) and (2.5), we have

1

2
(3− η(x)) H(η(x), 6) n(x) = ε(k) −

(
779167

2187
c2

7

)
(ε(k))

8
+O

(
(ε(k))

9
)
,

which leads to the error equation for the two-step 8thKM I.F.

We next prove the local convergence of the two-step (r + 2)ndKM’s family for any r.

Theorem 2.2. Let a sufficiently smooth function f : D ⊂ R → R has a simple root x∗ in the open interval D. Then the
members of two-step (r + 2)ndKM’s family in (2.1) are of local r + 2 order convergence.

Proof. We prove this result by induction. The case r = 1 corresponds to the 3rdKM I.F. Assume the two-step
(r + 2)thKM family has order of convergence of (r + 2). Then it satisfies the error equation

ψ(r+2)thKM (x)− x∗ = Cr c2
r+1(ε(k))

r+2
+O

(
(ε(k))

r+3
)
, (2.6)

where Cr is the asymptotic error constant. Assume that eq. (2.6) holds for r = m. Now from eq (2.3), we have

η(x)− 1 = −4

3
c2 ε

(k)
(
1− 3c2 ε

(k) + 8c2
2(ε(k))

2
+ ...

)
,

so that

(η(x)− 1)m+1 =

(
−4

3

)m+1

c2
m+1(ε(k))

m+1
(
1− 3c2 ε

(k) + 8c2
2(ε(k))

2
+ ...

)m+1

,

=

(
−4

3

)m+1

c2
m+1(ε(k))

m+1

(
1 +O

(
ε(k)
))
. (2.7)

For the case r = m+ 1,

ψ(m+3)rdKM (x)− x∗,

= x− 1

2
(3− η(x)) n(x) H(η(x),m+ 1)− x∗,

= x− 1

2
(3− η(x))n(x) H(η(x),m)− x∗ − am+1

1

2
(3− η(x))n(x) (η(x)− 1)m+1,

= ψ(m+2)thKM (x)− x∗ − am+1
1

2
(3− η(x)) n(x) (η(x)− 1)m+1,

= Cm c2
m+1(ε(k))

m+2
− am+1

(
−4

3

)m+1

c2
m+1(ε(k))

m+2
+O

(
(ε(k))

m+3
)

using eqs. (2.2), (2.3), (2.6) and (2.7),

=

(
Cm − am+1

(
−4

3

)m+1
)
c2
m+1(ε(k))

m+2
+O

(
(ε(k))

m+3
)
,

which shows that the two-step (m+ 3)rdKM family has (m+ 3)rd order of convergence if we choose

am+1 = Cm

(
−3

4

)m+1

. (2.8)
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From eq. (2.8), we can obtain higher order I.F. if we know the asymptotic error constant of the previous I.F. For
example, for the two-step 3rdKM I.F., C1 = 16

9 and from eq. (2.8),

a2 = C1

(
−3

4

)2

= 1,

and we can obtain the 4thKM I.F. Similarly, for the two-step 8thKM I.F., C6 = 779167
2184 and from eq. (2.8),

a7 = C6

(
−3

4

)7

= −779167

16384
,

and we can obtain the two-step 9thKM I.F. with

H(η(x), 7) = 1− 1

4
(η(x)− 1) + (η(x)− 1)2 − 103

64
(η(x)− 1)3 +

29

8
(η(x)− 1)4 − 4175

512
(η(x)− 1)5

+
9941

512
(η(x)− 1)6 − 779167

16384
(η(x)− 1)7.

From Theorem 2.2, we conclude that we can have a family of order r+2, r = 1, 2, ...with only 3 function evaluations.
Remark: The Efficiency Index of the two-step (r + 2)thKM family is

EI = (r + 2)
1
3 , r ≥ 1. (2.9)

Hence, we conclude that this is the one having highest efficiency index. Next section, we extend proposed methods
to systems.

3. Extension to systems of equations

Let us consider, system of nonlinear equations f(x) = 0,where f(x) = (f1(x), f2(x), ..., fn(x))
T , x = (x1, x2, ..., xn)

T ,
fi : Rn → R,∀i = 1, 2, . . . , n defined as

fi(x) = bi +

n∑
l=1

n∑
m=1

bl,m xlxm, bi, bl,m, i, l,m = 1, ..n, are constants.

and f : D ⊂ Rn → Rn is a smooth map and D is an open and convex set, where we assume that x∗ = (x∗1, x
∗
2, ..., x

∗
n)
T

is a root of the system and x(0) =
(
x
(0)
1 , x

(0)
2 , ..., x

(0)
n

)T
is an initial point sufficiently close to x∗. Let us define the

two-step (r + 2)thKM’s family for systems of quadratic equations as:

ψ(r+2)thKM (x) = x− 1

2
(3− η(x))H(η(x), r) n(x), (3.1)

where
n(x) = f ′(x)−1f(x),

y(x) = x− 2

3
n(x),

η(x) = f ′(x)−1f ′ (y(x)) ,

H(η(x), r) = I+

r∑
i=1

ai(η(x)− I)i, I is the identity matrix.

Let us define
c2 =

1

2
[f ′(x∗)]−1f (2)(x∗), ε(k) = x(k) − x∗.

Using the notations in [9], it is noted that c2ε(k) ∈ L(Rn). The error at the (k + 1)th iteration is ε(k+1) = L(ε(k))
p
+

O
(
(ε(k))

p+1
)

, where L is a p-linear function L ∈ L(Rn × · · · × Rn,Rn), is called the error equation and p is the order

of convergence. Observe that (ε(k))
p

is (ε(k), ε(k), · · · , ε(k)). The first 6 members of (r + 2)thKM’s family in (3.1) with
their error equation are
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1. r = 1: two-step 3rdKM I.F.

H(η(x), 1) = I− 1

4
(η(x)− I).

ψ3thKM (x)− x∗ =

(
16

9
c2

2

)
(ε(k))

3
+O

(
(ε(k))

4
)
.

2. r = 2: two-step 4thKM I.F.

H(η(x), 2) = I− 1

4
(η(x)− I) + (η(x)− I)2.

ψ4thKM (x)− x∗ =

(
103

27
c2

3

)
(ε(k))

4
+O

(
(ε(k))

5
)
.

3. r = 3: two-step 5thKM I.F.

H(η(x), 3) = I− 1

4
(η(x)− I) + (η(x)− I)2 − 103

64
(η(x)− I)3.

ψ5thKM (x)− x∗ =

(
928

81
c2

4

)
(ε(k))

5
+O

(
(ε(k))

6
)
.

4. r = 4: two-step 6thKM I.F.

H(η(x), 4) = I− 1

4
(η(x)− I) + (η(x)− I)2 − 103

64
(η(x)− I)3 +

29

8
(η(x)− I)4.

ψ6thKM (x)− x∗ =

(
8350

243
c2

5

)
(ε(k))

6
+O

(
(ε(k))

7
)
.

5. r = 5: two-step 7thKM I.F.

H(η(x), 5) = I− 1

4
(η(x)− I) + (η(x)− I)2 − 103

64
(η(x)− I)3 +

29

8
(η(x)− I)4 − 4175

512
(η(x)− I)5.

ψ7thKM (x)− x∗ =

(
79528

729
c2

6

)
(ε(k))

7
+O

(
(ε(k))

8
)
.

6. r = 6: two-step 8thKM I.F.

H(η(x), 6) = I− 1

4
(η(x)− I) + (η(x)− I)2 − 103

64
(η(x)− I)3 +

29

8
(η(x)− I)4 − 4175

512
(η(x)− I)5

+
9941

512
(η(x)− I)6.

ψ8thKM (x)− x∗ =

(
779167

2187
c2

7

)
(ε(k))

8
+O

(
(ε(k))

9
)
.

3.1 Convergence Analysis
Theorem 3.1. Let f : D ⊆ Rn −→ Rn be twice Frechet differentiable at each point of an open convex neighborhood D of
x∗ ∈ Rn, that is a solution of the quadratic system f(x) = 0. Let us suppose that f ′(x) is continuous and nonsingular in
x∗, and x(0) is close enough to x∗. Then the sequence {x(k)}k≥0 obtained using the iterative expressions (3.1), r = 1, 2, ..., 6
converge to x∗ with order 3 to 8, respectively.

Proof:
We prove now for r = 6 case. The other cases follows similar lines. Since f is a quadratic function of several
variables, we have

f(x(k)) = f ′(x∗)
[
ε(k) + c2(ε

(k))
2
]
, (3.2)

and
f ′(x(k)) = f ′(x∗)

[
I+ 2c2ε

(k)
]
. (3.3)
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f ′(x(k))−1 =

[
I− 2c2ε

(k) + 4c2
2(ε(k))

2
− 8c2

3(ε(k))
3
+ 16c2

4(ε(k))
4
− 32c2

5(ε(k))
5

+ 64c2
6(ε(k))

6
− 128c2

7(ε(k))
7
+ 256c2

8(ε(k))
8
...

]
[f ′(x∗)]−1.

(3.4)

Using eq. (3.2) and (3.4), we have

u(x(k)) = ε(k) − c2(ε
(k))

2
+ 2c2

2(ε(k))
3
− 4c2

3(ε(k))
4
+ 8c2

4(ε(k))
5
− 16c2

5(ε(k))
6

+ 32c2
6(ε(k))

7
− 64c2

7(ε(k))
8
+ ... ,

(3.5)

and the expression for y(x(k)) is given by

y(x(k)) = x∗ +
1

3
ε(k) +

2

3
c2(ε

(k))
2
− 4

3
c2

2(ε(k))
3
+

8

3
c2

3(ε(k))
4
− 16

3
c2

4(ε(k))
5
+

32

3
c2

5(ε(k))
6

− 64

3
c2

6(ε(k))
7
+

128

3
c2

7(ε(k))
8
+ ... .

The Taylor expansion of Jacobian matrix f ′(y(x(k))) is then given by

f ′(y(x(k))) = f ′(x∗)
[
I+ 2c2(y(x

(k))− x∗)
]

= f ′(x∗)
[
I+

2

3
c2(ε

(k)) +
4

3
c2

2(ε(k))
2
− 8

3
c2

3(ε(k))
3
+

16

3
c2

4(ε(k))
4
− 32

3
c2

5(ε(k))
5

+
64

3
c2

6(ε(k))
6
− 128

3
c2

7(ε(k))
7
+

256

3
c2

8(ε(k))
8
+ ....

]
.

Therefore, using eq. (3.4), we obtain

η(x(k)) = [f ′(x(k))]−1f ′(y(x(k)))

= I− 4

3
c2(ε

(k)) + 4c2
2(ε(k))

2
− 32

3
c2

3(ε(k))
3
+

80

3
c2

4(ε(k))
4
− 64c2

5(ε(k))
5

+
448

3
c2

6(ε(k))
6
− 1024

3
c2

7(ε(k))
7
+ 768c2

8(ε(k))
8
+ ... .

(3.6)

so that
H(η(x), 6) = I+ c2(ε

(k))− c2
2(ε(k))

2
+ c2

3(ε(k))
3
− c2

4(ε(k))
4
+ c2

5(ε(k))
5

− c2
6(ε(k))

6
− 428c2

7(ε(k))
7
+ ... ..

(3.7)

Using eq. (3.5), (3.6) and (3.7), we have, after simplifications,

x− 1

2
(3− η(x))H(η(x), 6) u(x(k)) = x∗ +

779167

2187
c2

7(ε(k))
8
+ ... .

Theorem 3.2. Let f : D ⊆ Rn −→ Rn be twice Frechet differentiable at each point of an open convex neighborhood D of
x∗ ∈ Rn, that is a solution of the quadratic system f(x) = 0. Let us suppose that f ′(x) is continuous and nonsingular in
x∗, and x(0) is close enough to x∗. Then the sequence {x(k)}k≥0 obtained using the iterative expressions (3.1), r = 1, 2, ...
converges to x∗ with order r + 2 with the error equation

ψ(r+2)thKM (x)− x∗ = Cr c2
r+1(ε(k))

r+2
+ ... . (3.8)

The will prove by induction and follows on similar lines. Similarly as in the case of scalar, we are able to get
higher order I.F. for systems if we know the asymptotic error constant of the previous I.F. using

ar+1 = Cr

(
−3

4

)r+1

, r = 1, 2, ... .
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4. Numerical Experiments

4.1 Scalar equation
This section deals with numerical comparisons in the MATLAB computer code rounding to 1000 significant

digits. The criteria to stopping used for the iterative process |x(k+1) − x(k)| < 10−50. The number of iterations for
convergence based on criteria is denoted by N . The computational order of convergence (ρ) for successive zero is
given by

ρ =
ln |(x(N) − x(N−1)/(x(N−1) − x(N−2))|

ln |(x(N−1) − x(N−2))/(x(N−2) − x(N−3))|
.

We consider the Test problem 1 (TP1) of finding the real zero of the quadratic function f(x) = x2 + 4x − 1 to
compare the proposed methods. We choose x(0) = 1. The results in Table 1 shows that, the order of the (r+ 2)ndKM
I.F. (r=1,2,3,4,5,6), methods converge in less number of iterations. The computational order of convergence (ρ)
confirming that the Kung-Traub’s conjecture fails for quadratic equations. By analysis of TP1, our method 8thKM is
found to be superior to the methods of 2ndNR and 8thBQIM.

4.2 Systems of Nonlinear equations
This section deals with numerical comparisons in the MATLAB computer code rounding to 1000 significant

digits. The criteria to stopping used for the iterative process

‖x(k+1) − x(k)‖2 < 10−100. (4.1)

The approximated computational order of convergence pc given by (see [10])

pc ≈
log (‖x(k+1) − x(k)‖2/‖x(k) − x(k−1)‖2)

log (‖x(k) − x(k−1)‖2/‖x(k−1) − x(k−2)‖2)
. (4.2)

We consider the Test Problem 2 (TP2)
x21 + x22 − 7 = 0,
x1 − x2 + 1 = 0.

(4.3)

Using the substitution method, eq. (4.3) reduces to the quadratic equation x22 − x2 − 3 = 0 whose positive root is
given by x∗2 = 1+

√
13

2 = 2.302775638. Therefore x∗1 = x∗2 − 1 =
√
13
2 = 1.302775638. We use x(0) = (1, 2)T as initial

vector and apply proposed methods (3.1), r = 1, 2, ..., 6 to locate the approximate solutions of eq. (4.3). Table 2
shows that our method 8thKM is converge less number of iterations with least error than 2ndNR and 8thBQIM.
Hence, Proposed methods are found to be superior to the methods of 2ndNR and 8thBQIM.
We next consider the Test Problem 3 (TP3) [8]

x21 + x22 − 1 = 0,
x21 − x22 − 0.5 = 0.

(4.4)

Equation (4.4) reduces to the simple quadratic equation 2x22 − 1.5 = 0 by the elimination method, whose root is
given by x∗2 =

√
3
2 = 0.866025403 and therefore x∗1 = 1

2 . We choose initial point far from the root, x(0) = (2, 3)T and
apply our methods (3.1), r = 1, 2, ..., 6 to locate the approximate solutions of eq. (4.4). In Table 3, we observe that
the methods take more iterations to converge when initial point is far from the root. By analysis TP3 problem, our
method 8thKM is converge with least error than 2ndNR and 8thBQIM. Therefore, proposed methods are found to be
superior to the methods of 2ndNR and 8thBQIM.
We next consider the Test Problem 4 (TP4)[11].

x2x3 + x4(x2 + x3) = 0,
x1x3 + x4(x1 + x3) = 0,
x1x2 + x4(x1 + x2) = 0,
x1x2 + x1x3 + x2x3 = 1.

(4.5)

Apply the substitution method in eq. (4.5) reduces to the scalar nonlinear equation 3x21 − 1 = 0 whose real root is
given by x∗1 = 1√

3
= 0.577350269. Therefore x∗2 = x∗3 = x∗1 = 1√

3
= 0.577350269.

and x∗4 = −x
∗
1

2 = − 1
2
√
3
= −0.288675134. Using x(0) = (0.5, 0.5, 0.5,−0.25)T as initial point and we apply our
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Existing Methods Members of Proposed Methods
error 2ndNR 8thBQIM 3rdKM 4thKM 5thKM 6thKM 7thKM 8thKM
|x1 − x0| 0.6667 0.7638 0.7426 0.7583 0.7620 0.7633 0.7637 0.7638
|x2 − x1| 0.0952 9.5e-005 0.0214 0.0056 0.0019 6.4e-004 2.3e-004 8.5e-005
|x3 − x2| 0.0020 8.3e-035 8.4e-007 4.3e-011 7.0e-016 1.4e-021 4.9e-028 2.8e-035
|x4 − x3| 9.1e-007 2.8e-275 5.4e-020 1.4e-043 5.0e-078 1.6e-127 1.0e-193 4.0e-279
|x5 − x4| 1.8e-013 - 1.4e-059 1.9e-173 - - - -
|x6 − x5| 7.9e-027 - - - - - - -
|x7 − x6| 1.4e-053 - - - - - - -

ρ 1.99 7.99 2.99 3.99 4.99 5.99 6.99 7.99

Table 1. Results of TP1 for the 2ndNR, 8thBQIM with new families of I.F.s (r = 1,2,3,4,5,6)

Existing Methods Members of Proposed Methods
error 2ndNR 8thBQIM 3rdKM 4thKM 5thKM 6thKM 7thKM 8thKM

‖x(1) − x(0)‖2 0.4714 0.4282 0.4203 0.4299 0.4276 0.4284 0.4281 0.4282
‖x(2) − x(1)‖2 0.0429 3.0e-005 0.0079 0.0017 5.7e-004 1.8e-004 6.5e-005 2.3e-005
‖x(3) − x(2)‖2 3.6e-004 3.9e-039 3.3e-008 2.4e-013 1.0e-018 4.4e-025 3.3e-032 4.0e-040
‖x(4) − x(3)‖2 2.5e-008 3.0e-310 2.5e-024 1.0e-052 2.2e-092 7.4e-149 2.8e-223 2.6e-318
‖x(5) − x(4)‖2 1.2e-016 - 1.1e-072 3.4e-210 0 - - -
‖x(6) − x(5)‖2 3.1e-033 - 1.1e-217 - - - - -
‖x(7) − x(6)‖2 1.9e-066 - - - - - - -
‖x(8) − x(7)‖2 7.4e-133 - - - - - - -

pc 2.00 8.12 3 3.99 5 6.14 7.16 8.16

Table 2. Results of TP2 for the 2ndNR, 8thBQIM with new families of I.F.s (r = 1,2,3,4,5,6)

Existing Methods Members of Proposed Methods
error 2ndNR 8thBQIM 3rdKM 4thKM 5thKM 6thKM 7thKM 8thKM

‖x(1) − x(0)‖2 1.6694 2.5146 2.0799 2.2689 2.3649 2.4334 2.4824 2.5197
‖x(2) − x(1)‖2 0.7437 0.2477 0.5974 0.4729 0.3931 0.3291 0.2805 0.2424
‖x(3) − x(2)‖2 0.2824 1.5e-004 0.0883 0.0242 0.0076 0.0021 5.5e-004 1.2e-004
‖x(4) − x(3)‖2 0.0681 1.7e-028 8.9e-004 1.1e-006 2.7e-010 3.1e-015 1.7e-021 2.7e-029
‖x(5) − x(4)‖2 0.0046 3.9e-220 1.2e-009 6.1e-024 1.8e-047 3.3e-086 4.4e-144 1.3e-226
‖x(6) − x(5)‖2 2.1e-005 - 3.6e-027 5.4e-093 2.4e-233 0 - -
‖x(7) − x(6)‖2 4.4e-010 - 8.4e-080 0 - - - -
‖x(8) − x(7)‖2 1.9e-019 - 1.0e-237 - - - - -
‖x(9) − x(8)‖2 3.9e-038 - - - - - - -
‖x(10) − x(9)‖2 1.5e-075 - - - - - - -
‖x(11) − x(10)‖2 2.3e-150 - - - - - - -

pc 2.00 7.50 3.00 4.00 4.99 6.00 6.98 7.60

Table 3. Results of TP3 for the 2ndNR, 8thBQIM with new families of I.F.s (r = 1,2,3,4,5,6)
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Existing Methods Members of Proposed Methods
error 2ndNR 8thBQIM 3rdKM 4thKM 5thKM 6thKM 7thKM 8thKM

‖x(1) − x(0)‖2 0.1502 0.1394 0.1379 0.1397 0.1394 0.1395 0.1394 0.1394
‖x(2) − x(1)‖2 0.0107 1.4e-006 0.0015 2.5e-004 6.2e-005 1.5e-005 4.0e-006 1.1e-006
‖x(3) − x(2)‖2 5.5e-005 3.9e-047 1.3e-009 1.6e-015 5.9e-022 1.2e-029 2.5e-038 4.6e-048
‖x(4) − x(3)‖2 1.4e-009 0 1.1e-027 3.2e-060 4.7e-107 2.9e-174 8.6e-264 0
‖x(5) − x(4)‖2 1.0e-018 - 5.5e-082 4.4e-239 - - - -
‖x(6) − x(5)‖2 5.1e-037 - 7.1e-245 - - - - -
‖x(7) − x(6)‖2 1.2e-073 - - - - - - -
‖x(8) − x(7)‖2 7.9e-147 - - - - - - -

pc 2.00 8.11 2.99 4.01 4.99 6.14 7.10 8.11

Table 4. Results of TP4 for the 2ndNR, 8thBQIM with new families of I.F.s (r = 1,2,3,4,5,6)

methods (3.1), r = 1, 2, ..., 6 to locate the approximate solutions of eq. (4.5). In Table 4, shows that as the convergence
order of the algorithm increase the methods converge in less number of iterations with least error. By analysis TP4
problem, our method 8thKM is converge with least error than 2ndNR and 8thBQIM. Hence, Proposed methods are
found to be superior to the methods of 2ndNR and 8thBQIM.

5. Application

5.1 1-D Bratu Problem
The one dimensional Bratu problem [6] is given by

d2U

dx2
+ λ expU(x) = 0, λ > 0, 0 < x < 1, (5.1)

with boundary conditions U(0) = U(1) = 0. The 1-D Bratu problem has two known, bifurcated, actual solutions for
values of λ < λc, one solution for λ = λc and no solution for λ > λc.

The critical value of λc is simply 8(η2 − 1), where η is the fixed point of the hyperbolic cot function coth (x). The
exact solution to equation (5.1) is known and can be presented here as

U(x) = −2 ln

[
cosh (x− 1

2 )
θ
2

cosh
(
θ
4

) ]
, (5.2)

where θ may be a constant to be determined, that satisfies the boundary conditions and is fastidiously chosen and
assumed to be the answer of the equation (5.1). Employing a similar procedure as in [17], we tend to show the way

to acquire the crucial worth of λ. Substitute equation (5.2) in equation (5.1), simplify and collocate at the point x =
1

2
because its the centre of the interval. Selected another point, however low order of approximations are probably to
being higher suppose the collocation points are distributed somewhat equally throughout the region. Then, we
have

θ2 = 2λ cosh2
(
θ

4

)
. (5.3)

Differentiating equation (5.3) with respect to θ and setting
dλ

dθ
= 0, the critical value λc satisfies

θ =
1

2
λc cosh

(
θ

4

)
sinh

(
θ

4

)
. (5.4)

By eliminating λ from equations (5.3) and (5.4), we have the value of θc for the critical λc satisfying

θc
4

= coth

(
θc
4

)
(5.5)

for which θc = 4.798714560 can be obtained using an iterative method. We then get λc = 3.513830720 from Equation
(5.3). Figure 1 illustrates this critical value of λ. The finite dimensional problem using standard finite difference
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Figure 1. Variation of θ for different values of λ.

scheme is given by

Fj(Uj) =
Uj+1 − 2Uj + Uj−1

h2
+ λ expUj = 0, j = 1..N − 1 (5.6)

with distinct boundary conditions U0 = UN = 0 and also the step size h = 1/N . There are square measure N − 1
unknowns (n = N − 1). The Jacobian may be a sparse matrix and its typical range of nonzero per row is 3. Its
noted that the finite difference scheme converges to the lower solution of the 1-D Bratu using the initial vector
U (0) = (0, 0, .., 0)T .

We use N = 101 (n = 100) and check for 350 λ’s in the interval (0, 3.5] (interval breadth = 0.01). For every λ, we
let Mλ be the minimum number of iterations for which ‖U (k+1)

j − U (k)
j ‖2 < 1e− 13, where the approximation U (k)

j

is calculated correct to fourteen decimal places. Let Mλ be the mean of iteration number for the 350 λ’s.

Table 5. Comparison of number of λ’s (out of 350 λ’s) converging for 1-D Bratu problem
Method M = 2 M = 3 M = 4 M = 5 M > 5 Mλ

2ndNR 0 12 114 143 81 4.92
8thBQIM 4 257 86 2 1 3.26
3rdKM 1 139 170 35 5 3.73
4thKM 4 231 104 10 1 3.35
5thKM 4 250 90 6 0 3.28
6thKM 4 254 88 1 3 3.27
7thKM 4 256 87 1 2 3.26
8thKM 4 256 87 1 2 3.27

Table 5 give the results for the 1-D Bratu problem, where M denoting number of iterations for convergence. It
can be observed from the methods considered in Table 5, proposed methods are most efficient methods than 2ndNR
method, because it has the lowest mean iteration number.

5.2 2-D Bratu problem
We consider the solution of the Bratu problem in two-dimensions

∂2U

∂x2
+
∂2U

∂y2
+ λexp(U) = 0, x, y ∈ D = [0, 1]× [0, 1] (5.7)

subject to the boundary conditions
U(x, y) = 0, x, y ∈ D. (5.8)

The 2-D Planar Bratu problem has 2 known, bifurcated, actual solutions for values of λ < λc, one solution for λ = λc
and no solutions for λ > λc. The exact solution to eq. (5.7) is known and can be presented here as

U(x, y) = 2 ln

[
cosh ( θ4 ) cosh

(
(x− 1

2 )(y −
1
2 )θ
)

cosh
(
(x− 1

2 )
(
θ
2

))
cosh

(
(y − 1

2 )
(
θ
2

))], (5.9)
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Figure 2. Variation of θ for different values of λ.

where θ may be a constant and to be determined, which satisfies the boundary conditions and is carefully chosen
and assumed to be the solution of the equation (5.7). The following procedure found in [17], for how to obtain the

critical value of λ. Substituting eq. (5.9) in (5.7), simplifying and collocating at the point x =
1

2
and y =

1

2
because it

is the midpoint of the interval. Another point could be chosen, but low-order approximations are likely to be better
if the collocation points are distributed somewhat evenly throughout the region. Then, we have

θ2 = λ cosh2
(
θ

4

)
. (5.10)

Differentiating eq. (5.10) with respect to θ and setting
dλ

dθ
= 0, the critical value λc satisfies

θ =
1

4
λc cosh

(
θ

4

)
sinh

(
θ

4

)
. (5.11)

By eliminating λ from eqs.(5.10) and (5.11), we have the value of θc for the critical λc satisfying

θc
4

= coth

(
θc
4

)
(5.12)

and θc = 4.798714561. We then get λc = 7.027661438 from eq. (5.11). Fig. (2) illustrates this critical value of λc. The
differential equation (5.7) is usually discretized by using the finite-difference five-point formula with the step size h,
the resulting nonlinear equations are

F (Ui,j) = −(4Ui,j − λh2exp(Ui,j)) + Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 (5.13)

where Ui,j is U at (xi, yj), xi = ih, yj = jh, i, j = 1, 2, ...N . Equation (5.13) represents a set of N × N nonlinear
equations in Ui,j which are then solved by using iterative methods. We use N = 10 and N = 20 for test 700 λ’s in
the interval (0, 7] (interval width = 0.01). For each λ, we let Mλ be the minimum number of iterations for which
‖U (k+1)

i,j − U (k)
i,j ‖2 < 1e− 11, where the approximation U (k)

i,j is calculated correct to 14 decimal places. Let Mλ be the
mean of iteration number for the 700 λ’s.

Tables 6, 7 gives the results for 2-D Bratu problem. It can be observed from the proposed methods are considered
in Table 6, 7, all the grid points are convergent in two and three iterations only. The proposed methods are most
efficient methods than 2ndNR, in both the case N = 10 and N = 20 because it has the lowest mean iteration number.
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Table 6. Comparison of number of λ’s for 2-D Bratu problem for N=10
Method M = 2 M = 3 M = 4 M = 5 Mλ

2ndNR 0 101 520 79 3.96
8thBQIM 43 657 0 0 2.93
3rdKM 18 606 76 0 3.08
4thKM 43 657 0 0 2.93
5thKM 43 657 0 0 2.93
6thKM 43 657 0 0 2.93
7thKM 43 657 0 0 2.93
8thKM 43 657 0 0 2.93

Table 7. Comparison of number of λ’s for 2-D Bratu problem for N=20
Method M = 2 M = 3 M = 4 M = 5 Mλ

2ndNR 1 212 487 0 3.69
8thBQIM 89 611 0 0 2.87
3rdKM 35 665 0 0 2.95
4thKM 89 611 0 0 2.87
5thKM 89 611 0 0 2.87
6thKM 89 611 0 0 2.87
7thKM 89 611 0 0 2.87
8thKM 89 611 0 0 2.87

6. Conclusion
In this work, we have developed a family of iterative methods with three functions evaluations reaching

convergence order more than 4 for solving scalar quadratic equations. Furthermore, we have a tendency to show
that it is possible to develop methods with same function evaluations of order r + 2. Also, we have extended
these methods to systems for solving quadratic equations. We have showed that Kung-Traub’s conjecture fails for
quadratic functions. The most advantages of the proposed schemes are the following to solve systems: (i) they
are doing not use second order Frechet derivative, (ii) measure only one inverse of first order Frechet derivative
and (iii) measure less number of linear systems per iteration. The proposed new methods and their theoretical
results are validated through examples whose results are tabulated which gives better results among compared
existing methods. For practical applications, the new methods are verified on 1-D, 2-D Bratu problems which gives
encouraging results compared to existing methods.
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