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Abstract: The workspace of the robots can be expressed in terms of the Clifford algebra 

of the dual quaternions. In this paper, after a review of some basic properties of the 

generalized dual quaternions we shall use them to kinematical modeling of the robotics 

in a generalized space. 
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1 INTRODUCTION 

Dual quaternions are powerful mathematical tools for the spatial analysis of rigid body motions. 

The dual quaternions introduced by Clifford in his seminal paper “Preliminary sketch of bi-

quaternions” [4] and later on the work of Study [26] who utilized the dual numbers to represent 

the position of two skew lines in space. The use of dual numbers, dual numbers matrix and dual 

quaternions in instantaneous spatial kinematics is considered in [28,29]. In [1] the algebra of 

dual quaternions is developed by using the Hamilton operators. Properties of these operators are 

used to find some mathematical expressions for the screw motion. The screw motions in 

Minkowski 3-space 
3

1R  by using the dual split quaternions are studied in [13]. The dual number 

transformations in the area of robotics for the treatment of the manipulator kinematics are 

studied in [8] and by employing the dual matrices the closed-form solutions for the various 

types of robot manipulators are considered in [23]. The dual form of the Jacobian of a 

manipulator by using the dual orthogonal matrices is computed in [21]. Funda and Paul [7] have 

carried out a computational analysis of screw transformations in robotics. They have showed 

that the dual quaternions represent simultaneously the rotation and translation transformations 

for dealing with the kinematics of robot chains more efficiently than any other approach. A 

closed-form solution of the inverse kinematics of a 6 degree of freedom robot manipulator in 

terms of line transformations using the dual quaternions is computed in [12]. The 3D rigid body 

motion transformation of point, lines and planes useful for computer vision and robotics is 

investigated by using the algebra of motors in [3]. Also, the kinematic control laws for the free 

rigid bodies, by using the dual quaternions are given in [10]. A brief introduction of the 

generalized quaternions is provided in [5, 24]. Recently, we have studied the generalized 

quaternions, and have given some of their algebraic properties [15,16]. A matrix corresponding 

to Hamilton operators that is defined for generalized quaternions has determined a Homothetic 

motion in [17]. Furthermore, in [14] the authors have showed how that these operators can be 

used to described rotation in. In [15], it is demonstrated that how a unit generalized quaternion 

can be used to described rotation in 4-dimensional space. In [22], the dual generalized 

quaternions are defined and some of their algebraic properties are provided. Also, the De-

Moivre's and Euler's formulas for these quaternions are studied. 

 

In this paper, after reviewing some of the algebraic properties of the dual generalized 

quaternion, it is shown that this quaternion is a screw transformation in the generalized space
3Eαβ . Therefore, we use the screw displacement formulated in terms of the dual generalized 

quaternions to represent the kinematical equations of the robot. 

2 PRELIMINARIES 

In this section, we give a brief summary of the generalized inner product, dual numbers and 

generalized quaternions. For detailed information about these quaternions, we refer the reader to 

[15] and [16]. 

 

Definition 2.1. For the vectors 
1 2 3( , , )x x x x=

r
and 

1 2 3( , , ),y y y y=
r

the generalized inner 

product on 
3R  is given by 

1 1 2 2 3 3( , ) ,g x y x y x y x yα β αβ= + +
r r

                                                                                          (1) 

where α and β are positive numbers.  
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If 0α >  and 0β < then ( , )g x y
r r

is called the generalized Lorentzian inner product. The vector 

space on 
3R  equipped with the generalized inner product is called 3-dimensional generalized 

space and denoted by 3
Eαβ . The cross product in 

3Eαβ is defined by 

2 3 3 2 3 1 1 3 1 2 2 1( ) ( ) ( ) .x y x y x y i x y x y j x y x y kβ α× = − + − + −
rr rr r

                                                     (2) 

 

Special cases: 

  1. If 1,α β= =  then 
3Eαβ  is an Euclidean 3-space 3E .  

  2. If 1, 1α β= = − , then 
3Eαβ  is a non-Euclidean 3-space

3

2E . 

 

Definition 2.2.  A generalized quaternion q is defined as 

0 1 2 31q a a i a j a k= + + +
rr r

                                                                                                     (3) 

where 
0 1 2, ,a a a  and 

3a  are real numbers and 1, , ,i j k
rr r

 of q may be interpreted as the four 

basic vectors of Cartesian set of coordinates; and they satisfy the non-commutative 

multiplication rules 
2 2 2, , ,

k , = = ,

i j k

ij ji jk i kj

α β αβ

β

= − = − = −

= = − −

rr r

r r rrr rr r r r                                                                                                  (4) 

and  

= = , , R.ki j ikα α β− ∈
r rr r r

                                                                                                       (5) 

The set of all generalized quaternions is denoted by α βΗ . A generalized quaternion q  is a 

sum of a scalar and a vector, called scalar part, 
0 ,qS a=  and vector part 1 2 3 .qV a i a j a k= + +

rr r r
 

Therefore αβΗ  is form a 4-dimensional real space which contains the real axis and a 3-

dimensional real linear space 
3E ,αβ  so that, 

3R E .αβ αβΗ = ⊕  

 

Definition 2.3. Each element of the set  

{ : , R & 0}D A a a a aε ε∗ ∗= = + ∈ ≠                                                                                    (6) 

is called a dual number. Summation and multiplication of two dual numbers are defined as 

similar to the complex numbers but it is must be forgotten that 2 0.ε = Thus, D is a 

commutative ring with a unit element [18]. 

3 GENERALIZED DUAL QUATERNION 

Definition 3.1. A generalized dual quaternion Q is an expression of form 

0 1 2 3Q A A i A j A k= + + +
rr r

                                                                                                       (7) 

where 
0 1 2, ,A A A  and 

3A  are real numbers and , ,i j k
rr r

 are quaternionic units which satisfy in 

the above equalities. As a consequence of this definition, a generalized dual quaternion Q  can 

also be written as; 
* ,Q q qε= +                                                                                                                         (8) 

where *,q q αβ∈Η are real and pure generalized dual quaternion components, respectively. It is 

useful, therefore, to define the following terms: 
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The scalar part of Q  is 
0.QS A=  

The dual vector part of Q is 
1 2 3 .

Q
V A i A j A k= + +

rr r r
 

If 0,QS = thenQ is called pure generalized dual quaternion, we may be called its generalized 

dual vector. The set of all generalized dual vectors denoted by 3 .Dαβ
  

The Hamilton conjugate of Q is 

*

,

.

Q QQ S V

q qε

= −

= +

r

                                                                                                                          (9) 

The norm of Q is 

2 2 2 2

1 2 3

2 2 2 2

0 1 2 3

* * * *

0 0 1 1 2 2 3 3

* *

( )

2 ( )

( ).

Q
N QQ QQ A A A A

a a a a

a a a a a a a a

qq qq q q

α β αβ

α β αβ

ε α β αβ

ε

= = = + + +

= + + + +

+ + +

= + +

o

                                                                                (10) 

The norm of a generalized dual quaternion, in general, is not a real number but a dual number. 

The reciprocal of Q is 1 .
Q

Q
Q

N

− = The reciprocal of a generalized dual quarternion Q exists if 

and only if 0.QN ≠  

Unit generalized dual quaternion: 

1.QN =                                                                                                                             (11) 

The generalized quaternion multiplication is, in general, not commutative. If 
0Q A= +

1 2 3Ai A j A k+ +
rr r

and
0 1 2 3P B B i B j B k= + + +

rr r
 are the two generalized dual quarternions and let 

R QP=  then R is given by 

0 0 1 1 2 2 3 3 0 1 1 0 2 3 3 2

0 1 1 0 2 3 3 2 0 3 1 2 2 1 3 0

* *

 ( , )  

( ) ( )

( ) ( )

( ).

Q P Q P Q P P Q Q P
R S S g V V S V S V V V

A B A B A B A B A B A B A B A B i

A B A B A B A B j A B A B A B A B k

qp qp q p

α β αβ β β

β β

ε

= − + + + ×

= − − − + + − +

+ + + − + + − +

= + +

r r r r r r

r

rr
                                    (12) 

The generalized quaternion product can be described by a matrix-vector product as 

0 1 2 3 0

1 0 3 2 1

2 3 0 1 2

3 2 1 0 3

.

A A A A B

A A A A B
QP

A A A A B

A A A A B

α β αβ

β β

α α

− − −   
   −   =
   −
   

−                                                                             (13)

 

Theorem 3.1. (E. Study map) There exists a one-to-one correspondence between directed lines 

of 3Eαβ
 and ordered pair of vectors ( , )A a a

∗=
r r

such that ( , ) 1g a a =
r r

 and ( , ) 0.g a a
∗ =

r r
 

Proof: The proof can be found in [19, 20]. 

 

Special case: 

1) If 1,α β= = then we have E. Study mapping in Euclidean 3-space 3E [9]. 
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2) If 1, 1,α β= = − then we have E. Study mapping for a space which is isomorphic to 

Minkowski 3-space 
3

1E  [27]. 

Theorem 3.2. Let ,A B be two unit generalized dual vectors in 3Dαβ
and ,α β ∈ R .+  Then we 

have ( , ) cosg A B = Φ  where cos cos sin .ϕ εϕ ϕ∗Φ = −  

Proof: The proof can be found in [19]. 

4.  ROBOTIC MOTIONS 

Chasles's theorem states that every rigid body transformation can be composed of a rotation 

about an axis and a translation along that axis. This is the transformation executed by a turning 

screw and is referred to as screw transformation [11]. There are at least four methods used 

commonly to represent a general spatial screw transformation, including: 

(1) Dual orthogonal 3×3 matrix, (2) dual unit quaternion, (3) dual special unitary 2×2 matrix, 

and (4) dual Pauli spin matrices [6]. 

The first and most common method in the robotics community is based on homogenous matrix 

transformation. In robotics, this matrix is used to describe one coordinate system with respect to 

another one [25]. In robotic motions, both the rotation and the translation moves of screws or 

axis are simultaneously done in a transformation in unit dual quaternions. The representation of 

the robotic motion in terms of dual quaternions is studied by several authors [7,10,25]. 

5. GENERALIZED SCREW TRANSFORMATION 

In paper [2], authors described the unit dual quaternion is a screw transformation in Euclidean 

3-sapce. In this section, we show that a unit dual generalized quaternion is a generalized screw 

transformation in the generalized space 3E .αβ
 

First let ,α β ∈ R
+ . We suppose that given two lines

1L and 
2L represented with unit generalized 

dual vectors A and ,B respectively. Dual quaternionic multiplication of A  and B is determined 

by 

( , ) ,AB g A B A B= − + ×                                                                                                       (14) 

where ( , ) cosg A B = Φ  and sin .A B× = Φ ϕ εϕ ∗Φ = − is the dual angle between A  and .B  Then 

we find 

cos sin ,AB S= − Φ + Φ                                                                                                        (15) 

where * A B
S s s

A B
ε

×
= + =

×
 is the unit generalized dual vector which is orthogonal to both A  

and .B In addition, the conjugate AB  is 

( cos sin ) .AB BA S Q= = − − Φ + Φ = −                                                                                    (16) 

The inverses 1
A

−  and 1
B

− respectively of A  and B are  

1 1, .
A B

A B
A A B B

N N

− −= = − = = −                                                                                         (17) 

Thus we can write  
1 .Q BA B A

−= − =                                                                                                               (18) 

The screw transformation on B is a unit generalized dual quaternionQ , i.e. 
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cos sin .Q S= Φ + Φ                                                                                                             (19) 

 

Corollary 5.1. cos sinQ S= Φ + Φ is called a generalized screw transformation. Hence, we can 

say that the expression B QA=  which is found by left side multiplication of A by Q , rotate A

around the screw axis ,S  with a dual elliptical angle .Φ  Since ,ϕ εϕ ∗Φ = − a rotation of angle 

,ϕ a translation of ϕ∗ occurs and /ϕ ϕ∗ is  the step. In this statement, we can give Fig. 1. 

 

Example 5.1. Find the generalized screw transformation which transforms the  

1 { , 0}l x t y z= = = =                                                                                                            (20) 

line to the 
2 { , 2}

1/ 2 1/ 2

x y
l z= = = line. 

First, according to the Theorem 3.1., we obtain the unit dual vectors corresponding to 
1l  and 

2l  

lines in 3-space 3 .Dαβ
 For the line

1l , we have (0, 0, 0), (1, 0, 0)M a= =
r

 and (1,0,0)a
∗ =
r

, and for 

the line 2l , (0,0, 2), (1/ 2,1/ 2,0)N b= =
r

and 2 / 2( , ,0).b β α∗ = −
r

 

So 0A and 0B are the unit dual vectors corresponding to the 1l  and 2 ,l  

0

1
(1,0, 0),

2A A

A a a
A

N N

ε ∗+
= = =

r r

                                                                                            (21) 

and 

0

2
(1 / 2,1 / 2,0) 2( , ,0) .

B B

B b b
B

N N

ε
ε β α

α β

∗+  = = = + − +

r r

                                              (22) 

 

Now, we find the screw transformation
0 1 2 3Q Q Q i Q j Q k= + + +

rr r
, 

 
1

0 0 0 0 0 0( ) ( , ) .Q B A g B A B A−= = − ×                                                                                              (23) 

We obtain  

0 1 2

3

(1 2 ), 0, 0

1
( 2 ).

Q Q Q

Q

α
βε

α β

α
ε

αα β

= − = =
+

= − +
+

                                                                                    (24) 

 

The generalized screw transformation Q depends on ,α β and for different of the positive values 

,α β  we have different screw transformation. 
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Figure 1. Screw motion 
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