

Qualitative Studies ISSN: 1308 724X (NWSAQS) ID: 2018.13.3.E0037 Status : Original Study Received: May 2018 Accepted: July 2018

Ozan Soykan Fatih Perçin

Hasan Tuncay Kınacıgil

Ege University, İzmir-Turkey ozan.soykan@ege.edu.tr; fatih.percin@ege.edu.tr; hasan.tuncay.kinacigil@ege.edu.tr

DOI	http://dx.doi.org/10.12739/NWSA.2018.13.3.E0037							
ORCID ID	0000-0002-22	27-1245	0000-0002-5118-8061					
	0000-0001-5707-1684							
CORRESPONDING AUTHOR		Hasan Tuncay 1	Kınacıgil					

EVALUATION OF FRESHWATER FISHERIES BASED ON LANDING STATISTICS, TURKEY

ABTRACT

The aim is evaluation of landing freshwater fish, economics, and some assessment on future situation. By using with fishery statistics, economic values of the captured based freshwater fishes were investigated covering period 2008-2017. 21 commercial species were indicated such as; chub (Leuciscus cephalus), trout (Salmo spp.), bream (Abramis brama), Beysehir bleak (Alburnus akili), sand smelt (Atherina boyeri), tarek (Chalcalburnus tarichi), tench (Tinca tinca), catfish (Clarias gariepinus), bighand goby (Neogobius spp.), mullet (Mugil spp.), rudd (Scardinius erythrophthalmus), frog (Rana spp.), pike perch (Perca fluviatilis), snail (Helix sp.), common carp (Cyprinus carpio), transcaucasian carp, wels (Silurus glanis), eel (Anguilla anguilla), pike (Esox lucius), crayfish (Astacus leptodactylus) gibel carp (Carrasius sp.). They are generally captured with gill nets, trammel nets, pots and cast nets. Total production amount was 31768 tonnes in 2017 and tarek was the leading species with 9830 tonnes and followed by gibel carp (7035 tonnes) and sand smelt (4892 tonnes). Total economic value of captured freshwater species was 95.2 million TL representing 4% of the Turkish fisheries economy. Results showed a gradual decline in the last decade. The decrease in the yearly catch amounts are attributable to some reasons such as pollution, hydro-electric power plant construction, mis-management of freshwaters.

Keywords: Freshwater, Capture, Landing, Economy, Fish

1. INTRODUCTION

Turkey has a rich potential in terms of inland waters. Total surface area of natural, artificial and dam lakes are reported to be 1.4 hectares [1]. And total length of rivers and streams are 300 Km [2]. The southern, western and north-western regions of Anatolia have abundant fresh water resources in the form of rivers, lakes and lagoons [2]. Majority of the fisheries production of Turkey belonged to marine capture fisheries and only a small fraction has been obtained from the inland fishery (Figure 1).

How to Cite:

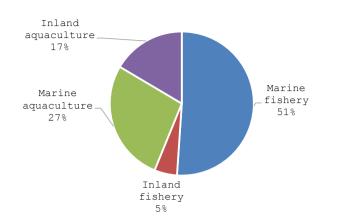


Figure 1. Distribution of Turkish fishery production in 2017 (TÜİK, 2018)

Legislative act no: 1380, public act no: 22223, 4/1 communique on commercial fishery (2016/35) (4/1 communique about regulation of commercial purposed fishery) and 4/2 communique on amateur fishery (2016/36) (4/2 communique about regulation of amateur purposed fishery) are the regulative tools of capture fisheries in Turkey including freshwater fish and fisheries. Main gears used in the freshwater capture fishery are gill nets, trammel nets, pots and cast nets and a total of 18024 fishing vessels were reported in 2017 from Turkey and 2618 of those which are smaller than 20 m in length have been operating on inland waters [1, 2 and 3]. While there are a lot of studies focusing on the biology of freshwater fish in Turkey, fishery and catch statistics on freshwater species are not well documented.

2. RESEARCH SIGNIFICANCE

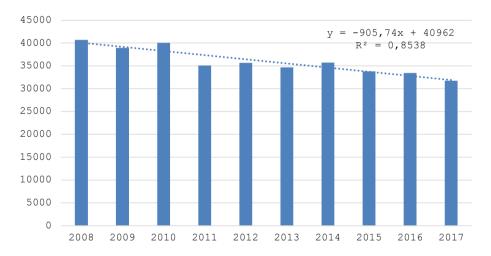
Goal of the present study is to evaluate the landings of freshwater fishes and economic conditions in Turkey from past to present. It is also aimed to give some suggestions on the sustainability of commercial freshwater fishes in Turkey.

3. EXPERIMENTAL METHOD-PROCESS

Study was based on the fishery statistics of the Turkish Statistical Institute. Data on landings, import-export situations and economic values of the captured based freshwater fishes were investigated covering the period from 2008 to 2017. Trend analysis was applied on the ten years data by using least squares method in order to estimate the further situation of landing amounts and economic aspects. Data were analyzed by MS Excel software.

4. RESULTS AND DISCUSSION

A total of 21 freshwater species are of commercial importance in the capture fisheries of Turkey. Eighteen of those belonged to fish, 1 amphibian, 1 crustacean and 1 mollusc. Yearly production amounts of each species were given in Table 1. Gradual decrease was found in yearly capture based production amounts ($R^2=0.85$) (Figure 2). Total production amount was 31768 tonnes in 2017 and tarek was the leading species with 9830 tonnes and followed by gibel carp (7035 tonnes) and sand smelt (4892 tonnes). Total economic value of captured freshwater species was 95.2 million TL representing 4% of the Turkish fisheries economy [3, 4, 5, and 6].


Soykan, O., Perçin, F., and Kınacıgil, H.T. Qualitative Studies (NWSAQS), E0037, 2018; 13(3): 26-29.

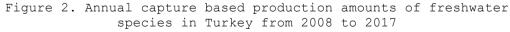


Table 1. Yearly landing statistics of captured fresh-water species from 2008 to 2017 (TÜİK, 2018)

Common Name	Scientific name	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total
Chub	Leuciscus cephalus	71	63	92	131	91	54	59	48	40	38	686
Trout	Salmo spp.	630	557	738	519	444	438	431	371	374	309	4810
Bream	Abramis brama	170	148	151	180	142	106	91	73	74	64	1199
Beysehir bleak	Alburnus akili	47	42	37	113	85	75	60	50	27	38	574
Sand smelt	Atherina boyeri	6630	6184	4438	6705	3609	5012	6471	4930	4640	4892	53511
Tarek	Chalcalburnus tarichi	11758	10685	11382	9168	9621	8600	8310	8850	9950	9830	98154
Tench	Tinca tinca	1632	1482	1162	624	63	65	68	61	50	38	5245
Catfish	Clarias gariepinus	339	310	341	362	299	345	351	303	262	216	3128
Bighand goby	Neogobius spp.	57	51	47	70	61	37	35	36	37	38	469
Mullet	Mugil spp.	1023	970	1512	1325	1138	1094	1192	1161	1136	1424	11976
Rudd	Scardinius erythrophthalmus	261	239	251	270	242	161	170	141	137	106	1978
Frog	Rana esculanta	668	622	780	750	648	831	742	535	486	547	6608
Pike perch	Perca fluviatilis	1346	1234	1476	737	593	491	521	465	461	405	7729
Snail	Helix lucorum	1007	2227	1991	1410	1193	1431	1547	733	1317	1156	14012
Common carp	Cyprinus carpio	11625	10964	12058	9998	9973	8277	8036	7223	4736	3543	86433
Transcaucasian carp	Cyprinus carpio carpio	993	891	962	924	813	736	706	695	708	757	8184
Wels	Silurus glanis	1275	1193	1178	946	816	618	629	549	512	387	8103
Eel	Anguilla anguilla	171	158	182	28	38	48	56	71	75	81	909
Pike	Esox lucius	213	197	228	238	215	213	240	203	226	195	2168
Cray fish	Astacus leptodactylus	783	734	1030	610	492	532	582	532	544	669	6508
Gibel carp	Carrasius sp.	0	0	0	0	5090	5495	5408	6745	7652	7035	37425
Total	·	40699	38951	40036	35108	35663	34658	35705	33775	33444	31768	

Tonnes

5. CONCLUSION AND RECOMMENDATIONS

As a result of the large numbers of major towns and various types of factories, some species have been particularly affected by industrial pollution and generally the fish populations living in these habitats have greatly diminished in recent years [6 and 7]. The decrease in the yearly catch amounts are attributable to some reasons such as pollution, hydro-electric power plant construction on rivers and streams and mis-management of freshwaters in general. On the other hand traditional feeding habbits of inland Turkish population limits the consumer demand on fish. Stock assessment and monitoring studies must be carried out at least in big reservoirs in order to provide the

sustainability of freshwater species [7 and 8]. Furthermore, it is important to create awareness on the beneficial sides of freshwater fish and promote freshwater fish consumption. Alternative use of freshwater species can also be considered as a tool in order to attract attention to freshwater species. More scientific interest is needed by fishery biologists.

NOTICE

This work is organized 05-08 September 2018 Pristina-Kosovo Third International Science Symposium (ISS2018-NWSA) ISS New Horizons in Science-was presented as an oral presentation at the conference. The NWSA publication and writing basics has been rearranged according to the rules of writing.

REFERENCES

- [1] TUIK, (2018). Turkish Fisheries Statistics. Available at: http://www.tuik.gov.tr/PreTablo.do?alt_id=1005 (accessed on 26 October 2018)
- [2] Balık, S., (1995). Freshwater fish in Anatolia, Turkey, Biological Conservation, 72:2, 213-223 https://doi.org/10.1016/0006-3207(94)00084-4.
- [3] Akyol, O. and Perçin, F., (2005). An Investigation on Fishes, which are Marketing in İzmir Fish Market Between 1993 and 2004.
 E.U. Journal of Fisheries & Aquatic Sciences. Volume:22, Issue:1-2, pp:125-128.
- [4] Benzer, R. and Benzer, S., (2015). Application of Artificial Neural Network into the Freshwater Fish Caught in Turkey. International Journal of Fisheries and Aquatic Studies 2015; 2(5):341-346.
- [5] Harlioğlu, A.G., (2011). Present Status of Fisheries in Turkey. Reviews in Fish Biology and Fisheries. Volume:21, Issue:4, pp:667-680.
- [6] Sarı, (2015). Balıkçılık Yönetimi, ISBN: 978-605-320-154-0, Nobel Akademik Yayıncılık, pp:200.
- [7] Yavuzcan, H., Pulatsu, S., Demir, N., Kırkağaç, M., Bekcan, S., Topçu, A., Doğankaya, L., and Başçınar, N., (2010). Türkiye'de Sürdürülebilir Su Ürünleri Yetiştiriciliği. TMMOB Ziraat Mühendisliği VII. Teknik Kongresi, Bildiriler Kitabı-2, 767-789.
- [8] Anonymous, (2006). Statistics of Water Products Production, Cost and Economic Value. General Directory of Agriculture Production and Development, Agriculture and Rural Affairs Ministry, Ankara, 127.