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Abstract

Batkunde et al. [Acta Univ. M. Belii Ser. Math., 2013] have defined a multilinear n -functional on |° . Regarding

the n -functional F, on (Ip,

5 ) they want to compute the exact norm of F,, especially for p # 2. In this

paper, we deal with a partial solution to an open problem given in their paper.
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1. Introduction

Let n>2 be an integer and X be a real vector space of
dimension d>n (d may be infinite). A real-valued

on X"

function satisfying the following four

properties:
i.HXi,Xz,...,XnH:O if and only if X,X,,...,X, are linearly
dependent,

ii. Hxi, Xyyeeny an is invariant under permutation,

L[ eX, X X | = |t X 0ee0 X,

,forany el ,

V. [X+ XX X <

X, Xgyeens X |+

X' Xg oo X |

Ay

fyeeeys

is called an n -norm on X, and the pair (X, ) is

called an n -normed space (Gunawan & Mashadi 2001).

Recent results and related topics may be found in (Gahler
1965; Batkunde et al. 2013; Gunawan & Mashadi 2001;
Gunawan et al. 2005; Gozali et al. 2010; Pangalela &
Gunawan 2013; Gunawan 2002; Gozali et al. 2010;
Gunawan 2001; Milicic 1993).

Throughout the paper, we have focused on the space of
p-summable sequences, denoted by |?, where 1< p<oo.

Recall that a sequence u =(u, )le (of real numbers)
1
belongs I* space if HUHp = (Zle‘uk‘p)p < oo, Itis known
. 11
that the dual space of 1? is 1 where B + a =1.Let

(X,

) be areal n-normed spaceand f:X — bea

fyeeeys

linear functional on X. Several n -norms on |°, which

can be seen in (Batkunde et al. 2013), are given as
follows:

If(X,

) ) isanormed space and X' isits dual (consisting

of bounded linear functionals on X ), the following

function defines an N -normon X :

HG = sup (1.1)

fieX'|fi]<1

[,

Using the formula (1.1), I* may be equipped with the

following N -norm:

G
p

zkxudﬁk zkxlkynk
¥y, X[ = sup : i :

: ) . (1.2)
el i, <1
’ Il Zk XY = Zk Xk Yk

where q denotes the dual exponent of p. There is

another formula of N -norm which can be defined on I°

(Batkunde et al. 2013), namely

(1.3)

X
Pl =| 232 1] ]
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where x =(x,),_,, i=12,.,n. As shown in (Gunawan

o
k=1’

2002), the two N -norms are equivalent:

G 1
Xy X0 < ()|

1
(nh)e \Xu---’Xan <| Xy---:Xan-

On 1%, both n -norms coincide with the standard n -norm

Xpooe Xl = ’det(<xi,xj>). Next observe that the

determinant on the right hand side of (1.2) can be

given by |

rewritten as

1 T TH | D AT 1
R ) R (1.4)
s 5
P |
By Hoélder's inequality, it is dominated by

..... X | Yo ¥, | - Another n -norm on I° defined by
(TR AR

Batkunde et al. (2013), namely

Zk Xy Y Zk X Yok

= sup : . : .
yiel, |y ,...,ynHH <1
e ZK XY - Zk Xk Yok

.

(1.5)

As can be seen in (Batkunde et al. 2013), the three n -

norms on |I” given in (1.2), (1.3) and (1.5) are equivalent:

xl,...,ani <nl|

1
XX, (1) i

(1.6)

xi,...,an'p <|

On a normed space (X,|.

), the functional g:X?—[

defined by the formula g(x,Y) ::H—)Z(H(A(x, y)+A (% y)) ,

where A, (x,y)= Iimt’l(HX +ty|—|x

t—>+0

) , satisfies the

following properties:

i.g(x,x):HxH2 forall Xe X ,
ii.g(ax,py)=aB g(xy) foral x,ye X, a,Bel ,

iii. g(x,x+y)=HxH2+g(x,y) forall x,ye X,

iv.[g(x.y) <[X|]y] forall x,yeX.
If, in addition, the functional g(x,y) islinearin ye X , it

is called a semi-inner product on X (Milicic 1993).

The functional
g(xy) =[x X%, san(x) v x=(%). y=(v)el’
k

(1.7)

defines a semi-inner product on the space 1", for

1< p<w, where HHp is the usual norm on I°. Using a

semi-inner product g, one may define the notion of

orthogonality on X . In particular, it can be defined

XL, yeg(xy)=0. (1.8)

Note that since g is in general not commutative, X L, y

does not imply that y L, x (Milicic 1993).

2. Bounded Multilinear n-Functionals on | ”

A multilinear n -functional on a real vector space X isa
mapping F: X" —0U which is linear in each variable. A
multilinear n -functional F is bounded on an n -normed

space (X,|.....,|) ifand only if there exists K >0 such that

(2.1)

forevery X,...,X, € X . Note that for abounded multilinear

n -functional F on an n -normed space (X,|.......|), we
have F(X,,...,X,)=0 when Xx,,...,X, arelinearly dependent

(Batkunde et al. 2013).

If F is a bounded multilinear n -functional on an n -

normed space (X,

), then F is antisymmetric, that

is
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for any X,...,x, € X and any permutation o of (1,...,n).
Here Sgn(O'):l if o is an even permutation and

Sgn(d) =-1if o isan odd permutation. These properties
do not hold for bounded multilinear n -functionals on a

normed space (X ,||||) (Batkunde et al. 2013).

The set X' of all bounded multilinear n -functionals on

(X,

) forms a vector space. A bounded multilinear n

iyeerysl

-functional F is defined
|F||:=inf {K >0:(2.1) holds},

or equivalently

(S EETHISCAS H S 1S

This formula defines anormon X'.

Let Y :={y1,...,yn} in 1, where q is the dual exponent of
p. Batkunde et al. (2013) defined the following

multilinear n -functional on |” where 1< p<oo:

X o XY 0 W,

1 .. . ..
FY(le-"’Xn)::ﬁz-“Z FORE TR | I o,
“h In

Ko e Ko [ Yy o Y,

(2.2)

for x;,..,x, €. From the definition of the multilinear n
-functional F, in (2.2), clearly, if Y is linearly dependent
set, then K, (X,,...X,)=0. For this purpose, we separate
this case and we assume that if Y is linearly dependent
set, then R, (X,...%,)=0 andif Y :={y,,...,y,} islinearly
independent set in |9 , then the multilinear n -functional

F, on IP is defined as in (2.2).

Clearly F, is linear in each variable. Further,

‘FY(Xl,...,Xn)‘SHxl,...,XanHyl,...,yan and so F, is bounded

on (17 ],) with [F]<ysn¥,], For p=2, the

following fact is obtained (Batkunde et al. 2013).

Fact 2.3. (Batkunde et al. 2013) Consider the n -normed

space (IZ, - 2). For fixed linearly independent set
Y::{yl,...,yn} in 1, let F, be the multilinear n -
functional defined as in (2.2). Then F, is bounded on

"

SEINT

) with [ =] Yol
Proof. From the inequality

LIC E Pt N |

we see that F, is bounded with

IR < 1¥ar Yol

Since Y = {yl,..., yn} is a linearly independent set in 17,

we can choose X; Z:L, i=1..,n. If
UYares val,
X =— i=l..n, th =
= ,i=1..n, en Hxl,...,anz_l and
UsresYall,
B (%o X, ) = | Vi Yo, - Hence, this  conclude  that
IRl =13 Yol -

3. Main Results

Regarding the n -functional F, on (Ip,

p), an open

problem was given in (Batkunde etal. 2013). In this paper,

we give a partial solution for this open problem.

Open Problem. Compute the exact norm of F, in (2.2),

especially for p=2.
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The proofis not easy. If an exact solution can not be found,
then it may be possible to obtain equivalence of norms

such that

1
¥ Yolly < IRA<]Yssees Yl
n!

Proof. Recall that (1.4) can be obtained from the
determinant given on the right hand side of the equation
(1.2). Then the multilinear n -functional on I° can be

rewritten as:

Zk Xlk ylk Zk Xlk ynk

..... Zan

E

q

() Ty o H{z A
Yoo Yol 12200+ 2|

P

- FTis o0 1] s

_ eyl Nzl
1N 1n
(”!)FEIHVin (n!)a EHZ‘HD

<1,
1
since [y, Yo, < (01 ||, Yo, and

1
2 Zan <(nl)a |z,

p H“p

I

-

[see, (Gunawan 2001) ].

By (X Xy ) = : : . Hence
Zk Xnk ylk Zk Xnk ynk
Ry (X0 %,)
Z H ’’’’’ H ‘yn‘q sgn ylk)yn( Z"HY1 ..... H ‘yu‘q Sgn(ylk)ynk
Itis known from above that F, is bounded on (Ip, e p) &y, VAT A
with |F, (X, X, )| <Yy, Y, || - To show the left partofthe | _ ¢y, i oflYeeees i
Fe G ) < el > HJ_HV HqH Il son () X ‘%HVH l Yo" 590 (Vo) Vo
inequality, choose the linearly independent set ’
Y ={Yy,,... Yo} be a left g -orthogonal in 1" such that
WLy, with i<j for 1<ij<n. Nex, if we ke " 20 H“‘y“‘ Y v H“"y“‘ 00 Y
10 n
q-1 i - n!
Zilk = YiJk sgn(yilk), 1<i,k<n and ZH Hq‘ynk‘q SO (Vo) Yuc - Zk:H Hq‘ynk‘q—isgn(ynk)ynk
Yisees Y
X, = H 1 HH ‘ylk‘ (y,k) =1...n, kel and g(ymz)ﬁ) g(y1’2yn)
Yntly; bosil| P I,
L . :
y, #0 foreach iel , then nt (Yo :) (Yo ¥n)
2 2
— Ival, Ival,
- ¢ 9(¥ 1)
»To 0 . 0
Hyl ynH ‘ q—lsgn(yv) \’ yl yn ‘y (y ) HylHi
‘/_Hqu 11, 1 \/_Hqu 1j, 1j, _M : . . :
HEDYS oo 5 0
14474
h In
ool o [T =
W " gn(ynjl) \/—HYH SQn(ynj,\) Hyan Hyan
Nllq
1 I Yolle 90y v) 9% ¥2) 9 (Vi)
. 2 2 2
[¥2res Vi ‘yn,‘qilsgn(yu,) ’ ‘yun‘qilsgn(yun)p p nt Hyal Hysz Hyan
o Yallg | 2 . .
Meotlile s : il
n.l;[HMHq ! ‘y"h‘q’lsgn(y"h) ynJ"qilsgn(yMn) n! '
Hy1 ..... yan 2] Thus
o P
(nY) HHV.H [Yareees Yl
IRl =———
_ Hy1 ----- Yan Hzl """ Zan n!
1.n 1._n
(n)e 1:1IHVi [, (nt)a I;[HY. I Hence
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1
v Yolly SIF<Yare Yol

4. Concluding Remarks

In this paper, we have found a partial solution to this open

problem given in (Batkunde et al. 2013) since we obtained

IF |2 [[¥1:-+s Va, - But an exact solution still remains an

open problem.
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