T_{1} APPROACH SPACES

MEHMET BARAN AND MUHAMMAD QASIM

Abstract

In this paper, we characterize both T_{1} and local T_{1} limit (resp. gauge) approach spaces as well as show how these concepts are related to each other. Finally, we compare these T_{1} and the usual T_{1} approach spaces.

1. Introduction

It is well-known that the category Met of metric spaces and non-expensive maps fails to have infinite products and coproducts. To solve this problem, in 1989, Robert Lowen [17] introduced approach spaces, a generalization of metric and topology, based upon a distance function between points and sets. Approach spaces can be defined in several equivalent ways such as in terms of limit, gauge and distance [18, 22] which correspond to limit points of filter, extended pseudo quasi-metrics determining coarser topologies and closure operators in topology respectively. Approach spaces have several applicative roots in all field of mathematics including probability theory [12], domain theory [13], group theory [19] and vector spaces [21.

In 1991, Baran [2] introduced local T_{1} separation property in order to define the notion of strong closedness [2] in set-based topological category which forms closure operators in sense of Dikranjan and Giuli 14, 15 in some well known topological categories Conv (category of convergence spaces and continuous maps) [6, 18, 23, Prord (category of preordered sets and order preserving maps) [7, 15] and SUConv (category of semiuniform convergence spaces and uniformly continuous maps) [9, 24]. Furthermore, Baran [2] generalized T_{1} axiom of topology to topological category which is used to define regular, completely regular and normal objects [4, 5] in topological categories.

[^0]The aim of paper is
(i) to characterize T_{1} limit (resp. gauge) approach spaces and show how these are related to each other.
(ii) to give characterization of local T_{1} limit (resp. gauge) approach spaces and examine how these are related to each other and their relationship with T_{1} axiom.
(iii) to compare these results with usual T_{1} defined in [16, 20, 22, and examine their relationship.

2. Preliminaries

Let X and J be sets, $F(X)$ be the set of all filters on X and $\sigma: J \rightarrow F(X)$ be a map. Let \mathcal{A} be collection of subsets of $X, 2^{(I)}$ be set of finite subsets of X and 2^{X} be the power set of X. The stack of \mathcal{A} is defined by $[\mathcal{A}]=\{B \subseteq X \mid \exists A \in \mathcal{A}: A \subseteq B\}$ and diagonal filter of σ is defined as for all $\alpha \in F(J), \sum \sigma(\alpha)=\bigvee_{F \in \alpha} \bigcap_{j \in F} \sigma(j)$. The indicator $\operatorname{map} \theta_{A}: X \rightarrow[0, \infty]$ of a subset $A \subset X$ is a map which equals 0 on A and ∞ outside A, i.e.,

$$
\theta_{A}(x)= \begin{cases}0, & x \in A \\ \infty, & x \notin A\end{cases}
$$

Definition 1. (cf. [18, 22]) A map $\lambda: F(X) \longrightarrow[0, \infty]^{X}$ is called a limit on X if it fulfills the following properties:
(i) $\forall x \in X: \lambdax=0$,
(ii) $\forall \alpha, \beta \in F(X): \alpha \subset \beta \Rightarrow \lambda \beta \leq \lambda \alpha$,
(iii) For any non-empty family $\left(\alpha_{i}\right)_{i \in I}$ of filters on $X: \lambda\left(\bigcap_{i \in I} \alpha_{i}\right)=\sup _{i \in I} \lambda\left(\alpha_{i}\right)$,
(iv) For any $\alpha \in F(X)$ and any selection of filters $(\sigma(x))_{x \in X}$:

$$
\lambda \Sigma \sigma(\alpha) \leq \lambda(\alpha)+\sup _{x \in X} \lambda \sigma(x)(x)
$$

The pair (X, λ) is called a limit-approach space.
Recall [18, that an extended pseudo-quasi metric on a set X is a map d : $X \times X \rightarrow[0, \infty]$ satisfies for all $x \in X, d(x, x)=0$ and for all $x, y, z \in X$, $d(x, y) \leq d(x, z)+d(z, y)$.
Definition 2. (cf. [18, 22]) Let X be a set and let $p q \operatorname{Met}^{\infty}(X)$ be the set of all extended pseudo-quasi metrics on $X, \mathfrak{D} \subseteq p q M e t^{\infty}(X)$ and $d \in p q M e t^{\infty}(X)$, then
(i) \mathfrak{D} is called ideal if it is closed under the formation of finite suprema and if it is closed under the operation of taking smaller function.
(ii) \mathfrak{D} dominates d if $\forall x \in X, \epsilon>0$ and $\omega<\infty$ there exists $e \in \mathfrak{D}$ such that $d(x,.) \wedge \omega \leq e(x,)+.\epsilon$ and if \mathfrak{D} dominates d, then \mathfrak{D} is called saturated.
If \mathfrak{D} is an ideal in $p q M e t^{\infty}(X)$ and saturated, then \mathfrak{D} is called gauge. The pair (X, \mathfrak{D}) is called a gauge-approach space.

Definition 3. (cf. [18, 22]) A map $\delta: X \times 2^{X} \rightarrow[0, \infty]$ is called distance on X if δ satisfies the followings:
(i) $\forall A \subseteq X$ and $\forall x \in A, \delta(x, A)=0$
(ii) $\forall x \in X$ and \emptyset, the empty set, $\delta(x, \emptyset)=\infty$
(iii) $\forall x \in X, \forall A, B \subseteq X, \delta(x, A \cup B)=\min (\delta(x, A), \delta(x, B))$
(iv) $\forall x \in X, \forall A \subseteq X, \forall \epsilon \in[0, \infty], \delta(x, A) \leq \delta\left(x, A^{(\epsilon)}\right)+\epsilon$, where $A^{(\epsilon)}=\{x \in$ $X \mid \delta(x, A) \leq \epsilon\}$.
The pair (X, δ) is called a distance-approach space.
Note that limits, gauges and distances are equivalent concepts [18, 22], and we will denote an approach space by (X, \mathfrak{G}).
Definition 4. (cf. [18, 22]) Let (X, \mathfrak{G}) and $\left(X^{\prime}, \mathfrak{G}^{\prime}\right)$ be approach spaces. If the map $f:(X, \mathfrak{G}) \longrightarrow\left(X^{\prime}, \mathfrak{G}^{\prime}\right)$ satisfies one of the following equivalent, then f is called a contraction map.
(i) $\forall \alpha \in F(X): \lambda^{\prime}(f(\alpha)) \leq \lambda \alpha$.
(ii) $\forall d^{\prime} \in \mathfrak{D}^{\prime}: d^{\prime} \circ(f \times f) \in \mathfrak{D}$.
(iii) $\forall x \in X$ and $A \subseteq X, \delta^{\prime}(f(x), f(A)) \leq \delta(x, A)$.

The category whose objects are approach spaces and morphisms are contraction maps is denoted by App and it is a topological category over Set [18, 22].

Lemma 5. (cf. [18, 22]) Let $\left(X_{i}, \mathfrak{G}_{i}\right)$ be the collection of approach spaces and $f_{i}: X \rightarrow\left(X_{i}, \mathfrak{G}_{i}\right)$ be a source in App.
(i) The initial limit-approach structure on X is given by $\lambda \alpha=\sup _{i \in I} \lambda_{i}\left(f_{i}(\alpha)\right) \circ f_{i}$, where $f_{i}(\alpha)$ is a filter generated by $\left\{f_{i}\left(A_{i}\right), i \in I\right\}$, i.e., $f_{i}(\alpha)=\left\{A_{i} \subset X_{i}\right.$: $\exists B \in \alpha$ such that $\left.f_{i}(B) \subset A_{i}\right\}$.
(ii) The initial gauge-approach base on X is defined by

$$
\mathcal{H}=\left\{\sup _{i \in K} d_{i} \circ\left(f_{i} \times f_{i}\right): K \in 2^{(I)}, \forall i \in K, d_{i} \in \mathcal{H}_{i}\right\}
$$

where for any $i \in I, \mathcal{H}_{i}$ is a basis for gauge in X_{i}.
(iii) The discrete limit-approach structure λ on X is given by

$$
\lambda \alpha= \begin{cases}\theta_{\{x\}}, & \alpha=[x] \\ \infty, & \alpha \neq[x]\end{cases}
$$

for all $\alpha \in F(X)$ and $x \in X$, where $\theta_{\{x\}}$ is an indicator of $\{x\}$.
(iv) The discrete gauge-approach structure \mathfrak{D} on X is $\mathfrak{D}=\operatorname{pqMet}^{\infty}(X)$ (all extended pseudo-quasi metric spaces on X).

3. Local T_{1} Approach Spaces

Let X be a set and $p \in X$. Let $X \vee_{p} X$ be the wedge at p [2], i.e., two disjoint copies of X identified at p. A point x in $X \vee_{p} X$ will be denoted by $x_{1}\left(x_{2}\right)$ if x is in the first (resp. the second) component of $X \vee_{p} X$. Note that $p_{1}=p_{2}$.

Definition 6. (cf. [2]) A map $S_{p}: X \vee_{p} X \rightarrow X^{2}$ is called skewed p-axis map if

$$
S_{p}\left(x_{i}\right)=\left\{\begin{array}{lc}
(x, x), & i=1 \\
(p, x), & i=2
\end{array}\right.
$$

Definition 7. (cf. [2]) A map $\nabla_{p}: X \vee_{p} X \rightarrow X$ is called folding map at p if $\nabla_{p}\left(x_{i}\right)=x$ for $i=1,2$.

Recall [1, 24], that a functor $\mathcal{U}: \mathcal{E} \rightarrow$ Set is called topological if \mathcal{U} is concrete, consists of small fibers and each \mathcal{U}-source has an initial lift or equivalently, each \mathcal{U}-sink has a final lift and called normalized topological functor if constant objects have a unique structure.

Note that a topological functor has a left adjoint called the discrete functor [1].
Definition 8. (cf. [2]) Let $\mathcal{U}: \mathcal{E} \rightarrow$ Set be topological, X an object in \mathcal{E} with $p \in \mathcal{U}(X)=B$

If the initial lift of the \mathcal{U}-source $\left\{S_{p}: B \vee_{p} B \rightarrow \mathcal{U}\left(X^{2}\right)=B^{2}\right.$ and $\nabla_{p}: B \vee_{p} B \rightarrow$ $\mathcal{U D}(B)=B\}$ is discrete, where \mathcal{D} is the discrete functor, then X is called T_{1} at p.

Theorem 9. A limit-approach space (X, λ) is T_{1} at p if and only if for all $x \in X$ with $x \neq p, \lambda([x])(p)=\infty=\lambda([p])(x)$.
Proof. Let (X, λ) be T_{1} at p and $x \in X$ with $x \neq p$. Note that $\left[x_{1}\right],\left[x_{2}\right] \in F\left(X \vee_{p} X\right)$ and $x_{1}, x_{2} \in X \vee_{p} X$.

$$
\begin{gathered}
\lambda_{d i s}\left(\left[\nabla_{p} x_{1}\right]\right)\left(\nabla_{p} x_{2}\right)=\lambda_{\text {dis }}([x])(x)=0 \\
\quad \lambda\left(\left[\pi_{1} S_{p} x_{1}\right]\right)\left(\pi_{1} S_{p} x_{2}\right)=\lambda([x])(p)
\end{gathered}
$$

and

$$
\lambda\left(\left[\pi_{2} S_{p} x_{1}\right]\right)\left(\pi_{2} S_{p} x_{2}\right)=\lambda([x])(x)=0
$$

where $\lambda_{d i s}$ is the discrete structure on $X, \pi_{i}: X^{2} \rightarrow X, i=1,2$ are the projection maps. Since (X, λ) is T_{1} at p, by Lemma 5 (i),

$$
\begin{aligned}
\infty & =\sup \left\{\lambda_{d i s}\left(\left[\nabla_{p} x_{1}\right]\right)\left(\nabla_{p} x_{2}\right), \lambda\left(\left[\pi_{1} \bar{S}_{p} x_{1}\right]\right)\left(\pi_{1} S_{p} x_{2}\right), \lambda\left(\left[\pi_{2} S_{p} x_{1}\right]\right)\left(\pi_{2} S_{p} x_{2}\right)\right\} \\
& =\sup \{0, \lambda([x])(p)\}=\lambda([x])(p)
\end{aligned}
$$

and consequently, $\lambda([x])(p)=\infty$.
Similarly,

$$
\begin{gathered}
\lambda_{d i s}\left(\left[\nabla_{p} x_{2}\right]\right)\left(\nabla_{p} x_{1}\right)=\lambda_{d i s}([x])(x)=0, \\
\quad \lambda\left(\left[\pi_{1} S_{p} x_{2}\right]\right)\left(\pi_{1} S_{p} x_{1}\right)=\lambda([p])(x),
\end{gathered}
$$

and

$$
\lambda\left(\left[\pi_{2} S_{p} x_{2}\right]\right)\left(\pi_{2} S_{p} x_{1}\right)=\lambda([x])(x)=0
$$

Since (X, λ) is T_{1} at p, by Lemma 5 (i)

$$
\begin{aligned}
\infty & =\sup \left\{\lambda_{d i s}\left(\left[\nabla_{p} x_{2}\right]\right)\left(\nabla_{p} x_{1}\right), \lambda\left(\left[\pi_{1} S_{p} x_{2}\right]\right)\left(\pi_{1} S_{p} x_{1}\right), \lambda\left(\left[\pi_{2} S_{p} x_{2}\right]\right)\left(\pi_{2} S_{p} x_{1}\right)\right\} \\
& =\sup \{0, \lambda([p])(x)\}=\lambda([p])(x)
\end{aligned}
$$

and consequently, $\lambda([p])(x)=\infty$.

Conversely, let $\bar{\lambda}$ be an initial limit structure on $X \vee_{p} X$ induced by the maps $S_{p}: X \vee_{p} X \rightarrow\left(X^{2}, \lambda^{2}\right)$ and $\nabla_{p}: X \vee_{p} X \rightarrow\left(X, \lambda_{\text {dis }}\right)$, where $\lambda_{\text {dis }}$ is discrete limit structure on X and λ^{2} is the product limit-structure on X^{2} induced by $\pi_{i}: X^{2} \rightarrow X$ the projection maps for $i=1,2$. Suppose $\alpha \in F\left(X \vee_{p} X\right)$ and $v \in X \vee_{p} X$ with $\nabla_{p} v=x$. By Lemma 5 (iii), we have to show that, for all $u \in X \vee_{p} X$

$$
\bar{\lambda}(\alpha)=\left\{\begin{array}{lc}
\theta_{\{v\}}, & \alpha=[v] \\
\infty, & \alpha \neq[v]
\end{array}\right.
$$

where

$$
\theta_{\{v\}} u= \begin{cases}0, & v=u \\ \infty, & v \neq u\end{cases}
$$

is the indicator of $\{v\}$. Note that

$$
\begin{aligned}
& \lambda_{\text {dis }}\left(\nabla_{p} \alpha\right)\left(\nabla_{p} u\right)= \begin{cases}\theta_{\{x\}} \nabla_{p} u, & \nabla_{p} \alpha=[x] \\
\infty, & \nabla_{p} \alpha \neq[x]\end{cases} \\
& \quad= \begin{cases}0, & \nabla_{p} \alpha=[x] \text { and } \nabla_{p} u=x \\
\infty, & \nabla_{p} \alpha=[x] \text { and } \nabla_{p} u \neq x \\
\infty, & \nabla_{p} \alpha \neq[x] \text { and } \nabla_{p} u \neq x\end{cases}
\end{aligned}
$$

Case 1: If $x=p$, then $\nabla_{p} u=x=p$ implies $u=p_{1}=p_{2}=v$ and $\nabla_{p} \alpha=[x]=[p]$ implies $\alpha=\left[p_{i}\right]$ for $i=1,2$. By Lemma $5(\mathrm{i}), \bar{\lambda}\left(\nabla_{p} \alpha\right)\left(\nabla_{p} u\right)=\bar{\lambda}([p])(p)=0$ since $\bar{\lambda}$ is a limit structure on $X \vee_{p} X$.

Suppose that $x \neq p . \nabla_{p} u=x$ implies $u=x_{1}$ or $u=x_{2}$ and $\nabla_{p} \alpha=[x]$ implies $\alpha=\left[x_{1}\right],\left[x_{2}\right],\left[\left\{x_{1}, x_{2}\right\}\right]$ or $\alpha \supset\left[\left\{x_{1}, x_{2}\right\}\right]$.

Firstly, we show that the case $\alpha \supset\left[\left\{x_{1}, x_{2}\right\}\right]$ with $\alpha \neq[\emptyset]$ and $\alpha \neq\left[\left\{x_{1}, x_{2}\right\}\right]$ cannot occur. To this end, if $[\emptyset] \neq \alpha \neq\left[\left\{x_{1}, x_{2}\right\}\right]$, then $\alpha \supset\left[\left\{x_{1}, x_{2}\right\}\right]$ if and only if $\alpha=\left[x_{1}\right]$ or $\alpha=\left[x_{2}\right]$. Clearly, if $\alpha=\left[x_{1}\right]$ or $\left[x_{2}\right]$, then $\alpha \supset\left[\left\{x_{1}, x_{2}\right\}\right]$. Conversely, if $\alpha \supset\left[\left\{x_{1}, x_{2}\right\}\right]$ with $[\emptyset] \neq \alpha \neq\left[\left\{x_{1}, x_{2}\right\}\right]$, then there exists $V \in \alpha$ such that $V \neq\left\{x_{1}, x_{2}\right\}$ and $V \neq \emptyset$. Since V and $W=\left\{x_{1}, x_{2}\right\}$ are in α and α is a filter, $V \cap W=\left\{x_{1}\right\}$ or $\left\{x_{2}\right\}$ is in α, i.e., $\alpha=\left[x_{1}\right]$ or $\left[x_{2}\right]$. Hence, we must have $\alpha=\left[x_{1}\right]$, [x_{2}] or $\left[\left\{x_{1}, x_{2}\right\}\right]$.

If $\alpha=\left[x_{i}\right]$ and $u=x_{i}, i=1,2$, then $\bar{\lambda}\left(\left[x_{i}\right]\right)\left(x_{i}\right)=0$ since $\bar{\lambda}$ is a limit structure on $X \vee_{p} X$.

If $\alpha=\left[x_{2}\right]$ and $u=x_{1}$, then
$\lambda_{\text {dis }}\left(\nabla_{p} \alpha\right)\left(\nabla_{p} u\right)=\lambda_{\text {dis }}\left(\nabla_{p}\left[x_{2}\right]\right)\left(\nabla_{p} x_{1}\right)=\lambda_{\text {dis }}([x])(x)=0$.
$\left.\lambda\left(\pi_{1} S_{p} \alpha\right)\left(\pi_{1} S_{p} u\right)=\lambda\left(\left[\pi_{1} S_{p} x_{2}\right]\right)\left(\pi_{1} S_{p} x_{1}\right)\right)=\lambda([p])(x)$ and
$\lambda\left(\pi_{2} S_{p} \alpha\right)\left(\pi_{2} S_{p} u\right)=\lambda\left(\left[\pi_{2} S_{p} x_{2}\right]\right)\left(\pi_{2} S_{p} x_{1}\right)=\lambda([x])(x)=0$.

By Lemma 5 (i) and the assumption $\lambda([p])(x)=\infty$.

$$
\begin{aligned}
\bar{\lambda}(\alpha)(u) & =\bar{\lambda}\left(\left[x_{2}\right]\right)\left(x_{1}\right) \\
& =\sup \left\{\lambda_{\text {dis }}\left(\left[\nabla_{p} x_{2}\right]\right)\left(\nabla_{p} x_{1}\right), \lambda\left(\left[\pi_{1} S_{p} x_{2}\right]\right)\left(\pi_{1} S_{p} x_{1}\right), \lambda\left(\left[\pi_{2} S_{p} x_{2}\right]\right)\left(\pi_{2} S_{p} x_{1}\right)\right\} \\
& =\sup \{0, \lambda([p])(x)\}=\lambda([p])(x)=\infty
\end{aligned}
$$

If $\alpha=\left[\left\{x_{1}, x_{2}\right\}\right], u=x_{1}$, then

$$
\lambda_{d i s}\left(\nabla_{p} \alpha\right)\left(\nabla_{p} u\right)=\lambda_{d i s}\left(\nabla_{p}\left[\left\{x_{1}, x_{2}\right\}\right]\right)\left(\nabla_{p} x_{1}\right)=\lambda_{d i s}([x])(x)=0
$$

$$
\lambda\left(\pi_{1} S_{p} \alpha\right)\left(\pi_{1} S_{p} u\right)=\lambda\left(\left[\left\{\pi_{1} S_{p} x_{1}, \pi_{1} S_{p} x_{2}\right\}\right]\right)\left(\pi_{1} S_{p} x_{1}\right)=\lambda([\{x, p\}])(x),
$$

and

$$
\lambda\left(\pi_{2} S_{p} \alpha\right)\left(\pi_{2} S_{p} u\right)=\lambda\left(\left[\left\{\pi_{2} S_{p} x_{1}, \pi_{2} S_{p} x_{2}\right\}\right]\right)\left(\pi_{2} S_{p} x_{1}\right)=\lambda([x])(x)=0
$$

Note that $[\{x, p\}] \subset[p]$. Since λ is a limit structure, we get $\lambda([p])(x) \leq \lambda([\{x, p\}])(x)$. Since $x \neq p$ and $\lambda([p])(x)=\infty$, by assumption, then $\lambda([\{x, p\}])(x)=\infty$, and consequently, $\bar{\lambda}(\alpha)(u)=\infty$.

If $\alpha=\left[x_{1}\right]$ and $u=x_{2}$, then
$\lambda_{\text {dis }}\left(\nabla_{p} \alpha\right)\left(\nabla_{p} u\right)=\lambda_{\text {dis }}\left(\nabla_{p}\left[x_{1}\right]\right)\left(\nabla_{p} x_{2}\right)=\lambda_{\text {dis }}([x])(x)=0$.
$\left.\lambda\left(\pi_{1} S_{p} \alpha\right)\left(\pi_{1} S_{p} u\right)=\lambda\left(\left[\pi_{1} S_{p} x_{1}\right]\right)\left(\pi_{1} S_{p} x_{2}\right)\right)=\lambda([x])(p)$ and
$\lambda\left(\pi_{2} S_{p} \alpha\right)\left(\pi_{2} S_{p} u\right)=\lambda\left(\left[\pi_{2} S_{p} x_{1}\right]\right)\left(\pi_{2} S_{p} x_{2}\right)=\lambda([x])(x)=0$,
by Lemma 5 (i)

$$
\begin{aligned}
\bar{\lambda}(\alpha)(u) & =\bar{\lambda}\left(\left[x_{1}\right]\right)\left(x_{2}\right) \\
& =\sup \left\{\lambda_{\text {dis }}\left(\left[\nabla_{p} x_{1}\right]\right)\left(\nabla_{p} x_{2}\right), \lambda\left(\left[\pi_{1} S_{p} x_{1}\right]\right)\left(\pi_{1} S_{p} x_{2}\right), \lambda\left(\left[\pi_{2} S_{p} x_{1}\right]\right)\left(\pi_{2} S_{p} x_{2}\right)\right\} \\
& =\sup \{0, \lambda([x])(p)\}=\lambda([x])(p)=\infty
\end{aligned}
$$

If $\alpha=\left[\left\{x_{1}, x_{2}\right\}\right], u=x_{2}$, then

$$
\begin{gathered}
\lambda_{d i s}\left(\nabla_{p} \alpha\right)\left(\nabla_{p} u\right)=\lambda_{d i s}\left(\nabla_{p}\left[\left\{x_{1}, x_{2}\right\}\right]\right)\left(\nabla_{p} x_{2}\right)=\lambda_{\text {dis }}([x])(x)=0 . \\
\lambda\left(\pi_{1} S_{p} \alpha\right)\left(\pi_{1} S_{p} u\right)=\lambda\left(\left[\left\{\pi_{1} S_{p} x_{1}, \pi_{1} S_{p} x_{2}\right\}\right]\right)\left(\pi_{1} S_{p} x_{2}\right)=\lambda([\{x, p\}])(p) .
\end{gathered}
$$

and

$$
\lambda\left(\pi_{2} S_{p} \alpha\right)\left(\pi_{2} S_{p} u\right)=\lambda\left(\left[\left\{\pi_{2} S_{p} x_{1}, \pi_{2} S_{p} x_{2}\right\}\right]\right)\left(\pi_{2} S_{p} x_{2}\right)=\lambda([x])(x)=0
$$

Note that $[\{x, p\}] \subset[x]$. Since λ is a limit structure, $\lambda([x])(p) \leq \lambda([\{x, p\}])(p)$ and by the assumption $\lambda([p])(x)=\infty$, then $\lambda([\{x, p\}])(x)=\infty$.

By Lemma 5 (i),

$$
\begin{aligned}
\bar{\lambda}(\alpha)(u)= & \bar{\lambda}\left(\left[\left\{x_{1}, x_{2}\right\}\right]\right)\left(x_{2}\right) \\
= & \sup \left\{\lambda_{\text {dis }}\left(\left[\left\{\nabla_{p} x_{1}, \nabla_{p} x_{2}\right\}\right]\right)\left(\nabla_{p} x_{2}\right), \lambda\left(\left[\left\{\pi_{1} S_{p} x_{1}, \pi_{1} S_{p} x_{2}\right\}\right]\right)\left(\pi_{1} S_{p} x_{2}\right)\right. \\
& \left.\lambda\left(\left[\left\{\pi_{2} S_{p} x_{1}, \pi_{2} S_{p} x_{2}\right\}\right]\right)\left(\pi_{2} S_{p} x_{2}\right)\right\}=\sup \{0, \infty\}=\infty
\end{aligned}
$$

Case 2: Let $p=\nabla_{p} u \neq x$ and $\nabla_{p} \alpha=[x]$. It follows that $u=p_{1}=p_{2}$ and $\alpha=\left[x_{1}\right],\left[x_{2}\right]$ or $\left[\left\{x_{1}, x_{2}\right\}\right]$.

If $\alpha=\left[x_{1}\right],\left[x_{2}\right]$ or $\left[\left\{x_{1}, x_{2}\right\}\right]$ and $u=p_{i}$ for $i=1,2$, then $\lambda_{\text {dis }}\left(\nabla_{p} \alpha\right)\left(\nabla_{p} u\right)=$ $\lambda_{\text {dis }}([x])(p)=\infty$ since $\lambda_{\text {dis }}$ is a discrete limit structure and $x \neq p$. It follows that

$$
\begin{aligned}
\bar{\lambda}(\alpha)(u) & =\sup \left\{\lambda_{d i s}\left(\nabla_{p} \alpha\right)\left(\nabla_{p} u\right), \lambda\left(\pi_{1} S_{p} \alpha\right)\left(\pi_{1} S_{p} u\right), \lambda\left(\pi_{2} S_{p} \alpha\right)\left(\pi_{2} S_{p} u\right)\right\} \\
& =\sup \left\{\infty, \lambda\left(\pi_{1} S_{p} \alpha\right)(p), \lambda\left(\pi_{2} S_{p} \alpha\right)(p)\right\}=\infty
\end{aligned}
$$

Case 3: Suppose $\nabla_{p} u \neq x$ and $\nabla_{p} \alpha \neq[x]$, then $\lambda_{\text {dis }}\left(\nabla_{p} \alpha\right)\left(\nabla_{p} u\right)=\infty$ since $\lambda_{\text {dis }}$ is a discrete limit structure. It follows that

$$
\begin{aligned}
\bar{\lambda}(\alpha)(u) & =\sup \left\{\lambda_{d i s}\left(\nabla_{p} \alpha\right)\left(\nabla_{p} u\right), \lambda\left(\pi_{1} S_{p} \alpha\right)\left(\pi_{1} S_{p} u\right), \lambda\left(\pi_{2} S_{p} \alpha\right)\left(\pi_{2} S_{p} u\right)\right\} \\
& =\sup \left\{\infty, \lambda\left(\pi_{1} S_{p} \alpha\right)\left(\pi_{1} S_{p} u\right), \lambda\left(\pi_{2} S_{p} \alpha\right)\left(\pi_{2} S_{p} u\right)\right\}=\infty
\end{aligned}
$$

Hence, for all $\alpha \in F\left(X \vee_{p} X\right)$ and $v \in X \vee_{p} X$, we have

$$
\bar{\lambda}(\alpha)= \begin{cases}\theta_{\{v\}}, & \alpha=[v] \\ \infty, & \alpha \neq[v]\end{cases}
$$

i.e., $\bar{\lambda}$ is discrete limit structure on $X \vee_{p} X$ and by Definition 8, (X, λ) is T_{1} at p.

Theorem 10. A gauge-approach space (X, \mathfrak{D}) is T_{1} at p if and only if for all $x \in X$ with $x \neq p$, there exists $d \in \mathfrak{D}$ such that $d(x, p)=\infty=d(p, x)$.
Proof. Let (X, \mathfrak{D}) be T_{1} at $p, x \in X$ and $x \neq p$. Let $u=x_{1}$ and $v=x_{2} \in X \vee_{p} X$. Note that

$$
\begin{gathered}
d\left(\pi_{1} S_{p} u, \pi_{1} S_{p} v\right)=d\left(\pi_{1} S_{p} x_{1}, \pi_{1} S_{p} x_{2}\right)=d(x, p) \\
d\left(\pi_{2} S_{p} u, \pi_{2} S_{p} v\right)=d\left(\pi_{2} S_{p} x_{1}, \pi_{2} S_{p} x_{2}\right)=d(x, x)=0 \\
d_{d i s}\left(\nabla_{p} u, \nabla_{p} v\right)=d_{d i s}\left(\nabla_{p} x_{1}, \nabla_{p} x_{2}\right)=d_{d i s}(x, x)=0
\end{gathered}
$$

where $d_{d i s}$ is the discrete extended pseudo-quasi metric on $X \vee_{p} X$ and $\pi_{i}: X^{2} \rightarrow X$ are the projection maps and $i=1,2$. Since $u \neq v$ and (X, \mathfrak{D}) is T_{1} at p, by Lemma 5 (ii),

$$
\infty=\sup \left\{d_{d i s}\left(\nabla_{p} u, \nabla_{p} v\right), d\left(\pi_{1} S_{p} u, \pi_{1} S_{p} v\right), d\left(\pi_{2} S_{p} u, \pi_{2} S_{p} v\right)\right\}=d(x, p)
$$

and consequently, $d(x, p)=\infty$.
Similarly, if $u=x_{2}$ and $v=x_{1} \in X \vee_{p} X$, then

$$
\begin{aligned}
\infty & =\sup \left\{d_{d i s}\left(\nabla_{p} u, \nabla_{p} v\right), d\left(\pi_{1} S_{p} u, \pi_{1} S_{p} v\right), d\left(\pi_{2} S_{p} u, \pi_{2} S_{p} v\right)\right\}=\sup \{0, d(p, x)\} \\
& =d(p, x)
\end{aligned}
$$

and consequently, $d(p, x)=\infty$.
Conversely, let $\overline{\mathcal{H}}$ be initial gauge basis on $X \vee_{p} X$ induced by $S_{p}: X \vee_{p} X \rightarrow$ $U\left(X^{2}, \mathfrak{D}^{2}\right)=X^{2}$ and $\nabla_{p}: X \vee_{p} X \rightarrow U\left(X, \mathfrak{D}_{\text {dis }}\right)=X$ where $\mathfrak{D}_{\text {dis }}=\operatorname{pqMet}^{\infty}(X)$ discrete gauge-approach on X and \mathfrak{D}^{2} is the product gauge-approach structure on X^{2} induced by $\pi_{i}: X^{2} \rightarrow X$ the projection maps for $i=1,2$. Suppose $\bar{d} \in \overline{\mathcal{H}}$ and $u, v \in X \vee_{p} X$.

If $u=v$, then $\bar{d}(u, v)=0$.

If $u \neq v$ and $\nabla_{p} u \neq \nabla_{p} v$ implies $d_{d i s}\left(\nabla_{p} u, \nabla_{p} v\right)=\infty$ since $d_{d i s}$ is a discrete structure. By Lemma 5 (ii),

$$
\begin{aligned}
\bar{d}(u, v) & =\sup \left\{d_{d i s}\left(\nabla_{p} u, \nabla_{p} v\right), d\left(\pi_{1} S_{p} u, \pi_{1} S_{p} v\right), d\left(\pi_{2} S_{p} u, \pi_{2} S_{p} v\right)\right\} \\
& =\sup \left\{\infty, d\left(\pi_{1} S_{p} u, \pi_{1} S_{p} v\right), d\left(\pi_{2} S_{p} u, \pi_{2} S_{p} v\right)\right\}=\infty
\end{aligned}
$$

Suppose $u \neq v$ and $\nabla_{p} u=\nabla_{p} v$. If $\nabla_{p} u=x=\nabla_{p} v$ for some $x \in X$ with $x \neq p$, then $u=x_{1}$ and $v=x_{2}$ or $u=x_{2}$ and $v=x_{1}$ since $u \neq v$.

If $u=x_{1}$ and $v=x_{2}$, then by Lemma 5 (ii),

$$
\begin{aligned}
\bar{d}(u, v) & =\bar{d}\left(x_{1}, x_{2}\right) \\
& =\sup \left\{d_{d i s}\left(\nabla_{p} x_{1}, \nabla_{p} x_{2}\right), d\left(\pi_{1} S_{p} x_{1}, \pi_{1} S_{p} x_{2}\right), d\left(\pi_{2} S_{p} x_{1}, \pi_{2} S_{p} x_{2}\right)\right\} \\
& =\sup \{0, d(x, p)\}=d(x, p)=\infty
\end{aligned}
$$

since $x \neq p$ and $d(x, p)=\infty$.
Similarly, if $u=x_{2}$ and $v=x_{1}$, then

$$
\begin{aligned}
\bar{d}(u, v) & =\bar{d}\left(x_{2}, x_{1}\right) \\
& =\sup \left\{d_{d i s}\left(\nabla_{p} x_{2}, \nabla_{p} x_{1}\right), d\left(\pi_{1} S_{p} x_{2}, \pi_{1} S_{p} x_{1}\right), d\left(\pi_{2} S_{p} x_{2}, \pi_{2} S_{p} x_{1}\right)\right\} \\
& =\sup \{0, d(p, x)\}=d(p, x)=\infty
\end{aligned}
$$

since $x \neq p$ and $d(p, x)=\infty$.
Hence, for all $u, v \in X \vee_{p} X$, we get

$$
\bar{d}(u, v)= \begin{cases}0, & u=v \\ \infty, & u \neq v\end{cases}
$$

i.e., \bar{d} is discrete extended pseudo-quasi metric on $X \vee_{p} X$, i.e., $\overline{\mathcal{H}}=\{\bar{d}\}$. By Definition $8,(X, \mathfrak{D})$ is T_{1} at p.

Theorem 11. Let (X, \mathfrak{G}) be approach spaces and $p \in X$. Then, following are equivalent:
(1) (X, \mathfrak{G}) is T_{1} at p.
(2) For all $x \in X$ with $x \neq p, \lambda([x])(p)=\infty=\lambda([p])(x)$.
(3) For all $x \in X$ with $x \neq p$, there exists $d \in \mathfrak{D}$ such that $d(x, p)=\infty=$ $d(p, x)$.
(4) For all $x \in X$ with $x \neq p, \delta(x,\{p\})=\infty=\delta(p,\{x\})$.

Proof. It follows from Theorems 9 and 10 , and Theorem 3.1 of [10].
Example 12. (i) Let $X=\{a, b, c\}, A \subseteq X$ and $\delta_{1}: X \times 2^{X} \rightarrow[0, \infty]$ be a map defined as follows: For all $x \in X, \delta_{1}(x, \emptyset)=\infty, \delta_{1}(x, A)=0$ if $x \in$ $A, \delta_{1}(a,\{b\})=\delta_{1}(b,\{a\})=\delta_{1}(a,\{c\})=\delta_{1}(c,\{a\})=\infty=\delta_{1}(a,\{b, c\})$ and $\delta_{1}(b,\{c\})=\delta_{1}(c,\{b\})=\delta_{1}(b,\{a, c\})=\delta_{1}(c,\{a, b\})=2$. Then, by Theorem 11 . an approach space $\left(X, \delta_{1}\right)$ is T_{1} at a but it is neither T_{1} at b nor T_{1} at c.
(ii) Let $X=\{a, b, c\}, A \subseteq X$ and $\delta_{2}: X \times 2^{X} \rightarrow[0, \infty]$ be a map defined as follows: For all $x \in X, \delta_{2}(x, \emptyset)=\infty, \delta_{2}(x, A)=0$ if $x \in A$ and $\delta_{2}(x, A)=1$ if $x \notin A$. Then, by Theorem 11, an approach space $\left(X, \delta_{2}\right)$ is not T_{1} at p for all $p \in X$.

4. T_{1} Approach Spaces

Let X be a nonempty set, $X^{2}=X \times X$ be cartesian product of X with itself and $X^{2} \vee_{\triangle} X^{2}$ be two distinct copies of X^{2} identified along the diagonal [2]. A point (x, y) in $X^{2} \vee_{\triangle} X^{2}$ is denoted by $(x, y)_{1}\left((x, y)_{2}\right)$ if (x, y) is in the first (resp. second) component of $X^{2} \vee_{\triangle} X^{2}$. Note that $(x, x)_{1}=(x, x)_{2}$, for all $x \in X$.
Definition 13. (cf. [2]) A map $S: X^{2} \vee_{\triangle} X^{2} \rightarrow X^{3}$ is called skewed axis map if

$$
S\left((x, y)_{i}\right)=\left\{\begin{array}{lc}
(x, y, y), & i=1 \\
(x, x, y), & i=2
\end{array}\right.
$$

Definition 14. (cf. [2]) A map $\nabla: X^{2} \vee_{\triangle} X^{2} \rightarrow X^{2}$ is called folding map if $\nabla\left((x, y)_{i}\right)=(x, y)$ for $i=1,2$.

Theorem 15. (cf. [3]) Let (X, τ) be a topological space.
(X, τ) is T_{1} if and only if the initial topology on $X^{2} \vee_{\triangle} X^{2}$ induced by the maps $S: X^{2} \vee_{\triangle} X^{2} \rightarrow\left(X^{3}, \tau^{*}\right)$ and $\nabla: X^{2} \vee_{\triangle} X^{2} \rightarrow\left(X^{2}, P\left(X^{2}\right)\right)$ is discrete, where τ^{*} is the product topology on X^{3}.
Definition 16. (cf. [2]) Let $\mathcal{U}: \mathcal{E} \rightarrow$ Set be topological, X an object in \mathcal{E} with $\mathcal{U}(X)=B$.

If the initial lift of the \mathcal{U}-source $\left\{S: B^{2} \vee_{\triangle} B^{2} \rightarrow \mathcal{U}\left(X^{3}\right)=B^{3}\right.$ and ∇ : $\left.B^{2} \vee_{\triangle} B^{2} \rightarrow \mathcal{U D}\left(B^{2}\right)=B^{2}\right\}$ is discrete, then X is called a T_{1} object.

Theorem 17. A limit-approach space (X, λ) is T_{1} if and only if for all $x, y \in X$ with $x \neq y, \lambda([x])(y)=\infty=\lambda([y])(x)$.
Proof. Let (X, λ) be $T_{1}, x, y \in X$ with $x \neq y$. Suppose $\left[(x, y)_{1}\right]$ is a filter on $F\left(X^{2} \vee_{\triangle} X^{2}\right)$ and $(x, y)_{2} \in X^{2} \vee_{\triangle} X^{2}$. Note that

$$
\begin{gathered}
\lambda_{d i s}\left(\left[\nabla(x, y)_{1}\right]\right)\left(\nabla(x, y)_{2}\right)=\lambda_{\text {dis }}([(x, y)])(x, y)=0, \\
\lambda\left(\left[\pi_{1} S(x, y)_{1}\right]\right)\left(\pi_{1} S(x, y)_{2}\right)=\lambda([x])(x)=0, \\
\lambda\left(\left[\pi_{2} S(x, y)_{1}\right]\right)\left(\pi_{2} S(x, y)_{2}\right)=\lambda([y])(x) .
\end{gathered}
$$

and

$$
\lambda\left(\left[\pi_{3} S(x, y)_{1}\right]\right)\left(\pi_{3} S(x, y)_{2}\right)=\lambda([y])(y)=0
$$

Since (X, λ) is T_{1} and $(x, y)_{1} \neq(x, y)_{2}$, by Lemma 5 (i),

$$
\begin{aligned}
\infty= & \sup \left\{\lambda_{\text {dis }}\left(\left[\nabla(x, y)_{1}\right]\right)\left(\nabla(x, y)_{2}\right), \lambda\left(\left[\pi_{1} S(x, y)_{1}\right]\right)\left(\pi_{1} S(x, y)_{2}\right)\right. \\
& \left.\lambda\left(\left[\pi_{2} S(x, y)_{1}\right]\right)\left(\pi_{2} S(x, y)_{2}\right), \lambda\left(\left[\pi_{3} S(x, y)_{1}\right]\right)\left(\pi_{3} S(x, y)_{2}\right)\right\} \\
= & \sup \{0, \lambda([y])(x)\}=\lambda([y])(x)
\end{aligned}
$$

and consequently, $\lambda([y])(x)=\infty$.
Similarly, let $\left[(x, y)_{2}\right] \in F\left(X^{2} \vee_{\triangle} X^{2}\right)$ and $(x, y)_{1} \in X^{2} \vee_{\triangle} X^{2}$. Since (X, λ) is T_{1} and $(x, y)_{1} \neq(x, y)_{2}$, by Lemma 5 (i),

$$
\begin{aligned}
\infty= & \sup \left\{\lambda_{\operatorname{dis}}\left(\left[\nabla(x, y)_{2}\right]\right)\left(\nabla(x, y)_{1}\right), \lambda\left(\left[\pi_{1} S(x, y)_{2}\right]\right)\left(\pi_{1} S(x, y)_{1}\right)\right. \\
& \left.\lambda\left(\left[\pi_{2} S(x, y)_{2}\right]\right)\left(\pi_{2} S(x, y)_{1}\right), \lambda\left(\left[\pi_{3} S(x, y)_{2}\right]\right)\left(\pi_{3} S(x, y)_{1}\right)\right\} \\
= & \sup \{0, \lambda([x])(y)\}=\lambda([x])(y)
\end{aligned}
$$

and consequently, $\lambda([x])(y)=\infty$.
Conversely, let $\bar{\lambda}$ be an initial limit structure on $X^{2} \vee_{\triangle} X^{2}$ induced by the maps $S: X^{2} \vee_{\triangle} X^{2} \rightarrow\left(X^{3}, \lambda^{3}\right)$ and $\nabla: X^{2} \vee_{\triangle} X^{2} \rightarrow\left(X^{2}, \lambda_{\text {dis }}\right)$ where $\lambda_{\text {dis }}$ is discrete limit structure on X^{2} and λ^{3} is the product limit-structure on X^{3} induced by $\pi_{i}: X^{3} \rightarrow X$ the projection maps for $i=1,2,3$. Suppose $\alpha \in F\left(X^{2} \vee_{\triangle} X^{2}\right)$ and $v \in X^{2} \vee_{\triangle} X^{2}$ with $\nabla v=(x, y)$. Note that

$$
\begin{gathered}
\lambda_{\text {dis }}(\nabla \alpha)(\nabla u)= \begin{cases}\theta_{\{(x, y)\}} \nabla u, & \nabla \alpha=[(x, y)] \\
\infty, & \nabla \alpha \neq[(x, y)]\end{cases} \\
=\left\{\begin{array}{lr}
0, & \nabla \alpha=[(x, y)] \text { and } \nabla u=(x, y) \\
\infty, & \nabla \alpha=[(x, y)] \text { and } \nabla u \neq(x, y) \\
\infty, & \nabla \alpha \neq[(x, y)] \text { and } \nabla u \neq(x, y)
\end{array}\right.
\end{gathered}
$$

Case 1: If $x=y$, then $\nabla u=(x, x)$ implies $u=(x, x)_{1}=(x, x)_{2}=v$ and $\nabla \alpha=[(x, x)]$ implies $\alpha=\left[(x, x)_{1}\right]=\left[(x, x)_{2}\right]$. By Lemma 5 (i), $\bar{\lambda}(\nabla \alpha)(\nabla u)=$ $\bar{\lambda}([(x, x)])(x, x)=0$ since $\bar{\lambda}$ is a limit structure on $X^{2} \vee \triangle X^{2}$.

Suppose that $\nabla u=(x, y)$ for some $x, y \in X$ with $x \neq y$ implies $u=(x, y)_{1}$ or $u=$ $(x, y)_{2}$ and $\nabla \alpha=[(x, y)]$ implies $\alpha=\left[(x, y)_{1}\right],\left[(x, y)_{2}\right],\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right]$ or $\alpha \supset$ $\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right]$. By the same argument used in Theorem $9, \alpha \supset\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right]$ with $\alpha \neq[\emptyset]$ and $\alpha \neq\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right]$ cannot occur. Hence, we must have $\alpha=$ $\left[(x, y)_{1}\right],\left[(x, y)_{2}\right]$ or $\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right]$.

If $\alpha=\left[(x, y)_{i}\right]$ and $u=(x, y)_{i}, i=1,2$, then $\bar{\lambda}\left(\left[(x, y)_{i}\right]\right)\left((x, y)_{i}\right)=0$ since $\bar{\lambda}$ is a limit structure on $X^{2} \vee_{\triangle} X^{2}$.

If $\alpha=\left[(x, y)_{2}\right]$ and $u=(x, y)_{1}$, then

$$
\begin{gathered}
\lambda_{d i s}(\nabla \alpha)(\nabla u)=\lambda_{d i s}\left(\nabla\left[(x, y)_{2}\right]\right)\left(\nabla(x, y)_{1}\right)=\lambda_{d i s}([(x, y)])(x, y)=0 \\
\left.\lambda\left(\pi_{1} S \alpha\right)\left(\pi_{1} S u\right)=\lambda\left(\left[\pi_{1} S(x, y)_{2}\right]\right)\left(\pi_{1} S(x, y)_{1}\right)\right)=\lambda([x])(x)=0 \\
\lambda\left(\pi_{2} S \alpha\right)\left(\pi_{2} S u\right)=\lambda\left(\left[\pi_{2} S(x, y)_{2}\right]\right)\left(\pi_{2} S(x, y)_{1}\right)=\lambda([x])(y)
\end{gathered}
$$

and

$$
\lambda\left(\pi_{3} S \alpha\right)\left(\pi_{3} S u\right)=\lambda\left(\left[\pi_{3} S(x, y)_{2}\right]\right)\left(\pi_{3} S(x, y)_{1}\right)=\lambda([y])(y)=0
$$

By Lemma 5 (i) and by assumption

$$
\begin{aligned}
\bar{\lambda}(\alpha)(u)= & \bar{\lambda}\left(\left[(x, y)_{2}\right]\right)\left((x, y)_{1}\right) \\
= & \sup \left\{\lambda_{\text {dis }}\left(\left[\nabla(x, y)_{2}\right]\right)\left(\nabla(x, y)_{1}\right), \lambda\left(\left[\pi_{1} S(x, y)_{2}\right]\right)\left(\pi_{1} S(x, y)_{1}\right)\right. \\
& \left.\lambda\left(\left[\pi_{2} S(x, y)_{2}\right]\right)\left(\pi_{2} S(x, y)_{1}\right), \lambda\left(\left[\pi_{3} S(x, y)_{2}\right]\right)\left(\pi_{3} S(x, y)_{1}\right)\right\} \\
= & \sup \{0, \lambda([x])(y)\}=\lambda([x])(y)=\infty
\end{aligned}
$$

If $\alpha=\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right], u=(x, y)_{1}$, then

$$
\begin{gathered}
\lambda_{d i s}(\nabla \alpha)(\nabla u)=\lambda_{d i s}\left(\nabla\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right]\right)\left(\nabla(x, y)_{1}\right)=\lambda_{d i s}([x])(x)=0 \\
\lambda\left(\pi_{1} S \alpha\right)\left(\pi_{1} S u\right)=\lambda\left(\left[\left\{\pi_{1} S(x, y)_{1}, \pi_{1} S(x, y)_{2}\right\}\right]\right)\left(\pi_{1} S(x, y)_{1}\right)=\lambda([x])(x)=0, \\
\lambda\left(\pi_{2} S \alpha\right)\left(\pi_{2} S u\right)=\lambda\left(\left[\left\{\pi_{2} S(x, y)_{1}, \pi_{2} S(x, y)_{2}\right\}\right]\right)\left(\pi_{2} S(x, y)_{1}\right)=\lambda([\{x, y\}])(y)
\end{gathered}
$$

and

$$
\lambda\left(\pi_{3} S \alpha\right)\left(\pi_{3} S u\right)=\lambda\left(\left[\left\{\pi_{3} S(x, y)_{1}, \pi_{3} S(x, y)_{2}\right\}\right]\right)\left(\pi_{3} S(x, y)_{1}\right)=\lambda([y])(y)=0
$$

Note that $[\{x, y\}] \subset[x]$. Since λ is a limit structure and $\lambda([x])(y)=\infty, \lambda([x])(y) \leq$ $\lambda([\{x, y\}])(y)$, it follows that $\lambda([\{x, y\}])(y)=\infty$.

By Lemma 5 (i),

$$
\begin{aligned}
\bar{\lambda}(\alpha)(u)= & \bar{\lambda}\left(\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right]\right)\left((x, y)_{1}\right) \\
= & \sup \left\{\lambda_{\text {dis }}\left(\left[\left\{\nabla(x, y)_{1}, \nabla(x, y)_{2}\right\}\right]\right)\left(\nabla(x, y)_{1}\right), \lambda\left(\left[\left\{\pi_{1} S(x, y)_{1}, \pi_{1} S(x, y)_{2}\right\}\right]\right)\right. \\
& \left(\pi_{1} S(x, y)_{1}\right), \lambda\left(\left[\left\{\pi_{2} S(x, y)_{1}, \pi_{2} S(x, y)_{2}\right\}\right]\right)\left(\pi_{2} S(x, y)_{1}\right), \lambda\left(\left[\left\{\pi_{3} S(x, y)_{1}\right.\right.\right. \\
& \left.\left.\left.\left.\pi_{3} S(x, y)_{2}\right\}\right]\right)\left(\pi_{3} S(x, y)_{1}\right)\right\}=\sup \{0, \infty\}=\infty
\end{aligned}
$$

If $\alpha=\left[(x, y)_{1}\right]$ and $u=(x, y)_{2}$, then

$$
\begin{gathered}
\lambda_{d i s}(\nabla \alpha)(\nabla u)=\lambda_{\text {dis }}\left(\nabla\left[(x, y)_{1}\right]\right)\left(\nabla(x, y)_{2}\right)=\lambda_{d i s}([(x, y)])(x, y)=0 \\
\left.\lambda\left(\pi_{1} S \alpha\right)\left(\pi_{1} S u\right)=\lambda\left(\left[\pi_{1} S(x, y)_{1}\right]\right)\left(\pi_{1} S(x, y)_{2}\right)\right)=\lambda([x])(x)=0 \\
\lambda\left(\pi_{2} S \alpha\right)\left(\pi_{2} S u\right)=\lambda\left(\left[\pi_{2} S(x, y)_{1}\right]\right)\left(\pi_{2} S(x, y)_{2}\right)=\lambda([y])(x)
\end{gathered}
$$

and

$$
\lambda\left(\pi_{3} S \alpha\right)\left(\pi_{3} S u\right)=\lambda\left(\left[\pi_{3} S(x, y)_{1}\right]\right)\left(\pi_{3} S(x, y)_{2}\right)=\lambda([y])(y)=0
$$

By Lemma 5 (i) and the assumption $\lambda[y](x)=\infty$,

$$
\begin{aligned}
\bar{\lambda}(\alpha)(u)= & \bar{\lambda}\left(\left[(x, y)_{1}\right]\right)\left((x, y)_{2}\right) \\
= & \sup \left\{\lambda_{d i s}\left(\left[\nabla(x, y)_{1}\right]\right)\left(\nabla(x, y)_{2}\right), \lambda\left(\left[\pi_{1} S(x, y)_{1}\right]\right)\left(\pi_{1} S(x, y)_{2}\right)\right. \\
& \left.\lambda\left(\left[\pi_{2} S(x, y)_{1}\right]\right)\left(\pi_{2} S(x, y)_{2}\right), \lambda\left(\left[\pi_{3} S(x, y)_{1}\right]\right)\left(\pi_{3} S(x, y)_{2}\right)\right\} \\
= & \sup \{0, \lambda([y])(x)\}=\lambda([y])(x)=\infty
\end{aligned}
$$

If $\alpha=\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right], u=(x, y)_{2}$, then

$$
\lambda_{d i s}(\nabla \alpha)(\nabla u)=\lambda_{\text {dis }}\left(\nabla\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right]\right)\left(\nabla(x, y)_{2}\right)=\lambda_{d i s}([x])(x)=0 .
$$

$$
\lambda\left(\pi_{1} S \alpha\right)\left(\pi_{1} S u\right)=\lambda\left(\left[\left\{\pi_{1} S(x, y)_{1}, \pi_{1} S(x, y)_{2}\right\}\right]\right)\left(\pi_{1} S(x, y)_{2}\right)=\lambda([x])(x)=0
$$

$$
\lambda\left(\pi_{2} S \alpha\right)\left(\pi_{2} S u\right)=\lambda\left(\left[\left\{\pi_{2} S(x, y)_{1}, \pi_{2} S(x, y)_{2}\right\}\right]\right)\left(\pi_{2} S(x, y)_{2}\right)=\lambda([\{x, y\}])(x)
$$

and

$$
\lambda\left(\pi_{3} S \alpha\right)\left(\pi_{3} S u\right)=\lambda\left(\left[\left\{\pi_{3} S(x, y)_{1}, \pi_{3} S(x, y)_{2}\right\}\right]\right)\left(\pi_{3} S(x, y)_{2}\right)=\lambda([y])(y)=0
$$

Note that $[\{x, y\}] \subset[y]$. Since λ is a limit structure, we get $\lambda([y])(x) \leq \lambda([\{x, y\}])(x)$. By the assumption $\lambda([y])(x)=\infty$, it follows that $\lambda([\{x, y\}])(x)=\infty$.

By Lemma 5 (i),

$$
\begin{aligned}
\bar{\lambda}(\alpha)(u)= & \bar{\lambda}\left(\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right]\right)\left((x, y)_{1}\right) \\
= & \sup \left\{\lambda_{\operatorname{dis}}\left(\left[\left\{\nabla(x, y)_{1}, \nabla(x, y)_{2}\right\}\right]\right)\left(\nabla(x, y)_{2}\right), \lambda\left(\left[\left\{\pi_{1} S(x, y)_{1}, \pi_{1} S(x, y)_{2}\right\}\right]\right)\right. \\
& \left(\pi_{1} S(x, y)_{2}\right), \lambda\left(\left[\left\{\pi_{2} S(x, y)_{1}, \pi_{2} S(x, y)_{2}\right\}\right]\right)\left(\pi_{2} S(x, y)_{2}\right), \lambda\left(\left[\left\{\pi_{3} S(x, y)_{1}\right.\right.\right. \\
& \left.\left.\left.\left.\pi_{3} S(x, y)_{2}\right\}\right]\right)\left(\pi_{3} S(x, y)_{2}\right)\right\}=\sup \{0, \infty\}=\infty
\end{aligned}
$$

Case 2: Let $(z, z)=\nabla u \neq(x, y)$ for some $z \in X$ and $\nabla \alpha=[(x, y)]$. It follows that $u=(z, z)_{1}=(z, z)_{2}$ and $\alpha=\left[(x, y)_{1}\right],\left[(x, y)_{2}\right]$ or $\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right]$.

If $\alpha=\left[(x, y)_{i}\right]$ or $\left[\left\{(x, y)_{1},(x, y)_{2}\right\}\right]$ for $i=1,2$ and $u=(z, z)_{1}=(z, z)_{2}$, then $\lambda_{d i s}(\nabla \alpha)(\nabla u)=\lambda_{\text {dis }}([(x, y)])(z, z)=\infty$ since $\lambda_{\text {dis }}$ is a discrete limit structure and $(x, y) \neq(z, z)$. It follows that

$$
\begin{aligned}
\bar{\lambda}(\alpha)(u) & =\sup \left\{\lambda_{d i s}(\nabla \alpha)(\nabla u), \lambda\left(\pi_{1} S \alpha\right)\left(\pi_{1} S u\right), \lambda\left(\pi_{2} S \alpha\right)\left(\pi_{2} S u\right), \lambda\left(\pi_{3} S \alpha\right)\left(\pi_{3} S u\right)\right\} \\
& =\sup \left\{\infty, \lambda\left(\pi_{1} S \alpha\right)(z, z), \lambda\left(\pi_{2} S \alpha\right)(z, z), \lambda\left(\pi_{3} S \alpha\right)(z, z)\right\}=\infty
\end{aligned}
$$

Case 3: Suppose $\nabla u \neq(x, y)$ and $\nabla \alpha \neq[(x, y)]$, then $\lambda_{\text {dis }}(\nabla \alpha)(\nabla u)=\infty$ since $\lambda_{\text {dis }}$ is a discrete limit structure, and consequently

$$
\begin{aligned}
\bar{\lambda}(\alpha)(u) & =\sup \left\{\lambda_{d i s}(\nabla \alpha)(\nabla u), \lambda\left(\pi_{1} S \alpha\right)\left(\pi_{1} S u\right), \lambda\left(\pi_{2} S \alpha\right)\left(\pi_{2} S u\right), \lambda\left(\pi_{3} S \alpha\right)\left(\pi_{3} S u\right)\right\} \\
& =\sup \left\{\infty, \lambda\left(\pi_{1} S \alpha\right)\left(\pi_{1} S u\right), \lambda\left(\pi_{2} S \alpha\right)\left(\pi_{2} S u\right), \lambda\left(\pi_{3} S \alpha\right)\left(\pi_{3} S u\right)\right\}=\infty
\end{aligned}
$$

Hence, for all $\alpha \in F\left(X^{2} \vee_{\triangle} X^{2}\right)$ and $v \in X^{2} \vee_{\triangle} X^{2}$, we have

$$
\bar{\lambda}(\alpha)= \begin{cases}\theta_{\{v\}}, & \alpha=[v] \\ \infty, & \alpha \neq[v]\end{cases}
$$

i.e., $\bar{\lambda}$ is discrete limit structure on $X^{2} \vee_{\triangle} X^{2}$ and by Definition $16,(X, \lambda)$ is T_{1}.

Theorem 18. A gauge-approach space (X, \mathfrak{D}) is T_{1} if and only if for each distinct points x and y in X, there exists $d \in \mathfrak{D}$ such that $d(x, y)=\infty=d(y, x)$.

Proof. Let (X, \mathfrak{D}) be $T_{1}, x, y \in X$ with $x \neq y$. Let $u=(x, y)_{1}, v=(x, y)_{2} \in$ $X^{2} \vee_{\triangle} X^{2}$. Note that

$$
\begin{gathered}
d\left(\pi_{1} S(u), \pi_{1} S(v)\right)=d\left(\pi_{1} S(x, y)_{1}, \pi_{1} S(x, y)_{2}\right)=d(x, x)=0 \\
d\left(\pi_{2} S(u), \pi_{2} S(v)\right)=d\left(\pi_{2} S(x, y)_{1}, \pi_{2} S\left(x, y_{2}\right)=d(y, x)\right. \\
d\left(\pi_{3} S(u), \pi_{3} S(v)\right)=d\left(\pi_{3} S(x, y)_{1}, \pi_{3} S\left(x, y_{2}\right)=d(y, y)=0\right.
\end{gathered}
$$

and

$$
d_{d i s}(\nabla u, \nabla v)=d_{d i s}\left(\nabla(x, y)_{1}, \nabla(x, y)_{2}\right)=d_{d i s}((x, y),(x, y))=0
$$

where $d_{d i s}$ is the discrete extended pseudo-quasi metric on $X^{2} \vee_{\triangle} X^{2}$ and π_{i} : $X^{3} \rightarrow X$ are the projection maps for $i=1,2,3$. Since $u \neq v$ and (X, \mathfrak{D}) is T_{1}, by Lemma 5 (ii),

$$
\begin{aligned}
\infty & =\sup \left\{d_{d i s}(\nabla u, \nabla v), d\left(\pi_{1} S(u), \pi_{1} S(v)\right), d\left(\pi_{2} S(u), \pi_{2} S(v)\right), d\left(\pi_{3} S(u), \pi_{3} S(v)\right)\right\} \\
& =\sup \{0, d(y, x)\}=d(y, x)
\end{aligned}
$$

and consequently, $d(y, x)=\infty$.
Similarly, if $u=(x, y)_{2}$ and $v=(x, y)_{1} \in X^{2} \vee_{\triangle} X^{2}$, then,

$$
\begin{gathered}
d\left(\pi_{1} S(u), \pi_{1} S(v)\right)=d\left(\pi_{1} S(x, y)_{2}, \pi_{1} S(x, y)_{1}\right)=d(x, x)=0 \\
d\left(\pi_{2} S(u), \pi_{2} S(v)\right)=d\left(\pi_{2} S(x, y)_{2}, \pi_{2} S\left(x, y_{1}\right)=d(x, y)\right. \\
d\left(\pi_{3} S(u), \pi_{3} S(v)\right)=d\left(\pi_{3} S(x, y)_{2}, \pi_{3} S\left(x, y_{1}\right)=d(y, y)=0\right.
\end{gathered}
$$

and

$$
d_{d i s}(\nabla u, \nabla v)=d_{d i s}\left(\nabla(x, y)_{2}, \nabla(x, y)_{1}\right)=d_{d i s}((x, y),(x, y))=0
$$

Since $u \neq v$ and (X, \mathfrak{D}) is T_{1}, by Lemma 5 (ii),

$$
\begin{aligned}
\infty & =\sup \left\{d_{d i s}(\nabla u, \nabla v), d\left(\pi_{1} S(u), \pi_{1} S(v)\right), d\left(\pi_{2} S(u), \pi_{2} S(v)\right), d\left(\pi_{3} S(u), \pi_{3} S(v)\right)\right\} \\
& =\sup \{0, d(x, y)\}=d(x, y)
\end{aligned}
$$

Conversely, let $\overline{\mathcal{H}}$ be an initial gauge basis on $X^{2} \vee_{\triangle} X^{2}$ induced by $S: X^{2} \vee_{\triangle}$ $X^{2} \rightarrow\left(X^{3}, \mathfrak{D}^{3}\right)$ and $\nabla: X^{2} \vee_{\triangle} X^{2} \rightarrow\left(X^{2}, \mathfrak{D}_{\text {dis }}\right)$, where $\mathfrak{D}_{\text {dis }}$ is discrete gauge on X^{2} and \mathfrak{D}^{3} is the product structure on X^{3}. Suppose $\bar{d} \in \overline{\mathcal{H}}$ and $u, v \in X^{2} \vee_{\triangle} X^{2}$.

If $u=v$, then $\bar{d}(u, v)=0$ since \bar{d} is the extended pseudo-quasi metric.
If $u \neq v$ and $\nabla u \neq \nabla v$, then $d_{d i s}(\nabla u, \nabla v)=\infty$ since $d_{d i s}$ is discrete. By Lemma 5 (ii),

$$
\begin{aligned}
\bar{d}(u, v) & =\sup \left\{d_{d i s}(\nabla u, \nabla v), d\left(\pi_{1} S(u), \pi_{1} S(v)\right), d\left(\pi_{2} S(u), \pi_{2} S(v)\right), d\left(\pi_{3} S(u), \pi_{3} S(v)\right)\right\} \\
& =\sup \left\{\infty, d\left(\pi_{1} S(u), \pi_{1} S(v)\right), d\left(\pi_{2} S(u), \pi S(v)\right), d\left(\pi_{3} S(u), \pi_{3} S(v)\right)\right\} \\
& =\infty
\end{aligned}
$$

Suppose $u \neq v$ and $\nabla u=(x, y)=\nabla v$ for some $x, y \in X$ with $x \neq y$, it follows that $u=(x, y)_{1}$ and $v=(x, y)_{2}$ or $u=(x, y)_{2}$ and $v=(x, y)_{1}$. Let $u=(x, y)_{1}$ and $v=(x, y)_{2}$.

$$
\begin{aligned}
\bar{d}(u, v)= & \bar{d}\left((x, y)_{1},(x, y)_{2}\right) \\
= & \sup \left\{d_{d i s}\left(\nabla(x, y)_{1}, \nabla(x, y)_{2}\right), d\left(\pi_{1} S(x, y)_{1}, \pi_{1} S(x, y)_{2}\right)\right. \\
& \left.d\left(\pi_{2} S(x, y)_{1}, \pi_{2} S(x, y)_{2}\right), d\left(\pi_{3} S(x, y)_{1} S, \pi_{3} S(x, y)_{2}\right)\right\} \\
= & \sup \{0, d(y, x)\}=d(y, x)=\infty
\end{aligned}
$$

by the assumption $d(y, x)=\infty$.

If $u=(x, y)_{2}$ and $v=(x, y)_{1}$, then

$$
\begin{aligned}
\bar{d}(u, v)= & \bar{d}\left((x, y)_{2},(x, y)_{1}\right) \\
= & \sup \left\{d_{d i s}\left(\nabla(x, y)_{2}, \nabla(x, y)_{1}\right), d\left(\pi_{1} S(x, y)_{2}, \pi_{1} S(x, y)_{1}\right),\right. \\
& \left.d\left(\pi_{2} S(x, y)_{2}, \pi_{2} S(x, y)_{1}\right), d\left(\pi_{3} S(x, y)_{2}, \pi_{3} S(x, y)_{1}\right)\right\} \\
= & \sup \{0, d(x, y)\}=d(x, y)=\infty,
\end{aligned}
$$

by the assumption $d(x, y)=\infty$.
Hence, for all $u, v \in X^{2} \vee_{\triangle} X^{2}$, we have

$$
\bar{d}(u, v)= \begin{cases}0, & u=v \\ \infty, & u \neq v\end{cases}
$$

i.e., \bar{d} is discrete extended pseudo-quasi metric on $X^{2} \vee \triangle X^{2}$, i.e., $\overline{\mathcal{H}}=\{\bar{d}\}$. By Definition 16 (X, \mathfrak{D}) is T_{1}.
Remark 19. (cf. [18, 22]) (i) The transition from gauge to distance is given by

$$
\delta(x, A)=\sup _{d \in \mathcal{A}} \inf _{y \in A} d(x, y)
$$

(ii) The transition from distance to gauge is determined by

$$
\mathfrak{D}=\left\{d \in \operatorname{pqMet}^{\infty}(X) \mid \forall A \subseteq X, \forall x \in X: \inf _{y \in A} d(x, y) \leq \delta(x, A)\right\}
$$

Theorem 20. Let (X, \mathfrak{G}) be an approach space. The following are equivalent:
(i) (X, \mathfrak{G}) is T_{1}.
(ii) For all $x, y \in X$ with $x \neq y, \lambda([x])(y)=\infty=\lambda([y])(x)$.
(iii) For all $x, y \in X$ with $x \neq y$, there exists $d \in \mathfrak{D}$ such that $d(x, y)=\infty=$ $d(y, x)$.
(iv) For all $x, y \in X$ with $x \neq y, \delta(x,\{y\})=\infty=\delta(y,\{x\})$.

Proof. $(i) \Leftrightarrow(i i)$ and $(i) \Leftrightarrow(i i i)$ follow from Theorem 17 and Theorem 18, respectively.
(iii) $\Rightarrow(i v)$: Suppose for all $x, y \in X$ with $x \neq y$, there exists $d \in \mathfrak{D}$ such that $d(x, y)=\infty=d(y, x)$. By Remark 19 (i), $\delta(x,\{y\})=\sup _{e \in \mathcal{Q}} e(x, y)=\infty$, and $\delta(y,\{x\})=\sup _{e \in \mathcal{D}} e(y, x)=\infty$ and consequently, $\delta(x,\{y\})=\infty=\delta(y,\{x\})$.
$(i v) \Rightarrow(i i i)$: Suppose $\forall x, y \in X$ with $x \neq y, \delta(x,\{y\})=\infty=\delta(y,\{x\})$. Take $A=\{y\}$, then by Remark 19 (ii), for all $e \in \mathfrak{D}, e(x, y) \leq \delta(x,\{y\})$ and $e(y, x) \leq$ $\delta(y,\{x\})$. In particular, there exists $d \in \mathfrak{D}$ such that $d(x, y)=\delta(x,\{y\})=\infty$ and $d(y, x)=\delta(y,\{x\})=\infty$ and consequently, $d(x, y)=\infty=d(y, x)$.
Definition 21. (cf. [20]) Let (X, \mathfrak{G}) be an approach space.
If topological co-reflection $\left(X, \tau_{\mathfrak{G}}\right)$ is $\mathbf{T}_{\mathbf{1}}$ (we refer it to usual T_{1}), then an approach space (X, \mathfrak{G}) is called $\mathbf{T}_{\mathbf{1}}$.

Theorem 22. Let (X, \mathfrak{G}) be an approach space. The following are equivalent.
(i) $\left(X, \tau_{\mathfrak{G}}\right)$ is $\mathbf{T}_{\mathbf{1}}$.
(ii) For all $x, y \in X$ with $x \neq y, \lambda([x])(y)>0$.
(iii) For all $x, y \in X$ with $x \neq y$, there exists $d \in \mathfrak{D}$ such that $d(x, y)>0$.
(iv) For all $x, y \in X$ with $x \neq y, \delta(x,\{y\})>0$.

Proof. It is given in [16, 20, 22.
Example 23. Let $X=[0, \infty], A \subset X$ and $\delta: X \times 2^{X} \longrightarrow[0, \infty]$ be a map defined as:

$$
\delta(x, A)= \begin{cases}\infty, & A=\emptyset \\ 0, & x \in A \\ 2, & x \notin A\end{cases}
$$

By Theorem 20 and Theorem 22, a distance-approach space (X, δ) is $\mathbf{T}_{\mathbf{1}}$ (in the usual sense) but it is not T_{1} (in our sense).

Remark 24. (1)

(i) In category Top of topological spaces and continuous functions as well as in the category SULim semiuniform limit spaces and uniformly continuous maps [24], by Theorem 15 and by Remark 4.7(2) of [8] both T_{1} (in our sense) and $\mathbf{T}_{\mathbf{1}}$ (in the usual sense) are equivalent and they reduce to usual T_{1} separation axiom. However, in the category pqsMet of extended pseudo-quasi-semi metric spaces and non-expensive maps, by Theorem 3.3 of [11], an extended pseudo-quasi-semi metric space (X, d) is T_{1} iff for all distinct points x, y of $X, d(x, y)=\infty$ and by Theorem 3.4 of [11], (X, d) is $\mathbf{T}_{\mathbf{1}}$ (in the usual sense, i.e., $\left(X, \tau_{d}\right)$ is T_{1}, where τ_{d} is the topology induced from d) iff for all distinct points x, y of $X, d(x, y)>0$.
(ii) By Theorem 11 and Theorem 20, an approach space (X, \mathfrak{G}) is T_{1} if and only if (X, \mathfrak{G}) is T_{1} at p for all $p \in X$. Moreover, by Theorem 20 and Theorem 22, if an approach space (X, \mathfrak{G}) is T_{1} (in our sense), then (X, \mathfrak{G}) is $\mathbf{T}_{\mathbf{1}}$ (in the usual sense) but by Example 23. reverse implication is not true.
(iii) By Example 12 (i), a distance-approach space (X, δ) is both T_{1} at a and $\mathbf{T}_{\mathbf{1}}$ (in the usual sense) but it is not T_{1} (in our sense). Furthermore, by Example 12 (ii), a distance-approach space (X, δ) is $\mathbf{T}_{\mathbf{1}}$ (in the usual sense) but it is not T_{1} at a. Hence, there is no relation between $\mathbf{T}_{\mathbf{1}}$ (in the usual sense) and local T_{1}.
(iv) By Remark 2.12 (2) of [6], T_{1} and local T_{1} (i.e., T_{1} at p for all $p \in X$) axioms could be equivalent.

5. Conclusions

In this paper, we gave a characterization of both local T_{1} and T_{1} limit (resp. guage) approach spaces and determined the result that (X, \mathfrak{G}) approach space is T_{1} at p for all $p \in X$ iff it is T_{1}. Moreover, it is shown that by Theorem 20
and Theorem 22, T_{1} (in our sense) implies $\mathbf{T}_{\mathbf{1}}$ (in the usual sense), but reverse implication, by Example 23 , is not true. Furthermore, by Example 12 (i) and (ii), there is no relation between $\mathbf{T}_{\mathbf{1}}$ (in the usual sense) and local T_{1}.

References

[1] Adamek, J., Herrlich, H. and Strecker. G. E., Abstract and Concrete Categories, Pure and Applied Mathematics, John Wiley $\&$ Sons, New York, 1990.
[2] Baran, M., Separation properties, Indian J. pure appl. Math, 23 (1991), 333-341.
[3] Baran, M., Separation Properties in Topological Categories, Math. Balkanica, 10 (1996), 39-48.
[4] Baran, M., T_{3} and T_{4}-objects in topological categories, Indian J. pure appl. Math., 29 (1998), 59-70.
[5] Baran, M., Completely regular objects and normal objects in topological categories, Acta Mathematica Hungarica, 80.3 (1998), 211-224.
[6] Baran, M., Closure operators in convergence spaces, Acta Mathematica Hungarica, 87.1-2 (2000), 33-45.
[7] Baran, M. and Al-Safar, J., Quotient-reflective and bireflective subcategories of the category of preordered sets, Topology and its Applications, 158.15 (2011), 2076-2084.
[8] Baran, M., Kula, S. and Erciyes, A., T_{0} and T_{1} semiuniform convergence spaces, Filomat, 27.4 (2013), 537-546.
[9] Baran, M., Kula, S., Baran, T. M. and Qasim, M., Closure Operators in Semiuniform Convergence Spaces, Filomat 30.1 (2016), 131-140.
[10] Baran, M. and Qasim, M., Local T_{1} Distance-Approach Spaces, Proceedings of 5th International Conference on Advanced Technology \& Sciences (ICAT), Bahcesehir University, Istanbul, Turkey, (2017), 112-116.
[11] Baran, T.M. and Kula, M., T_{1} Extended Pseudo-Quasi-Semi Metric Spaces, Math. Sci. Appl. E-Notes, 5.1 (2017), 40-45.
[12] Berckmoes, B., Lowen, R. and Van Casteren, J., Approach theory meets probability theory, Topology and its Applications, 158.7 (2011), 836-852.
[13] Colebunders, E., De Wachter S., and Lowen R., Intrinsic approach spaces on domains, Topology and its Applications, 158.17 (2011), 2343-2355.
[14] Dikranjan, D. and Giuli, E., Closure operators I, Topology and its Applications, 27.2 (1987), 129-143.
[15] Dikranjan, D. and Tholen, W., Categorical structure of closure operators: with applications to topology, algebra and discrete mathematics, Kluwer Academic Publishers, Dordrecht, 1995.
[16] Jager, G., A note on neighbourhoods for approach spaces, Hacettepe Journal of Mathematics and Statistics, 41.2 (2012), 283-290.
[17] Lowen, R., Approach spaces A common Supercategory of TOP and Met, Mathematische Nachrichten, 141.1 (1989), 183-226.
[18] Lowen, R., Approach spaces: The missing link in the Topology-Uniformity-Metric triad, Oxford University Press, 1997.
[19] Lowen, R. and Windels, B., Approach groups, The Rocky Mountain Journal of Mathematics, 30 (2000), 1057-1073.
[20] Lowen, R. and Sioen, M., A note on separation in AP, Applied general topology, 4.2 (2003), 475-486.
[21] Lowen, R., and Verwulgen, S., Approach vector spaces, Houston J. Math , 30.4 (2004), 1127-1142.
[22] Lowen, R., Index Analysis: Approach theory at work, Springer, 2015.
[23] Preuss, G., Theory of topological structures: an approach to categorical topology, D. Reidel Publ. Co., Dordrecht, 1988.
[24] Preuss, G., Foundations of topology: an approach to convenient topology, Kluwer Academic Publishers, Dordrecht, 2002.

Current address: Mehmet BARAN: Department of Mathematics, Faculty of Science, Erciyes University, Kayseri 38039 Turkey.

E-mail address: baran@erciyes.edu.tr
ORCID Address: http://orcid.org/0000-0001-9802-3718
Current address: Muhammad QASIM: National University of Sciences \& Technology (NUST), School of Natural Sciences, Department of Mathematics, H-12 Islamabad, Pakistan

E-mail address: qasim@sns.nust.edu.pk
ORCID Address: http://orcid.org/0000-0001-9485-8072

[^0]: Received by the editors: February 27, 2018; Accepted: April 19, 2018.
 2010 Mathematics Subject Classification. Primary: 54B30; Secondary: 54D10; 54A05; 54A20; 18B99; 18D15.

 Key words and phrases. Topological category, T_{1} objects, initial lift, limit-approach space .
 This research was supported by the Scientific and Technological Research Council of Turkey (TÜBITAK) under Grant No: 114F299 and Erciyes University Scientific Research Center (BAP) under Grant No: 7174.

