Available online: April 19, 2018

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 1, Pages 784–800 (2019) DOI: 10.31801/cfsuasmas.478632 ISSN 1303–5991 E-ISSN 2618-6470

 $http://communications.science.ankara.edu.tr/index.php?series{=}A1$

T_1 APPROACH SPACES

MEHMET BARAN AND MUHAMMAD QASIM

ABSTRACT. In this paper, we characterize both T_1 and local T_1 limit (resp. gauge) approach spaces as well as show how these concepts are related to each other. Finally, we compare these T_1 and the usual T_1 approach spaces.

1. INTRODUCTION

It is well-known that the category **Met** of metric spaces and non-expensive maps fails to have infinite products and coproducts. To solve this problem, in 1989, Robert Lowen [17] introduced approach spaces, a generalization of metric and topology, based upon a distance function between points and sets. Approach spaces can be defined in several equivalent ways such as in terms of limit, gauge and distance [18, 22] which correspond to limit points of filter, extended pseudo quasi-metrics determining coarser topologies and closure operators in topology respectively. Approach spaces have several applicative roots in all field of mathematics including probability theory [12], domain theory [13], group theory [19] and vector spaces [21].

In 1991, Baran [2] introduced local T_1 separation property in order to define the notion of strong closedness [2] in set-based topological category which forms closure operators in sense of Dikranjan and Giuli [14, 15] in some well known topological categories **Conv** (category of convergence spaces and continuous maps) [6, 18, 23], **Prord** (category of preordered sets and order preserving maps) [7, 15] and **SUConv** (category of semiuniform convergence spaces and uniformly continuous maps) [9, 24]. Furthermore, Baran [2] generalized T_1 axiom of topology to topological category which is used to define regular, completely regular and normal objects [4, 5] in topological categories.

Received by the editors: February 27, 2018; Accepted: April 19, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary: 54B30; Secondary: 54D10; 54A05; 54A20; 18B99; 18D15.

Key words and phrases. Topological category, T_1 objects, initial lift, limit-approach space.

This research was supported by the Scientific and Technological Research Council of Turkey (TÜBITAK) under Grant No: 114F299 and Erciyes University Scientific Research Center (BAP) under Grant No: 7174.

^{©2018} Ankara University Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

⁷⁸⁴

$T_{\rm 1}$ APPROACH SPACES

The aim of paper is

- (i) to characterize T_1 limit (resp. gauge) approach spaces and show how these are related to each other.
- (ii) to give characterization of local T_1 limit (resp. gauge) approach spaces and examine how these are related to each other and their relationship with T_1 axiom.
- (iii) to compare these results with usual T_1 defined in [16, 20, 22] and examine their relationship.

2. Preliminaries

Let X and J be sets, F(X) be the set of all filters on X and $\sigma : J \to F(X)$ be a map. Let \mathcal{A} be collection of subsets of X, $2^{(I)}$ be set of finite subsets of X and 2^X be the power set of X. The stack of \mathcal{A} is defined by $[\mathcal{A}] = \{B \subseteq X | \exists A \in \mathcal{A} : A \subseteq B\}$ and diagonal filter of σ is defined as for all $\alpha \in F(J)$, $\sum \sigma(\alpha) = \bigvee_{F \in \alpha} \bigcap_{j \in F} \sigma(j)$. The

indicator map $\theta_A : X \to [0, \infty]$ of a subset $A \subset X$ is a map which equals 0 on A and ∞ outside A, i.e.,

$$\theta_A(x) = \begin{cases} 0, & x \in A \\ \infty, & x \notin A \end{cases}$$

Definition 1. (cf. [18, 22]) A map $\lambda : F(X) \longrightarrow [0, \infty]^X$ is called a limit on X if it fulfills the following properties:

- (i) $\forall x \in X : \lambdax = 0$,
- (ii) $\forall \alpha, \beta \in F(X) : \alpha \subset \beta \Rightarrow \lambda \beta \leq \lambda \alpha$,
- (iii) For any non-empty family $(\alpha_i)_{i \in I}$ of filters on $X : \lambda(\bigcap_{i \in I} \alpha_i) = \sup_{i \in I} \lambda(\alpha_i)$,
- (iv) For any $\alpha \in F(X)$ and any selection of filters $(\sigma(x))_{x \in X}$: $\lambda \Sigma \sigma(\alpha) \leq \lambda(\alpha) + \sup_{x \in X} \lambda \sigma(x)(x).$

The pair (X, λ) is called a limit-approach space.

Recall [18], that an extended pseudo-quasi metric on a set X is a map d: $X \times X \rightarrow [0,\infty]$ satisfies for all $x \in X$, d(x,x) = 0 and for all $x, y, z \in X$, $d(x,y) \leq d(x,z) + d(z,y)$.

Definition 2. (cf. [18, 22]) Let X be a set and let $pqMet^{\infty}(X)$ be the set of all extended pseudo-quasi metrics on X, $\mathfrak{D} \subseteq pqMet^{\infty}(X)$ and $d \in pqMet^{\infty}(X)$, then

- (i) D is called ideal if it is closed under the formation of finite suprema and if it is closed under the operation of taking smaller function.
- (ii) \mathfrak{D} dominates d if $\forall x \in X, \epsilon > 0$ and $\omega < \infty$ there exists $e \in \mathfrak{D}$ such that $d(x, .) \land \omega \leq e(x, .) + \epsilon$ and if \mathfrak{D} dominates d, then \mathfrak{D} is called saturated.

If \mathfrak{D} is an ideal in $pqMet^{\infty}(X)$ and saturated, then \mathfrak{D} is called gauge. The pair (X, \mathfrak{D}) is called a gauge-approach space.

Definition 3. (cf. [18, 22]) A map $\delta : X \times 2^X \to [0, \infty]$ is called distance on X if δ satisfies the followings:

- (i) $\forall A \subseteq X \text{ and } \forall x \in A, \ \delta(x, A) = 0$
- (ii) $\forall x \in X \text{ and } \emptyset$, the empty set, $\delta(x, \emptyset) = \infty$
- (iii) $\forall x \in X, \forall A, B \subseteq X, \delta(x, A \cup B) = \min(\delta(x, A), \delta(x, B))$
- (iv) $\forall x \in X, \forall A \subseteq X, \forall \epsilon \in [0, \infty], \ \delta(x, A) \leq \delta(x, A^{(\epsilon)}) + \epsilon$, where $A^{(\epsilon)} = \{x \in X | \delta(x, A) \leq \epsilon\}$.

The pair (X, δ) is called a distance-approach space.

Note that limits, gauges and distances are equivalent concepts [18, 22], and we will denote an approach space by (X, \mathfrak{G}) .

Definition 4. (cf. [18, 22]) Let (X, \mathfrak{G}) and (X', \mathfrak{G}') be approach spaces. If the map $f : (X, \mathfrak{G}) \longrightarrow (X', \mathfrak{G}')$ satisfies one of the following equivalent, then f is called a contraction map.

- (i) $\forall \alpha \in F(X) : \lambda'(f(\alpha)) \leq \lambda \alpha$.
- (ii) $\forall d' \in \mathfrak{D}' : d' \circ (f \times f) \in \mathfrak{D}.$
- (iii) $\forall x \in X \text{ and } A \subseteq X, \ \delta'(f(x), f(A)) \leq \delta(x, A).$

The category whose objects are approach spaces and morphisms are contraction maps is denoted by **App** and it is a topological category over **Set** [18, 22].

Lemma 5. (cf. [18, 22]) Let (X_i, \mathfrak{G}_i) be the collection of approach spaces and $f_i : X \to (X_i, \mathfrak{G}_i)$ be a source in **App**.

(i) The initial limit-approach structure on X is given by $\lambda \alpha = \sup_{i \in I} \lambda_i(f_i(\alpha)) \circ f_i$, where $f_i(\alpha)$ is a filter generated by $\{f_i(A), i \in I\}$ is a $f_i(\alpha) = \{A \in X\}$.

where $f_i(\alpha)$ is a filter generated by $\{f_i(A_i), i \in I\}$, i.e., $f_i(\alpha) = \{A_i \subset X_i : \exists B \in \alpha \text{ such that } f_i(B) \subset A_i\}.$

(ii) The initial gauge-approach base on X is defined by

$$\mathcal{H} = \{\sup_{i \in K} d_i \circ (f_i \times f_i) : K \in 2^{(I)}, \forall i \in K, d_i \in \mathcal{H}_i\},\$$

where for any $i \in I, \mathcal{H}_i$ is a basis for gauge in X_i .

(iii) The discrete limit-approach structure λ on X is given by

$$\lambda \alpha = \begin{cases} \theta_{\{x\}}, & \alpha = [x] \\ \infty, & \alpha \neq [x] \end{cases}$$

for all $\alpha \in F(X)$ and $x \in X$, where $\theta_{\{x\}}$ is an indicator of $\{x\}$.

(iv) The discrete gauge-approach structure \mathfrak{D} on X is $\mathfrak{D} = pqMet^{\infty}(X)$ (all extended pseudo-quasi metric spaces on X).

3. Local T_1 Approach Spaces

Let X be a set and $p \in X$. Let $X \vee_p X$ be the wedge at p [2], i.e., two disjoint copies of X identified at p. A point x in $X \vee_p X$ will be denoted by $x_1(x_2)$ if x is in the first (resp. the second) component of $X \vee_p X$. Note that $p_1 = p_2$.

Definition 6. (cf. [2]) A map $S_p: X \vee_p X \to X^2$ is called skewed p-axis map if

$$S_p(x_i) = \begin{cases} (x, x), & i = 1\\ (p, x), & i = 2 \end{cases}$$

Definition 7. (cf. [2]) A map $\nabla_p : X \vee_p X \to X$ is called folding map at p if $\nabla_p(x_i) = x$ for i = 1, 2.

Recall [1, 24], that a functor $\mathcal{U} : \mathcal{E} \to \mathbf{Set}$ is called topological if \mathcal{U} is concrete, consists of small fibers and each \mathcal{U} -source has an initial lift or equivalently, each \mathcal{U} -sink has a final lift and called normalized topological functor if constant objects have a unique structure.

Note that a topological functor has a left adjoint called the discrete functor [1].

Definition 8. (cf. [2]) Let $\mathcal{U} : \mathcal{E} \to \mathbf{Set}$ be topological, X an object in \mathcal{E} with $p \in \mathcal{U}(X) = B$

If the initial lift of the \mathcal{U} -source $\{S_p : B \lor_p B \to \mathcal{U}(X^2) = B^2 \text{ and } \nabla_p : B \lor_p B \to \mathcal{U}(B) = B\}$ is discrete, where \mathcal{D} is the discrete functor, then X is called T_1 at p.

Theorem 9. A limit-approach space (X, λ) is T_1 at p if and only if for all $x \in X$ with $x \neq p$, $\lambda([x])(p) = \infty = \lambda([p])(x)$.

Proof. Let (X, λ) be T_1 at p and $x \in X$ with $x \neq p$. Note that $[x_1], [x_2] \in F(X \vee_p X)$ and $x_1, x_2 \in X \vee_p X$.

$$\lambda_{dis}([\nabla_p x_1])(\nabla_p x_2) = \lambda_{dis}([x])(x) = 0,$$

$$\lambda([\pi_1 S_p x_1])(\pi_1 S_p x_2) = \lambda([x])(p),$$

and

$$\lambda([\pi_2 S_p x_1])(\pi_2 S_p x_2) = \lambda([x])(x) = 0,$$

where λ_{dis} is the discrete structure on X, $\pi_i : X^2 \to X$, i = 1, 2 are the projection maps. Since (X, λ) is T_1 at p, by Lemma 5 (i),

$$\infty = \sup\{\lambda_{dis}([\nabla_p x_1])(\nabla_p x_2), \lambda([\pi_1 S_p x_1])(\pi_1 S_p x_2), \lambda([\pi_2 S_p x_1])(\pi_2 S_p x_2)\} \\ = \sup\{0, \lambda([x])(p)\} = \lambda([x])(p)$$

and consequently, $\lambda([x])(p) = \infty$.

Similarly,

$$\lambda_{dis}([\nabla_p x_2])(\nabla_p x_1) = \lambda_{dis}([x])(x) = 0,$$

$$\lambda([\pi_1 S_p x_2])(\pi_1 S_p x_1) = \lambda([p])(x),$$

and

$$\lambda([\pi_2 S_p x_2])(\pi_2 S_p x_1) = \lambda([x])(x) = 0.$$

Since (X, λ) is T_1 at p, by Lemma 5 (i)

$$\infty = \sup\{\lambda_{dis}([\nabla_p x_1]), \lambda([\pi_1 S_p x_2])(\pi_1 S_p x_1), \lambda([\pi_2 S_p x_2])(\pi_2 S_p x_1)\} \\ = \sup\{0, \lambda([p])(x)\} = \lambda([p])(x)$$

and consequently, $\lambda([p])(x) = \infty$.

Conversely, let $\overline{\lambda}$ be an initial limit structure on $X \vee_p X$ induced by the maps $S_p : X \vee_p X \to (X^2, \lambda^2)$ and $\nabla_p : X \vee_p X \to (X, \lambda_{dis})$, where λ_{dis} is discrete limit structure on X and λ^2 is the product limit-structure on X^2 induced by $\pi_i : X^2 \to X$ the projection maps for i = 1, 2. Suppose $\alpha \in F(X \vee_p X)$ and $v \in X \vee_p X$ with $\nabla_p v = x$. By Lemma 5 (iii), we have to show that, for all $u \in X \vee_p X$

$$\overline{\lambda}(\alpha) = \begin{cases} \theta_{\{v\}}, & \alpha = [v] \\ \infty, & \alpha \neq [v] \end{cases}$$

where

$$\theta_{\{v\}} u = \begin{cases} 0, & v = u \\ \infty, & v \neq u \end{cases}$$

is the indicator of $\{v\}$. Note that

$$\lambda_{dis}(\nabla_p \alpha)(\nabla_p u) = \begin{cases} \theta_{\{x\}} \nabla_p u, & \nabla_p \alpha = [x] \\ \infty, & \nabla_p \alpha \neq [x] \end{cases}$$

$$= \begin{cases} 0, & \nabla_p \alpha = [x] \text{ and } \nabla_p u = x \\ \infty, & \nabla_p \alpha = [x] \text{ and } \nabla_p u \neq x \\ \infty, & \nabla_p \alpha \neq [x] \text{ and } \nabla_p u \neq x \end{cases}$$

Case 1: If x = p, then $\nabla_p u = x = p$ implies $u = p_1 = p_2 = v$ and $\nabla_p \alpha = [x] = [p]$ implies $\alpha = [p_i]$ for i = 1, 2. By Lemma 5 (i), $\overline{\lambda}(\nabla_p \alpha)(\nabla_p u) = \overline{\lambda}([p])(p) = 0$ since $\overline{\lambda}$ is a limit structure on $X \vee_p X$.

Suppose that $x \neq p$. $\nabla_p u = x$ implies $u = x_1$ or $u = x_2$ and $\nabla_p \alpha = [x]$ implies $\alpha = [x_1], [x_2], [\{x_1, x_2\}]$ or $\alpha \supset [\{x_1, x_2\}]$.

Firstly, we show that the case $\alpha \supset [\{x_1, x_2\}]$ with $\alpha \neq [\emptyset]$ and $\alpha \neq [\{x_1, x_2\}]$ cannot occur. To this end, if $[\emptyset] \neq \alpha \neq [\{x_1, x_2\}]$, then $\alpha \supset [\{x_1, x_2\}]$ if and only if $\alpha = [x_1]$ or $\alpha = [x_2]$. Clearly, if $\alpha = [x_1]$ or $[x_2]$, then $\alpha \supset [\{x_1, x_2\}]$. Conversely, if $\alpha \supset [\{x_1, x_2\}]$ with $[\emptyset] \neq \alpha \neq [\{x_1, x_2\}]$, then there exists $V \in \alpha$ such that $V \neq \{x_1, x_2\}$ and $V \neq \emptyset$. Since V and $W = \{x_1, x_2\}$ are in α and α is a filter, $V \cap W = \{x_1\}$ or $\{x_2\}$ is in α , i.e., $\alpha = [x_1]$ or $[x_2]$. Hence, we must have $\alpha = [x_1]$, $[x_2]$ or $[\{x_1, x_2\}]$.

If $\alpha = [x_i]$ and $u = x_i$, i = 1, 2, then $\overline{\lambda}([x_i])(x_i) = 0$ since $\overline{\lambda}$ is a limit structure on $X \vee_p X$.

If
$$\alpha = [x_2]$$
 and $u = x_1$, then

 $\begin{aligned} \lambda_{dis}(\nabla_p \alpha)(\nabla_p u) &= \lambda_{dis}(\nabla_p [x_2])(\nabla_p x_1) = \lambda_{dis}([x])(x) = 0.\\ \lambda(\pi_1 S_p \alpha)(\pi_1 S_p u) &= \lambda([\pi_1 S_p x_2])(\pi_1 S_p x_1)) = \lambda([p])(x) \text{ and}\\ \lambda(\pi_2 S_p \alpha)(\pi_2 S_p u) &= \lambda([\pi_2 S_p x_2])(\pi_2 S_p x_1) = \lambda([x])(x) = 0. \end{aligned}$

By Lemma 5 (i) and the assumption $\lambda([p])(x) = \infty$.

$$\begin{aligned} \lambda(\alpha)(u) &= \lambda([x_2])(x_1) \\ &= \sup\{\lambda_{dis}([\nabla_p x_2])(\nabla_p x_1), \lambda([\pi_1 S_p x_2])(\pi_1 S_p x_1), \lambda([\pi_2 S_p x_2])(\pi_2 S_p x_1)\} \\ &= \sup\{0, \lambda([p])(x)\} = \lambda([p])(x) = \infty \end{aligned}$$

If $\alpha = [\{x_1, x_2\}], u = x_1$, then

$$\lambda_{dis}(\nabla_p \alpha)(\nabla_p u) = \lambda_{dis}(\nabla_p[\{x_1, x_2\}])(\nabla_p x_1) = \lambda_{dis}([x])(x) = 0.$$

$$\lambda(\pi_1 S_p \alpha)(\pi_1 S_p u) = \lambda([\{\pi_1 S_p x_1, \pi_1 S_p x_2\}])(\pi_1 S_p x_1) = \lambda([\{x, p\}])(x),$$

and

$$\lambda(\pi_2 S_p \alpha)(\pi_2 S_p u) = \lambda([\{\pi_2 S_p x_1, \pi_2 S_p x_2\}])(\pi_2 S_p x_1) = \lambda([x])(x) = 0,$$

Note that $[\{x, p\}] \subset [p]$. Since λ is a limit structure, we get $\lambda([p])(x) \leq \lambda([\{x, p\}])(x)$. Since $x \neq p$ and $\lambda([p])(x) = \infty$, by assumption, then $\lambda([\{x, p\}])(x) = \infty$, and consequently, $\overline{\lambda}(\alpha)(u) = \infty$.

If $\alpha = [x_1]$ and $u = x_2$, then $\lambda_{dis}(\nabla_p \alpha)(\nabla_p u) = \lambda_{dis}(\nabla_p [x_1])(\nabla_p x_2) = \lambda_{dis}([x])(x) = 0.$ $\lambda(\pi_1 S_p \alpha)(\pi_1 S_p u) = \lambda([\pi_1 S_p x_1])(\pi_1 S_p x_2)) = \lambda([x])(p)$ and $\lambda(\pi_2 S_p \alpha)(\pi_2 S_p u) = \lambda([\pi_2 S_p x_1])(\pi_2 S_p x_2) = \lambda([x])(x) = 0,$ by Lemma 5 (i)

$$\begin{aligned} \lambda(\alpha)(u) &= \lambda([x_1])(x_2) \\ &= \sup\{\lambda_{dis}([\nabla_p x_1])(\nabla_p x_2), \lambda([\pi_1 S_p x_1])(\pi_1 S_p x_2), \lambda([\pi_2 S_p x_1])(\pi_2 S_p x_2)\} \\ &= \sup\{0, \lambda([x])(p)\} = \lambda([x])(p) = \infty \end{aligned}$$

If $\alpha = [\{x_1, x_2\}], u = x_2$, then

$$\lambda_{dis}(\nabla_p \alpha)(\nabla_p u) = \lambda_{dis}(\nabla_p[\{x_1, x_2\}])(\nabla_p x_2) = \lambda_{dis}([x])(x) = 0.$$

$$\lambda(\pi_1 S_p \alpha)(\pi_1 S_p u) = \lambda([\{\pi_1 S_p x_1, \pi_1 S_p x_2\}])(\pi_1 S_p x_2) = \lambda([\{x, p\}])(p).$$

and

$$\lambda(\pi_2 S_p \alpha)(\pi_2 S_p u) = \lambda([\{\pi_2 S_p x_1, \pi_2 S_p x_2\}])(\pi_2 S_p x_2) = \lambda([x])(x) = 0.$$

Note that $[\{x, p\}] \subset [x]$. Since λ is a limit structure, $\lambda([x])(p) \leq \lambda([\{x, p\}])(p)$ and by the assumption $\lambda([p])(x) = \infty$, then $\lambda([\{x, p\}])(x) = \infty$.

By Lemma 5 (i),

$$\begin{split} \overline{\lambda}(\alpha)(u) &= \overline{\lambda}([\{x_1, x_2\}])(x_2) \\ &= \sup\{\lambda_{dis}([\{\nabla_p x_1, \nabla_p x_2\}])(\nabla_p x_2), \lambda([\{\pi_1 S_p x_1, \pi_1 S_p x_2\}])(\pi_1 S_p x_2), \\ \lambda([\{\pi_2 S_p x_1, \pi_2 S_p x_2\}])(\pi_2 S_p x_2)\} &= \sup\{0, \infty\} = \infty. \end{split}$$

Case 2: Let $p = \nabla_p u \neq x$ and $\nabla_p \alpha = [x]$. It follows that $u = p_1 = p_2$ and $\alpha = [x_1], [x_2]$ or $[\{x_1, x_2\}]$.

If $\alpha = [x_1], [x_2]$ or $[\{x_1, x_2\}]$ and $u = p_i$ for i = 1, 2, then $\lambda_{dis}(\nabla_p \alpha)(\nabla_p u) = \lambda_{dis}([x])(p) = \infty$ since λ_{dis} is a discrete limit structure and $x \neq p$. It follows that

$$\lambda(\alpha)(u) = \sup\{\lambda_{dis}(\nabla_p \alpha)(\nabla_p u), \lambda(\pi_1 S_p \alpha)(\pi_1 S_p u), \lambda(\pi_2 S_p \alpha)(\pi_2 S_p u)\}\$$

$$= \sup\{\infty, \lambda(\pi_1 S_p \alpha)(p), \lambda(\pi_2 S_p \alpha)(p)\} = \infty.$$

Case 3: Suppose $\nabla_p u \neq x$ and $\nabla_p \alpha \neq [x]$, then $\lambda_{dis}(\nabla_p \alpha)(\nabla_p u) = \infty$ since λ_{dis} is a discrete limit structure. It follows that

$$\overline{\lambda}(\alpha)(u) = \sup\{\lambda_{dis}(\nabla_p \alpha)(\nabla_p u), \lambda(\pi_1 S_p \alpha)(\pi_1 S_p u), \lambda(\pi_2 S_p \alpha)(\pi_2 S_p u)\}$$

=
$$\sup\{\infty, \lambda(\pi_1 S_p \alpha)(\pi_1 S_p u), \lambda(\pi_2 S_p \alpha)(\pi_2 S_p u)\} = \infty$$

Hence, for all $\alpha \in F(X \vee_p X)$ and $v \in X \vee_p X$, we have

$$\overline{\lambda}(\alpha) = \begin{cases} \theta_{\{v\}}, & \alpha = [v] \\ \infty, & \alpha \neq [v] \end{cases}$$

i.e., $\overline{\lambda}$ is discrete limit structure on $X \vee_p X$ and by Definition 8, (X, λ) is T_1 at p.

Theorem 10. A gauge-approach space (X, \mathfrak{D}) is T_1 at p if and only if for all $x \in X$ with $x \neq p$, there exists $d \in \mathfrak{D}$ such that $d(x, p) = \infty = d(p, x)$.

Proof. Let (X, \mathfrak{D}) be T_1 at $p, x \in X$ and $x \neq p$. Let $u = x_1$ and $v = x_2 \in X \vee_p X$. Note that

$$d(\pi_1 S_p u, \pi_1 S_p v) = d(\pi_1 S_p x_1, \pi_1 S_p x_2) = d(x, p),$$

$$d(\pi_2 S_p u, \pi_2 S_p v) = d(\pi_2 S_p x_1, \pi_2 S_p x_2) = d(x, x) = 0,$$

$$d_{dis}(\nabla_p u, \nabla_p v) = d_{dis}(\nabla_p x_1, \nabla_p x_2) = d_{dis}(x, x) = 0.$$

where d_{dis} is the discrete extended pseudo-quasi metric on $X \vee_p X$ and $\pi_i : X^2 \to X$ are the projection maps and i = 1, 2. Since $u \neq v$ and (X, \mathfrak{D}) is T_1 at p, by Lemma 5 (ii),

$$\infty = \sup\{d_{dis}(\nabla_p u, \nabla_p v), d(\pi_1 S_p u, \pi_1 S_p v), d(\pi_2 S_p u, \pi_2 S_p v)\} = d(x, p)$$

and consequently, $d(x, p) = \infty$.

Similarly, if $u = x_2$ and $v = x_1 \in X \vee_p X$, then

$$\infty = \sup\{d_{dis}(\nabla_p u, \nabla_p v), d(\pi_1 S_p u, \pi_1 S_p v), d(\pi_2 S_p u, \pi_2 S_p v)\} = \sup\{0, d(p, x)\}$$

= $d(p, x)$

and consequently, $d(p, x) = \infty$.

Conversely, let $\overline{\mathcal{H}}$ be initial gauge basis on $X \vee_p X$ induced by $S_p : X \vee_p X \to U(X^2, \mathfrak{D}^2) = X^2$ and $\nabla_p : X \vee_p X \to U(X, \mathfrak{D}_{dis}) = X$ where $\mathfrak{D}_{dis} = pqMet^{\infty}(X)$ discrete gauge-approach on X and \mathfrak{D}^2 is the product gauge-approach structure on X^2 induced by $\pi_i : X^2 \to X$ the projection maps for i = 1, 2. Suppose $\overline{d} \in \overline{\mathcal{H}}$ and $u, v \in X \vee_p X$.

If u = v, then $\overline{d}(u, v) = 0$.

If $u \neq v$ and $\nabla_p u \neq \nabla_p v$ implies $d_{dis}(\nabla_p u, \nabla_p v) = \infty$ since d_{dis} is a discrete structure. By Lemma 5 (ii),

$$\overline{d}(u,v) = \sup\{d_{dis}(\nabla_p u, \nabla_p v), d(\pi_1 S_p u, \pi_1 S_p v), d(\pi_2 S_p u, \pi_2 S_p v)\}$$

= sup{\$\infty\$, \$d(\$\pi_1 S_p u, \$\pi_1 S_p v\$), \$d(\$\pi_2 S_p u, \$\pi_2 S_p v\$)}\$ = \$\infty\$.

Suppose $u \neq v$ and $\nabla_p u = \nabla_p v$. If $\nabla_p u = x = \nabla_p v$ for some $x \in X$ with $x \neq p$, then $u = x_1$ and $v = x_2$ or $u = x_2$ and $v = x_1$ since $u \neq v$. If $u = x_1$ and $v = x_2$, then by Lemma 5 (ii),

$$\overline{d}(u,v) = \overline{d}(x_1, x_2) = \sup\{d_{dis}(\nabla_p x_1, \nabla_p x_2), d(\pi_1 S_p x_1, \pi_1 S_p x_2), d(\pi_2 S_p x_1, \pi_2 S_p x_2)\} = \sup\{0, d(x, p)\} = d(x, p) = \infty$$

since $x \neq p$ and $d(x, p) = \infty$.

Similarly, if $u = x_2$ and $v = x_1$, then

$$\begin{aligned} \overline{d}(u,v) &= \overline{d}(x_2,x_1) \\ &= \sup\{d_{dis}(\nabla_p x_2,\nabla_p x_1), d(\pi_1 S_p x_2,\pi_1 S_p x_1), d(\pi_2 S_p x_2,\pi_2 S_p x_1)\} \\ &= \sup\{0, d(p,x)\} = d(p,x) = \infty \end{aligned}$$

since $x \neq p$ and $d(p, x) = \infty$.

Hence, for all $u, v \in X \vee_p X$, we get

$$\overline{d}(u,v) = \begin{cases} 0, & u = v \\ \infty, & u \neq v \end{cases}$$

i.e., \overline{d} is discrete extended pseudo-quasi metric on $X \vee_p X$, i.e., $\overline{\mathcal{H}} = \{\overline{d}\}$. By Definition 8, (X, \mathfrak{D}) is T_1 at p.

Theorem 11. Let (X, \mathfrak{G}) be approach spaces and $p \in X$. Then, following are equivalent:

- (1) (X, \mathfrak{G}) is T_1 at p.
- (2) For all $x \in X$ with $x \neq p$, $\lambda([x])(p) = \infty = \lambda([p])(x)$.
- (3) For all $x \in X$ with $x \neq p$, there exists $d \in \mathfrak{D}$ such that $d(x,p) = \infty = d(p,x)$.
- (4) For all $x \in X$ with $x \neq p$, $\delta(x, \{p\}) = \infty = \delta(p, \{x\})$.

Proof. It follows from Theorems 9 and 10, and Theorem 3.1 of [10].

Example 12. (i) Let $X = \{a, b, c\}$, $A \subseteq X$ and $\delta_1 : X \times 2^X \to [0, \infty]$ be a map defined as follows: For all $x \in X$, $\delta_1(x, \emptyset) = \infty$, $\delta_1(x, A) = 0$ if $x \in A$, $\delta_1(a, \{b\}) = \delta_1(b, \{a\}) = \delta_1(a, \{c\}) = \delta_1(c, \{a\}) = \infty = \delta_1(a, \{b, c\})$ and $\delta_1(b, \{c\}) = \delta_1(c, \{b\}) = \delta_1(b, \{a, c\}) = \delta_1(c, \{a, b\}) = 2$. Then, by Theorem 11, an approach space (X, δ_1) is T_1 at a but it is neither T_1 at b nor T_1 at c.

(ii) Let $X = \{a, b, c\}, A \subseteq X$ and $\delta_2 : X \times 2^X \to [0, \infty]$ be a map defined as follows: For all $x \in X$, $\delta_2(x, \emptyset) = \infty$, $\delta_2(x, A) = 0$ if $x \in A$ and $\delta_2(x, A) = 1$ if $x \notin A$. Then, by Theorem 11, an approach space (X, δ_2) is not T_1 at p for all $p \in X$.

4. T_1 Approach Spaces

Let X be a nonempty set, $X^2 = X \times X$ be cartesian product of X with itself and $X^2 \vee_{\Delta} X^2$ be two distinct copies of X^2 identified along the diagonal [2]. A point (x, y) in $X^2 \vee_{\Delta} X^2$ is denoted by $(x, y)_1$ $((x, y)_2)$ if (x, y) is in the first (resp. second) component of $X^2 \vee_{\Delta} X^2$. Note that $(x, x)_1 = (x, x)_2$, for all $x \in X$.

Definition 13. (cf. [2]) A map $S: X^2 \vee_{\triangle} X^2 \to X^3$ is called skewed axis map if

$$S((x,y)_i) = \begin{cases} (x,y,y), & i = 1\\ (x,x,y), & i = 2 \end{cases}$$

Definition 14. (cf. [2]) A map $\nabla : X^2 \vee_{\triangle} X^2 \to X^2$ is called folding map if $\nabla((x,y)_i) = (x,y)$ for i = 1, 2.

Theorem 15. (cf. [3]) Let (X, τ) be a topological space.

 (X, τ) is T_1 if and only if the initial topology on $X^2 \vee_{\bigtriangleup} X^2$ induced by the maps $S: X^2 \vee_{\bigtriangleup} X^2 \to (X^3, \tau^*)$ and $\nabla: X^2 \vee_{\bigtriangleup} X^2 \to (X^2, P(X^2))$ is discrete, where τ^* is the product topology on X^3 .

Definition 16. (cf. [2]) Let $\mathcal{U} : \mathcal{E} \to \mathbf{Set}$ be topological, X an object in \mathcal{E} with $\mathcal{U}(X) = B$.

If the initial lift of the \mathcal{U} -source $\{S : B^2 \vee_{\bigtriangleup} B^2 \to \mathcal{U}(X^3) = B^3 \text{ and } \nabla : B^2 \vee_{\bigtriangleup} B^2 \to \mathcal{UD}(B^2) = B^2\}$ is discrete, then X is called a T_1 object.

Theorem 17. A limit-approach space (X, λ) is T_1 if and only if for all $x, y \in X$ with $x \neq y$, $\lambda([x])(y) = \infty = \lambda([y])(x)$.

Proof. Let (X, λ) be $T_1, x, y \in X$ with $x \neq y$. Suppose $[(x, y)_1]$ is a filter on $F(X^2 \vee_{\Delta} X^2)$ and $(x, y)_2 \in X^2 \vee_{\Delta} X^2$. Note that

$$\begin{aligned} \lambda_{dis}([\nabla(x,y)_1])(\nabla(x,y)_2) &= \lambda_{dis}([(x,y)])(x,y) = 0, \\ \lambda([\pi_1 S(x,y)_1])(\pi_1 S(x,y)_2) &= \lambda([x])(x) = 0, \\ \lambda([\pi_2 S(x,y)_1])(\pi_2 S(x,y)_2) &= \lambda([y])(x). \end{aligned}$$

and

$$\lambda([\pi_3 S(x, y)_1])(\pi_3 S(x, y)_2) = \lambda([y])(y) = 0$$

Since (X, λ) is T_1 and $(x, y)_1 \neq (x, y)_2$, by Lemma 5 (i),

$$\infty = \sup\{\lambda_{dis}([\nabla(x,y)_1])(\nabla(x,y)_2), \lambda([\pi_1 S(x,y)_1])(\pi_1 S(x,y)_2), \lambda([\pi_2 S(x,y)_1])(\pi_2 S(x,y)_2), \lambda([\pi_3 S(x,y)_1])(\pi_3 S(x,y)_2)\} \\ = \sup\{0, \lambda([y])(x)\} = \lambda([y])(x)$$

and consequently, $\lambda([y])(x) = \infty$.

Similarly, let $[(x, y)_2] \in F(X^2 \vee_{\triangle} X^2)$ and $(x, y)_1 \in X^2 \vee_{\triangle} X^2$. Since (X, λ) is T_1 and $(x, y)_1 \neq (x, y)_2$, by Lemma 5 (i),

$$\infty = \sup\{\lambda_{dis}([\nabla(x,y)_2])(\nabla(x,y)_1), \lambda([\pi_1 S(x,y)_2])(\pi_1 S(x,y)_1), \lambda([\pi_2 S(x,y)_2])(\pi_2 S(x,y)_1), \lambda([\pi_3 S(x,y)_2])(\pi_3 S(x,y)_1)\}$$

=
$$\sup\{0, \lambda([x])(y)\} = \lambda([x])(y)$$

and consequently, $\lambda([x])(y) = \infty$.

Conversely, let $\overline{\lambda}$ be an initial limit structure on $X^2 \vee_{\bigtriangleup} X^2$ induced by the maps $S: X^2 \vee_{\bigtriangleup} X^2 \to (X^3, \lambda^3)$ and $\nabla: X^2 \vee_{\bigtriangleup} X^2 \to (X^2, \lambda_{dis})$ where λ_{dis} is discrete limit structure on X^2 and λ^3 is the product limit-structure on X^3 induced by $\pi_i: X^3 \to X$ the projection maps for i = 1, 2, 3. Suppose $\alpha \in F(X^2 \vee_{\bigtriangleup} X^2)$ and $v \in X^2 \vee_{\bigtriangleup} X^2$ with $\nabla v = (x, y)$. Note that

$$\lambda_{dis}(\nabla\alpha)(\nabla u) = \begin{cases} \theta_{\{(x,y)\}} \nabla u, & \nabla\alpha = [(x,y)]\\ \infty, & \nabla\alpha \neq [(x,y)] \end{cases}$$

$$= \begin{cases} 0, & \nabla \alpha = [(x,y)] \text{ and } \nabla u = (x,y) \\ \infty, & \nabla \alpha = [(x,y)] \text{ and } \nabla u \neq (x,y) \\ \infty, & \nabla \alpha \neq [(x,y)] \text{ and } \nabla u \neq (x,y) \end{cases}$$

Case 1: If x = y, then $\nabla u = (x, x)$ implies $u = (x, x)_1 = (x, x)_2 = v$ and $\nabla \alpha = [(x, x)]$ implies $\alpha = [(x, x)_1] = [(x, x)_2]$. By Lemma 5 (i), $\overline{\lambda}(\nabla \alpha)(\nabla u) = \overline{\lambda}([(x, x)])(x, x) = 0$ since $\overline{\lambda}$ is a limit structure on $X^2 \vee_{\Delta} X^2$.

Suppose that $\nabla u = (x, y)$ for some $x, y \in X$ with $x \neq y$ implies $u = (x, y)_1$ or $u = (x, y)_2$ and $\nabla \alpha = [(x, y)]$ implies $\alpha = [(x, y)_1]$, $[(x, y)_2]$, $[\{(x, y)_1, (x, y)_2\}]$ or $\alpha \supset [\{(x, y)_1, (x, y)_2\}]$. By the same argument used in Theorem 9, $\alpha \supset [\{(x, y)_1, (x, y)_2\}]$ with $\alpha \neq [\emptyset]$ and $\alpha \neq [\{(x, y)_1, (x, y)_2\}]$ cannot occur. Hence, we must have $\alpha = [(x, y)_1]$, $[(x, y)_2]$ or $[\{(x, y)_1, (x, y)_2\}]$.

If $\alpha = [(x,y)_i]$ and $u = (x,y)_i$, i = 1, 2, then $\overline{\lambda}([(x,y)_i])((x,y)_i) = 0$ since $\overline{\lambda}$ is a limit structure on $X^2 \vee_{\bigtriangleup} X^2$.

If $\alpha = [(x, y)_2]$ and $u = (x, y)_1$, then

$$\lambda_{dis}(\nabla \alpha)(\nabla u) = \lambda_{dis}(\nabla [(x,y)_2])(\nabla (x,y)_1) = \lambda_{dis}([(x,y)])(x,y) = 0$$

$$\lambda(\pi_1 S \alpha)(\pi_1 S u) = \lambda([\pi_1 S(x, y)_2])(\pi_1 S(x, y)_1)) = \lambda([x])(x) = 0,$$

$$\lambda(\pi_2 S \alpha)(\pi_2 S u) = \lambda([\pi_2 S(x, y)_2])(\pi_2 S(x, y)_1) = \lambda([x])(y),$$

and

$$\lambda(\pi_3 S\alpha)(\pi_3 Su) = \lambda([\pi_3 S(x, y)_2])(\pi_3 S(x, y)_1) = \lambda([y])(y) = 0$$

By Lemma 5 (i) and by assumption

$$\begin{aligned} \lambda(\alpha)(u) &= \lambda([(x,y)_2])((x,y)_1) \\ &= \sup\{\lambda_{dis}([\nabla(x,y)_2])(\nabla(x,y)_1), \lambda([\pi_1 S(x,y)_2])(\pi_1 S(x,y)_1), \\ \lambda([\pi_2 S(x,y)_2])(\pi_2 S(x,y)_1), \lambda([\pi_3 S(x,y)_2])(\pi_3 S(x,y)_1)\} \\ &= \sup\{0, \lambda([x])(y)\} = \lambda([x])(y) = \infty. \end{aligned}$$

If $\alpha = [\{(x, y)_1, (x, y)_2\}], u = (x, y)_1$, then $\lambda_{dis}(\nabla \alpha)(\nabla u) = \lambda_{dis}(\nabla [\{(x, y)_1, (x, y)_2\}])(\nabla (x, y)_1) = \lambda_{dis}([x])(x) = 0.$ $\lambda(\pi_1 S \alpha)(\pi_1 S u) = \lambda([\{\pi_1 S(x, y)_1, \pi_1 S(x, y)_2\}])(\pi_1 S(x, y)_1) = \lambda([x])(x) = 0,$ $\lambda(\pi_2 S \alpha)(\pi_2 S u) = \lambda([\{\pi_2 S(x, y)_1, \pi_2 S(x, y)_2\}])(\pi_2 S(x, y)_1) = \lambda([\{x, y\}])(y),$

and

$$\lambda(\pi_3 S\alpha)(\pi_3 Su) = \lambda([\{\pi_3 S(x,y)_1, \pi_3 S(x,y)_2\}])(\pi_3 S(x,y)_1) = \lambda([y])(y) = 0.$$

Note that $[\{x, y\}] \subset [x]$. Since λ is a limit structure and $\lambda([x])(y) = \infty$, $\lambda([x])(y) \leq \lambda([\{x, y\}])(y)$, it follows that $\lambda([\{x, y\}])(y) = \infty$.

By Lemma 5 (i),

$$\begin{split} \lambda(\alpha)(u) &= \lambda([\{(x,y)_1,(x,y)_2\}])((x,y)_1) \\ &= \sup\{\lambda_{dis}([\{\nabla(x,y)_1,\nabla(x,y)_2\}])(\nabla(x,y)_1),\lambda([\{\pi_1S(x,y)_1,\pi_1S(x,y)_2\}]) \\ &\quad (\pi_1S(x,y)_1),\lambda([\{\pi_2S(x,y)_1,\pi_2S(x,y)_2\}])(\pi_2S(x,y)_1),\lambda([\{\pi_3S(x,y)_1,\pi_3S(x,y)_2\}])(\pi_3S(x,y)_1)\} \\ &= \sup\{0,\infty\} = \infty. \end{split}$$

If $\alpha = [(x, y)_1]$ and $u = (x, y)_2$, then

$$\begin{split} \lambda_{dis}(\nabla\alpha)(\nabla u) &= \lambda_{dis}(\nabla[(x,y)_1])(\nabla(x,y)_2) = \lambda_{dis}([(x,y)])(x,y) = 0\\ \lambda(\pi_1 S\alpha)(\pi_1 Su) &= \lambda([\pi_1 S(x,y)_1])(\pi_1 S(x,y)_2)) = \lambda([x])(x) = 0,\\ \lambda(\pi_2 S\alpha)(\pi_2 Su) &= \lambda([\pi_2 S(x,y)_1])(\pi_2 S(x,y)_2) = \lambda([y])(x), \end{split}$$

and

$$\lambda(\pi_3 S\alpha)(\pi_3 Su) = \lambda([\pi_3 S(x,y)_1])(\pi_3 S(x,y)_2) = \lambda([y])(y) = 0.$$
By Lemma 5 (i) and the assumption $\lambda[y](x) = \infty$,

$$\begin{split} \bar{\lambda}(\alpha)(u) &= \bar{\lambda}([(x,y)_1])((x,y)_2) \\ &= \sup\{\lambda_{dis}([\nabla(x,y)_1])(\nabla(x,y)_2), \lambda([\pi_1 S(x,y)_1])(\pi_1 S(x,y)_2), \\ \lambda([\pi_2 S(x,y)_1])(\pi_2 S(x,y)_2), \lambda([\pi_3 S(x,y)_1])(\pi_3 S(x,y)_2)\} \\ &= \sup\{0, \lambda([y])(x)\} = \lambda([y])(x) = \infty \end{split}$$

If $\alpha = [\{(x, y)_1, (x, y)_2\}], u = (x, y)_2$, then

$$\lambda_{dis}(\nabla\alpha)(\nabla u) = \lambda_{dis}(\nabla[\{(x,y)_1,(x,y)_2\}])(\nabla(x,y)_2) = \lambda_{dis}([x])(x) = 0.$$

$$\lambda(\pi_1 S\alpha)(\pi_1 Su) = \lambda([\{\pi_1 S(x,y)_1,\pi_1 S(x,y)_2\}])(\pi_1 S(x,y)_2) = \lambda([x])(x) = 0,$$

$$\lambda(\pi_2 S\alpha)(\pi_2 Su) = \lambda([\{\pi_2 S(x,y)_1,\pi_2 S(x,y)_2\}])(\pi_2 S(x,y)_2) = \lambda([\{x,y\}])(x),$$

and

$$\lambda(\pi_3 S\alpha)(\pi_3 Su) = \lambda([\{\pi_3 S(x, y)_1, \pi_3 S(x, y)_2\}])(\pi_3 S(x, y)_2) = \lambda([y])(y) = 0,$$

Note that $[\{x, y\}] \subset [y]$. Since λ is a limit structure, we get $\lambda([y])(x) \leq \lambda([\{x, y\}])(x)$. By the assumption $\lambda([y])(x) = \infty$, it follows that $\lambda([\{x, y\}])(x) = \infty$.

By Lemma 5 (i),

$$\begin{aligned} \lambda(\alpha)(u) &= \lambda([\{(x,y)_1,(x,y)_2\}])((x,y)_1) \\ &= \sup\{\lambda_{dis}([\{\nabla(x,y)_1,\nabla(x,y)_2\}])(\nabla(x,y)_2),\lambda([\{\pi_1S(x,y)_1,\pi_1S(x,y)_2\}])(\pi_1S(x,y)_2),\lambda([\{\pi_2S(x,y)_1,\pi_2S(x,y)_2\}])(\pi_2S(x,y)_2),\lambda([\{\pi_3S(x,y)_1,\pi_3S(x,y)_2\}])(\pi_3S(x,y)_2)\} \\ &= \sup\{0,\infty\} = \infty. \end{aligned}$$

Case 2: Let $(z, z) = \nabla u \neq (x, y)$ for some $z \in X$ and $\nabla \alpha = [(x, y)]$. It follows that $u = (z, z)_1 = (z, z)_2$ and $\alpha = [(x, y)_1], [(x, y)_2]$ or $[\{(x, y)_1, (x, y)_2\}]$.

If $\alpha = [(x, y)_i]$ or $[\{(x, y)_1, (x, y)_2\}]$ for i = 1, 2 and $u = (z, z)_1 = (z, z)_2$, then $\lambda_{dis}(\nabla \alpha)(\nabla u) = \lambda_{dis}([(x, y)])(z, z) = \infty$ since λ_{dis} is a discrete limit structure and $(x, y) \neq (z, z)$. It follows that

$$\overline{\lambda}(\alpha)(u) = \sup\{\lambda_{dis}(\nabla\alpha)(\nabla u), \lambda(\pi_1 S \alpha)(\pi_1 S u), \lambda(\pi_2 S \alpha)(\pi_2 S u), \lambda(\pi_3 S \alpha)(\pi_3 S u)\}$$

=
$$\sup\{\infty, \lambda(\pi_1 S \alpha)(z, z), \lambda(\pi_2 S \alpha)(z, z), \lambda(\pi_3 S \alpha)(z, z)\} = \infty.$$

Case 3: Suppose $\nabla u \neq (x, y)$ and $\nabla \alpha \neq [(x, y)]$, then $\lambda_{dis}(\nabla \alpha)(\nabla u) = \infty$ since λ_{dis} is a discrete limit structure, and consequently

$$\begin{aligned} \overline{\lambda}(\alpha)(u) &= \sup\{\lambda_{dis}(\nabla\alpha)(\nabla u), \lambda(\pi_1 S\alpha)(\pi_1 Su), \lambda(\pi_2 S\alpha)(\pi_2 Su), \lambda(\pi_3 S\alpha)(\pi_3 Su)\} \\ &= \sup\{\infty, \lambda(\pi_1 S\alpha)(\pi_1 Su), \lambda(\pi_2 S\alpha)(\pi_2 Su), \lambda(\pi_3 S\alpha)(\pi_3 Su)\} = \infty. \end{aligned}$$

Hence, for all $\alpha \in F(X^2 \vee_{\bigtriangleup} X^2)$ and $v \in X^2 \vee_{\bigtriangleup} X^2$, we have

$$\overline{\lambda}(\alpha) = \begin{cases} \theta_{\{v\}}, & \alpha = [v] \\ \infty, & \alpha \neq [v] \end{cases}$$

i.e., $\overline{\lambda}$ is discrete limit structure on $X^2 \vee_{\bigtriangleup} X^2$ and by Definition 16, (X, λ) is T_1 . \Box

Theorem 18. A gauge-approach space (X, \mathfrak{D}) is T_1 if and only if for each distinct points x and y in X, there exists $d \in \mathfrak{D}$ such that $d(x, y) = \infty = d(y, x)$.

Proof. Let (X, \mathfrak{D}) be $T_1, x, y \in X$ with $x \neq y$. Let $u = (x, y)_1, v = (x, y)_2 \in X^2 \vee_{\Delta} X^2$. Note that

$$\begin{split} &d(\pi_1 S(u), \pi_1 S(v)) = d(\pi_1 S(x, y)_1, \pi_1 S(x, y)_2) = d(x, x) = 0, \\ &d(\pi_2 S(u), \pi_2 S(v)) = d(\pi_2 S(x, y)_1, \pi_2 S(x, y_2) = d(y, x), \\ &d(\pi_3 S(u), \pi_3 S(v)) = d(\pi_3 S(x, y)_1, \pi_3 S(x, y_2) = d(y, y) = 0, \end{split}$$

and

$$d_{dis}(\nabla u, \nabla v) = d_{dis}(\nabla (x, y)_1, \nabla (x, y)_2) = d_{dis}((x, y), (x, y)) = 0,$$

where d_{dis} is the discrete extended pseudo-quasi metric on $X^2 \vee_{\triangle} X^2$ and $\pi_i : X^3 \to X$ are the projection maps for i = 1, 2, 3. Since $u \neq v$ and (X, \mathfrak{D}) is T_1 , by Lemma 5 (ii),

$$\infty = \sup\{d_{dis}(\nabla u, \nabla v), d(\pi_1 S(u), \pi_1 S(v)), d(\pi_2 S(u), \pi_2 S(v)), d(\pi_3 S(u), \pi_3 S(v))\} \\ = \sup\{0, d(y, x)\} = d(y, x)$$

and consequently, $d(y, x) = \infty$.

Similarly, if $u = (x, y)_2$ and $v = (x, y)_1 \in X^2 \vee_{\bigtriangleup} X^2$, then,

$$\begin{aligned} d(\pi_1 S(u), \pi_1 S(v)) &= d(\pi_1 S(x, y)_2, \pi_1 S(x, y)_1) = d(x, x) = 0, \\ d(\pi_2 S(u), \pi_2 S(v)) &= d(\pi_2 S(x, y)_2, \pi_2 S(x, y_1) = d(x, y), \\ d(\pi_3 S(u), \pi_3 S(v)) &= d(\pi_3 S(x, y)_2, \pi_3 S(x, y_1) = d(y, y) = 0, \end{aligned}$$

and

$$d_{dis}(\nabla u, \nabla v) = d_{dis}(\nabla (x, y)_2, \nabla (x, y)_1) = d_{dis}((x, y), (x, y)) = 0,$$

Since $u \neq v$ and (X, \mathfrak{D}) is T_1 , by Lemma 5 (ii),

$$\infty = \sup\{d_{dis}(\nabla u, \nabla v), d(\pi_1 S(u), \pi_1 S(v)), d(\pi_2 S(u), \pi_2 S(v)), d(\pi_3 S(u), \pi_3 S(v))\} \\ = \sup\{0, d(x, y)\} = d(x, y)$$

and consequently, $d(x, y) = \infty$.

Conversely, let $\overline{\mathcal{H}}$ be an initial gauge basis on $X^2 \vee_{\bigtriangleup} X^2$ induced by $S: X^2 \vee_{\bigtriangleup} X^2 \to (X^3, \mathfrak{D}^3)$ and $\nabla: X^2 \vee_{\bigtriangleup} X^2 \to (X^2, \mathfrak{D}_{dis})$, where \mathfrak{D}_{dis} is discrete gauge on X^2 and \mathfrak{D}^3 is the product structure on X^3 . Suppose $\overline{d} \in \overline{\mathcal{H}}$ and $u, v \in X^2 \vee_{\bigtriangleup} X^2$. If u = v, then $\overline{d}(u, v) = 0$ since \overline{d} is the extended pseudo-quasi metric.

If $u \neq v$ and $\nabla u \neq \nabla v$, then $d_{dis}(\nabla u, \nabla v) = \infty$ since d_{dis} is discrete. By Lemma 5 (ii),

$$d(u,v) = \sup\{d_{dis}(\nabla u, \nabla v), d(\pi_1 S(u), \pi_1 S(v)), d(\pi_2 S(u), \pi_2 S(v)), d(\pi_3 S(u), \pi_3 S(v))\} \\ = \sup\{\infty, d(\pi_1 S(u), \pi_1 S(v)), d(\pi_2 S(u), \pi S(v)), d(\pi_3 S(u), \pi_3 S(v))\} \\ = \infty.$$

Suppose $u \neq v$ and $\nabla u = (x, y) = \nabla v$ for some $x, y \in X$ with $x \neq y$, it follows that $u = (x, y)_1$ and $v = (x, y)_2$ or $u = (x, y)_2$ and $v = (x, y)_1$. Let $u = (x, y)_1$ and $v = (x, y)_2$.

$$\begin{aligned} \overline{d}(u,v) &= \overline{d}((x,y)_1,(x,y)_2) \\ &= \sup\{d_{dis}(\nabla(x,y)_1,\nabla(x,y)_2), d(\pi_1S(x,y)_1,\pi_1S(x,y)_2), \\ &\quad d(\pi_2S(x,y)_1,\pi_2S(x,y)_2), d(\pi_3S(x,y)_1S,\pi_3S(x,y)_2)\} \\ &= \sup\{0,d(y,x)\} = d(y,x) = \infty \end{aligned}$$

by the assumption $d(y, x) = \infty$.

If $u = (x, y)_2$ and $v = (x, y)_1$, then

$$d(u, v) = d((x, y)_{2}, (x, y)_{1})$$

= $\sup\{d_{dis}(\nabla(x, y)_{2}, \nabla(x, y)_{1}), d(\pi_{1}S(x, y)_{2}, \pi_{1}S(x, y)_{1}), d(\pi_{2}S(x, y)_{2}, \pi_{2}S(x, y)_{1}), d(\pi_{3}S(x, y)_{2}, \pi_{3}S(x, y)_{1})\}$
= $\sup\{0, d(x, y)\} = d(x, y) = \infty,$

by the assumption $d(x, y) = \infty$.

Hence, for all $u, v \in X^2 \vee_{\bigtriangleup} X^2$, we have

$$\overline{d}(u,v) = egin{cases} 0, & u = v \ \infty, & u
eq v \end{cases}$$

i.e., \overline{d} is discrete extended pseudo-quasi metric on $X^2 \vee_{\bigtriangleup} X^2$, i.e., $\overline{\mathcal{H}} = \{\overline{d}\}$. By Definition 16, (X, \mathfrak{D}) is T_1 .

Remark 19. (cf. [18, 22]) (i) The transition from gauge to distance is given by

$$\delta(x,A) = \sup_{d \in \mathfrak{D}} \inf_{y \in A} d(x,y)$$

(ii) The transition from distance to gauge is determined by

$$\mathfrak{D} = \{ d \in pqMet^{\infty}(X) | \forall A \subseteq X, \forall x \in X : \inf_{y \in A} d(x, y) \le \delta(x, A) \}$$

Theorem 20. Let (X, \mathfrak{G}) be an approach space. The following are equivalent:

- (i) (X, \mathfrak{G}) is T_1 .
- (ii) For all $x, y \in X$ with $x \neq y$, $\lambda([x])(y) = \infty = \lambda([y])(x)$.
- (iii) For all $x, y \in X$ with $x \neq y$, there exists $d \in \mathfrak{D}$ such that $d(x, y) = \infty = d(y, x)$.
- (iv) For all $x, y \in X$ with $x \neq y$, $\delta(x, \{y\}) = \infty = \delta(y, \{x\})$.

Proof. $(i) \Leftrightarrow (ii)$ and $(i) \Leftrightarrow (iii)$ follow from Theorem 17 and Theorem 18, respectively.

 $(iii) \Rightarrow (iv)$: Suppose for all $x, y \in X$ with $x \neq y$, there exists $d \in \mathfrak{D}$ such that $d(x,y) = \infty = d(y,x)$. By Remark 19 (i), $\delta(x,\{y\}) = \sup_{e \in \mathfrak{D}} e(x,y) = \infty$, and $\delta(y,\{x\}) = \sup_{e \in \mathfrak{D}} e(y,x) = \infty$ and consequently, $\delta(x,\{y\}) = \infty = \delta(y,\{x\})$.

 $(iv) \Rightarrow (iii)$: Suppose $\forall x, y \in X$ with $x \neq y$, $\delta(x, \{y\}) = \infty = \delta(y, \{x\})$. Take $A = \{y\}$, then by Remark 19 (ii), for all $e \in \mathfrak{D}$, $e(x, y) \leq \delta(x, \{y\})$ and $e(y, x) \leq \delta(y, \{x\})$. In particular, there exists $d \in \mathfrak{D}$ such that $d(x, y) = \delta(x, \{y\}) = \infty$ and $d(y, x) = \delta(y, \{x\}) = \infty$ and consequently, $d(x, y) = \infty = d(y, x)$.

Definition 21. (cf. [20]) Let (X, \mathfrak{G}) be an approach space.

If topological co-reflection $(X, \tau_{\mathfrak{G}})$ is \mathbf{T}_1 (we refer it to usual T_1), then an approach space (X, \mathfrak{G}) is called \mathbf{T}_1 .

Theorem 22. Let (X, \mathfrak{G}) be an approach space. The following are equivalent.

- (i) $(X, \tau_{\mathfrak{G}})$ is $\mathbf{T_1}$.
- (ii) For all $x, y \in X$ with $x \neq y$, $\lambda([x])(y) > 0$.
- (iii) For all $x, y \in X$ with $x \neq y$, there exists $d \in \mathfrak{D}$ such that d(x, y) > 0.
- (iv) For all $x, y \in X$ with $x \neq y$, $\delta(x, \{y\}) > 0$.

Proof. It is given in [16, 20, 22].

Example 23. Let $X = [0, \infty]$, $A \subset X$ and $\delta : X \times 2^X \longrightarrow [0, \infty]$ be a map defined as:

$$\delta(x, A) = \begin{cases} \infty, & A = \emptyset \\ 0, & x \in A \\ 2, & x \notin A \end{cases}$$

By Theorem 20 and Theorem 22, a distance-approach space (X, δ) is \mathbf{T}_1 (in the usual sense) but it is not T_1 (in our sense).

Remark 24. (1)

- (i) In category Top of topological spaces and continuous functions as well as in the category SULim semiuniform limit spaces and uniformly continuous maps [24], by Theorem 15 and by Remark 4.7(2) of [8] both T₁ (in our sense) and T₁ (in the usual sense) are equivalent and they reduce to usual T₁ separation axiom. However, in the category pqsMet of extended pseudo-quasi-semi metric spaces and non-expensive maps, by Theorem 3.3 of [11], an extended pseudo-quasi-semi metric space (X, d) is T₁ iff for all distinct points x, y of X, d(x, y) = ∞ and by Theorem 3.4 of [11], (X, d) is T₁ (in the usual sense, i.e., (X, τ_d) is T₁, where τ_d is the topology induced from d) iff for all distinct points x, y of X, d(x, y) > 0.
- (ii) By Theorem 11 and Theorem 20, an approach space (X, 𝔅) is T₁ if and only if (X, 𝔅) is T₁ at p for all p ∈ X. Moreover, by Theorem 20 and Theorem 22, if an approach space (X, 𝔅) is T₁ (in our sense), then (X, 𝔅) is T₁ (in the usual sense) but by Example 23, reverse implication is not true.
- (iii) By Example 12 (i), a distance-approach space (X, δ) is both T_1 at a and $\mathbf{T_1}$ (in the usual sense) but it is not T_1 (in our sense). Furthermore, by Example 12 (ii), a distance-approach space (X, δ) is $\mathbf{T_1}$ (in the usual sense) but it is not T_1 at a. Hence, there is no relation between $\mathbf{T_1}$ (in the usual sense) and local T_1 .
- (iv) By Remark 2.12 (2) of [6], T_1 and local T_1 (i.e., T_1 at p for all $p \in X$) axioms could be equivalent.

5. Conclusions

In this paper, we gave a characterization of both local T_1 and T_1 limit (resp. guage) approach spaces and determined the result that (X, \mathfrak{G}) approach space is T_1 at p for all $p \in X$ iff it is T_1 . Moreover, it is shown that by Theorem 20

and Theorem 22, T_1 (in our sense) implies $\mathbf{T_1}$ (in the usual sense), but reverse implication, by Example 23, is not true. Furthermore, by Example 12 (i) and (ii), there is no relation between $\mathbf{T_1}$ (in the usual sense) and local T_1 .

References

- Adamek, J., Herrlich, H. and Strecker. G. E., Abstract and Concrete Categories, Pure and Applied Mathematics, John Wiley & Sons, New York, 1990.
- [2] Baran, M., Separation properties, Indian J. pure appl. Math, 23 (1991), 333-341.
- [3] Baran, M., Separation Properties in Topological Categories, Math. Balkanica, 10 (1996), 39-48.
- Baran, M., T₃ and T₄-objects in topological categories, Indian J. pure appl. Math., 29 (1998), 59-70.
- [5] Baran, M., Completely regular objects and normal objects in topological categories, Acta Mathematica Hungarica, 80.3 (1998), 211-224.
- [6] Baran, M., Closure operators in convergence spaces, Acta Mathematica Hungarica, 87.1-2 (2000), 33-45.
- [7] Baran, M. and Al-Safar, J., Quotient-reflective and bireflective subcategories of the category of preordered sets, *Topology and its Applications*, 158.15 (2011), 2076-2084.
- [8] Baran, M., Kula, S. and Erciyes, A., T₀ and T₁ semiuniform convergence spaces, *Filomat*, 27.4 (2013), 537-546.
- [9] Baran, M., Kula, S., Baran, T. M. and Qasim, M., Closure Operators in Semiuniform Convergence Spaces, *Filomat* 30.1 (2016), 131-140.
- [10] Baran, M. and Qasim, M., Local T₁ Distance-Approach Spaces, Proceedings of 5th International Conference on Advanced Technology & Sciences (ICAT), Bahcesehir University, Istanbul, Turkey, (2017), 112-116.
- [11] Baran, T.M. and Kula, M., T₁ Extended Pseudo-Quasi-Semi Metric Spaces, Math. Sci. Appl. E-Notes, 5.1 (2017), 40-45.
- [12] Berckmoes, B., Lowen, R. and Van Casteren, J., Approach theory meets probability theory, *Topology and its Applications*, 158.7 (2011), 836-852.
- [13] Colebunders, E., De Wachter S., and Lowen R., Intrinsic approach spaces on domains, *Topology and its Applications*, 158.17 (2011), 2343-2355.
- [14] Dikranjan, D. and Giuli, E., Closure operators I, Topology and its Applications, 27.2 (1987), 129-143.
- [15] Dikranjan, D. and Tholen, W., Categorical structure of closure operators: with applications to topology, algebra and discrete mathematics, Kluwer Academic Publishers, Dordrecht, 1995.
- [16] Jager, G., A note on neighbourhoods for approach spaces, Hacettepe Journal of Mathematics and Statistics, 41.2 (2012), 283-290.
- [17] Lowen, R., Approach spaces A common Supercategory of TOP and Met, Mathematische Nachrichten, 141.1 (1989), 183-226.
- [18] Lowen, R., Approach spaces: The missing link in the Topology-Uniformity-Metric triad, Oxford University Press, 1997.
- [19] Lowen, R. and Windels, B., Approach groups, The Rocky Mountain Journal of Mathematics, 30 (2000), 1057-1073.
- [20] Lowen, R. and Sioen, M., A note on separation in AP, Applied general topology, 4.2 (2003), 475-486.
- [21] Lowen, R., and Verwulgen, S., Approach vector spaces, Houston J. Math , 30.4 (2004), 1127-1142.
- [22] Lowen, R., Index Analysis: Approach theory at work, Springer, 2015.
- [23] Preuss, G., Theory of topological structures: an approach to categorical topology, D. Reidel Publ. Co., Dordrecht, 1988.

- [24] Preuss, G., Foundations of topology: an approach to convenient topology, Kluwer Academic Publishers, Dordrecht, 2002.
- *Current address*: Mehmet BARAN: Department of Mathematics, Faculty of Science, Erciyes University, Kayseri 38039 Turkey.

 $E\text{-}mail\ address: \texttt{baran@erciyes.edu.tr}$

ORCID Address: http://orcid.org/0000-0001-9802-3718

Current address: Muhammad QASIM: National University of Sciences & Technology (NUST),

School of Natural Sciences, Department of Mathematics, H-12 Islamabad, Pakistan

E-mail address: qasim@sns.nust.edu.pk

ORCID Address: http://orcid.org/0000-0001-9485-8072