
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 48 (6) (2019), 1744 – 1760

DOI : 10.15672/HJMS.2018.634

Research Article

Quasi-normality of idempotents on nilpotents

Tai Keun Kwak∗1, Seung Ick Lee2, Yang Lee3,4

1Daejin University, Department of Mathematics, Pocheon 11159, Korea
2Pusan National University, Department of Mathematics, Pusan 46241, Korea

3Yanbian University, Department of Mathematics, Yanji 133002, China
4Daejin University, Institute of Basic Science, Pocheon 11159, Korea

Abstract
We study the structure of idempotents in non-Abelian rings, concerning a ring property
near to the normality of idempotents on the set of nilpotents. We call a ring with such
property right idempotent-quasi-normalizing on nilpotents (simply, right IQNN), and study
the structure of right IQNN rings in relation with matrix rings, polynomial ring, and factor
rings, by which we extend the class of right IQNN rings. It is proved that the class of
IQNN rings contains the 2 by 2 full matrix rings over fields and the upper triangular
matrix rings over reduced rings. It is shown that given any countable field K, there exists
a semiprime IQNN algebra R over K such that the polynomial ring R[x] over R is IQNN
but not NI, and the upper nilradical of R[x] is zero.
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1. Introduction
The structure of idempotents have been studied by many authors in various sorts of

rings. A number of related results are obtained in the procedure of investigating the
structures of polynomial rings and matrix rings. In this article we concentrate our attention
on a property of idempotents on nilpotent elements that is similar to the normality, in
non-Abelian rings. It is shown that the class of rings with such property is quite large.

Throughout this article every ring is associative with identity unless otherwise stated.
Let R be a ring. Denote the set of all idempotents in R by I(R) and write I(R)′ =
I(R)\{0, 1}. Let J(R), N∗(R), N∗(R), and N(R) denote the Jacobson radical, the upper
nilradical, the lower nilradical, and the set of all nilpotent elements in R, respectively. We
also use nilpotent for a nilpotent element for simplicity. Note that N∗(R) ⊆ N∗(R) ⊆ N(R)
and N∗(R) ⊆ J(R). Z (Zn) denotes the ring of integers (modulo n). Denote the n by n
full (resp., upper triangular) matrix ring over R by Matn(R) (resp., Tn(R)). Eij denotes
the matrix with (i, j)-entry 1 and elsewhere 0, and write Dn(R) = {(aij) ∈ Tn(R) | a11 =
· · · = ann = 0}.
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2. Right idempotent-quasi-normalizing on nilpotents
In this section, we introduce a new structure of idempotents in non-Abelian rings,

concerning a ring property near to the normality of idempotents on the set of nilpotents.
Due to Feller [7], a ring is called right (resp., left) duo if every right (resp., left) ideal

is an ideal; a ring is called duo if it is both right and left duo. It is obvious that a ring
R is right duo if and only if Ra ⊆ aR for all a ∈ R. A ring is usually called reduced if
N(R) = 0. A ring is usually called Abelian if every idempotent is central. Both one-sided
duo rings and reduced rings are easily shown to be Abelian.
Lemma 2.1. For a ring R with I(R)′ nonempty, the following conditions are equivalent:

(1) R is Abelian;
(2) Re is contained in eR for all e ∈ I(R)′;
(3) eR is contained in Re for all e ∈ I(R)′;
(4) N(R)e is contained in eN(R) for all e ∈ I(R)′;
(5) eN(R) is contained in N(R)e for all e ∈ I(R)′;
(6) N(R)e is contained in eR for all e ∈ I(R)′;
(7) eN(R) is contained in Re for all e ∈ I(R)′.

Proof. (4) ⇒ (1). Let R be satisfy the condition (4), and assume on the contrary that
there exist r ∈ R and e ∈ I(R) such that er(1 − e) 6= 0. Note er(1 − e) ∈ N(R) and
e, 1 − e ∈ I(R)′.

By the condition (4), er(1 − e) = [er(1 − e)](1 − e) = (1 − e)s for some s ∈ N(R). This
yields

0 = (1 − e)[er(1 − e)] = (1 − e)[(1 − e)s] = (1 − e)s 6= 0,

a contradiction. Thus R is Abelian. The proofs of (2) ⇒ (1), (3) ⇒ (1), (5) ⇒ (1), (6) ⇒
(1), and (7) ⇒ (1) are similar. Other directions are obvious. �

We next consider a condition that is a proper generalization of the conditions (4) and
(5) in Lemma 2.1.
Definition 2.2. A ring R is said to be right idempotent-quasi-normalizing on nilpotents
(simply, right IQNN) provided that I(R)′ is empty, or else for every pair (e, a) ∈ I(R)′ ×
N(R) there exists (b, f) ∈ N(R) × I(R)′ such that ea = bf . A left IQNN ring is defined
symmetrically. A ring is IQNN if it is both right and left IQNN.
One-sided duo rings are Abelian, and Abelian rings are clearly right (left) IQNN. But
right (left) IQNN rings need not be Abelian by the following examples.

Recall that the Cayley-Hamilton theorem in linear algebra states that every square
matrix over a commutative ring satisfies its own characteristic equation. We will use this
fact freely. The determinant (resp., trace) of M is denoted by det(M) (resp., tr(A)), where
M is a given square matrix.
Lemma 2.3. Let A be a commutative ring and R = Mat2(A).

(1) I(R)′ =
{(

s t
u 1 − s

)
∈ R | s(1 − s) = tu

}
.

(2) Let A be a commutative domain. Then I(R)′ is the union of the following two sets:{(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 t
0 0

)
,

(
1 0
u 0

)
,

(
0 t
0 1

)
,

(
0 0
u 1

)
| t 6= 0, u 6= 0

}
and {(

s t
u 1 − s

)
| s /∈ {0, 1} and s(1 − s) = tu

}
.

(3) Let A be a commutative domain. N(R) is the union of the following two sets:{(
0 0
0 0

)
,

(
0 t
0 0

)
,

(
0 0
u 0

)
| t 6= 0, u 6= 0

}
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and {(
s t
u −s

)
| s 6= 0, t 6= 0, u 6= 0, and s2 = −tu

}
.

(4) Let A be a filed. Then I(R)′ is the union of the following two sets:{(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 t
0 0

)
,

(
1 0
u 0

)
,

(
0 t
0 1

)
,

(
0 0
u 1

)
| t 6= 0, u 6= 0

}
and {(

s t
t−1s(1 − s) 1 − s

)
=

(
s t

[t−1(1 − s)]s [t−1(1 − s)]t

)
| s /∈ {0, 1}, t 6= 0

}
.

(5) Let A be a filed. Then N(R) is the union of the following two sets:{(
0 0
0 0

)
,

(
0 t
0 0

)
,

(
0 0
u 0

)
| t 6= 0, u 6= 0

}
and {(

s t
−t−1s2 −s

)
=

(
s t

[−t−1s]s [−t−1s]t

)
| s 6= 0, t 6= 0

}
.

Proof. (1) Suppose that E =
(

s t
u v

)
∈ I(R)′. Since E2 = E, E satisfies the equation

x2 −x = 0. But E 6=
(

0 0
0 0

)
,

(
1 0
0 1

)
and so x2 −x is the minimal polynomial of E. Hence

x2 − x is equal to the characteristic polynomial of E by the Cayley-Hamilton theorem,
entailing tr(E) = 1 and det(E) = 0. Hence s+v = 1 and sv = tu. This yields s(1−s) = tu.

(2) Let A be a commutative domain and suppose that E =
(

s t
u v

)
∈ I(R)′. Then, by

(1), E =
(

s t
u 1 − s

)
with s(1 − s) = tu.

Case 1. Suppose that t = 0 and u = 0.
Then s2 = s and v2 = v since E2 = E. So each of s and v is either 0 or 1 because A is

a domain. This implies that E is either
(

1 0
0 0

)
or

(
0 0
0 1

)
.

Case 2. Suppose that only one of t and u is nonzero.

Then E is either
(

s t
0 v

)
or

(
s 0
u v

)
. In each case, we have s2 = s and v2 = v; hence

each of s and v is either 0 or 1 because A is a domain. Consequently (s, v) is either (1, 0)
or (0, 1) because E ∈ I(R)′. Thus E is one of the following:(

1 t
0 0

)
,

(
1 0
u 0

)
,

(
0 t
0 1

)
, and

(
0 0
u 1

)
,

where 0 6= t, 0 6= u.
Case 3. Suppose that t 6= 0 and u 6= 0.

Each of s and v is nonzero because sv = tu 6= 0. Furthermore s + v = 1 implies that
each of s and v is not 1. Thus E is a matrix in the set{(

s t
u v

)
∈ R | s + v = 1, sv = tu, and s, v /∈ {0, 1}

}

=
{(

s t
u 1 − s

)
∈ R | s(1 − s) = tu and s /∈ {0, 1}

}
.
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(3) Suppose that A is a commutative domain. Let Q be the quotient field of A and
consider Mat2(Q). It is well-known that if Mk = 0 for some k ≥ 1 then M2 = 0, where

M ∈ Mat2(Q). So if M =
(

s t
u v

)
∈ N(R)\{0} then M2 = 0. Since M2 = 0, M satisfies

the equation x2 = 0. But M 6= 0 and so x2 is the minimal polynomial of M . Hence x2

is equal to the characteristic polynomial of M by the Cayley-Hamilton theorem, entailing
tr(M) = 0 and det(M) = 0. Hence s + v = 0 and sv = tu. This yields −s2 = s(−s) = tu.

Suppose tu 6= 0 (i.e., t 6= 0 and u 6= 0). Then s 6= 0 because −s2 = tu. So M is of the

form
(

s t
u −s

)
with s 6= 0 and s2 = −tu.

Suppose tu = 0. Then t = 0 or u = 0; and s2 = −tu = 0 implies s = 0 because A is a

domain. Thus M is one of the forms
(

0 t
0 0

)
and

(
0 0
u 0

)
, where t, u 6= 0.

(4) and (5) are immediate consequences of (2) and (3), respectively, because A is a field. �
From Lemma 2.3, we can obtain the following right IQNN ring that is non-Abelian.

Theorem 2.4. If A is a field then Mat2(A) is an IQNN ring.
Proof. Let R = Mat2(A) and suppose that A is a field. Then, by Lemma 2.3(3, 4),

I(R)′ =
{(

1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 t
0 0

)
,

(
1 0
u 0

)
,

(
0 t
0 1

)
,

(
0 0
u 1

)
,

(
s t

t−1s(1 − s) 1 − s

)}
,

where s /∈ {0, 1}, t 6= 0, u 6= 0; and

N(R) =
{(

0 0
0 0

)
,

(
0 t
0 0

)
,

(
0 0
u 0

)
,

(
s t

−t−1s2 −s

)
| s 6= 0, t 6= 0, u 6= 0

}
.

Note that the rows of
(

s t
t−1s(1 − s) 1 − s

)
(resp.,

(
s t

−t−1s2 −s

)
) are linearly dependent

because (t−1s(1 − s), 1 − s) = t−1(1 − s)(s, t) (resp., (−t−1s2, −s) = −t−1s(s, t)), and that
the columns of those matrices are also linearly dependent similarly.

Furthermore, for
(

s t
[t−1(1 − s)]s [t−1(1 − s)]t

)
∈ I(R)′ and

(
a b

[−b−1a]a [−b−1a]b

)
∈

N(R), we have

(
s t

[t−1(1 − s)]s [t−1(1 − s)]t

) (
a b

[−b−1a]a [−b−1a]b

)
=

(
b−1a[sb + (−ta)] [sb + (−ta)]

t−1(1 − s)b−1a[sb + (−ta)] t−1(1 − s)[sb + (−ta)]

)
= C

and(
a b

[−b−1a]a [−b−1a]b

) (
s t

[t−1(1 − s)]s [t−1(1 − s)]t

)
=

(
t−1s[at + b(1 − s)] [at + b(1 − s)]

(−b−1a)t−1s[at + b(1 − s)] (−b−1a)[at + b(1 − s)]

)
= D

If sb + (−ta) 6= 0 (resp., at + b(1 − s) 6= 0) then every entry of C (resp., D) is nonzero
because s /∈ {0, 1} and s, t, a, b ∈ A\{0}. Suppose that sb+(−ta) 6= 0 and at+b(1−s) 6= 0.

Let v = sb + (−ta) and w = at + b(1 − s). Then C =
(

b−1av v
t−1(1 − s)b−1av t−1(1 − s)v

)
and

D =
(

t−1sw w
(−b−1a)t−1sw (−b−1a)w

)
. So we obtain

C =
(

−t−1(1 − s)v v
−v−1[t−1(1 − s)v]2 t−1(1 − s)v

) (
0 0

b−1a 1

)
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and
D =

(
1 0

−b−1a 0

) (
t−1sw w

−w−1[t−1sw]2 −t−1sw

)
,

noting that
(

−t−1(1 − s)v v
−v−1[t−1(1 − s)v]2 t−1(1 − s)v

)
,

(
t−1sw w

−w−1[t−1sw]2 −t−1sw

)
are in N(R)

and
(

0 0
b−1a 1

)
,

(
1 0

−b−1a 0

)
are in I(R)′. The computations for the other cases of EN

and NE are similar or simple.
Therefore both {EN | E ∈ I(R)′, N ∈ N(R)} and {N ′E′ | E′ ∈ I(R)′, N ′ ∈ N(R)} are
equal to the set{(

0 0
0 0

)
,

(
0 t
0 0

)
,

(
s t
0 0

)
,

(
0 0
0 u

)
,

(
0 0
s t

)
,

(
u 0
0 0

)
,

(
0 0
0 t

)
,

(
v 0
w 0

)
,

(
0 v
0 w

)
,

(
s t

αs αt

)}
,

where s, t, u, v, w, α ∈ A\{0}. This proves that R is both right and left IQNN. �

We see another kind of right IQNN ring that is non-Abelian.

Example 2.5. (1) Let K = Z2 and A = K〈a, b〉 be the free algebra generated by the
noncommuting indeterminates a, b over K. Let I be the ideal of A generated by a2 − a
and ab − b2a. Set R = A/I and identify a and b with their images in R for simplicity.
Then a2 = a and ab = b2a. So R is non-Abelian as can be seen by ab = b2a 6= ba.
Let n ≥ 1. We first get b2a = ab = a2b = a(ab) = a(b2a) = (ab)ba = (b2a)ba = b2(ab)a =
b2(b2a)a = b4a; hence ab = b4a = b2(b2a) = b2(b4a) = b2·3a = b4(b2a) = b4(b4a) = b2·4a =
· · · = b2na. This yields that for every m ≥ 5 (say m = 4n + l with n ≥ 1 and l = 0, 1, 2, 3),

bma = b4n+la = bl(b4na) = bl(b2a) = bl+2a ∈ {b2a, b3a}
and

ab2 = (ab)b = (b2a)b = b2(ab) = b2(b2a) = b2a.

From this result, we obtain furthermore that ab3 = (ab2)b = (b2a)b = b2(ab) = b2(b2a) =
b2a, and inductively abk+1 = (abk)b = (b2a)b = b2(ab) = b2(b2a) = b2a, where k ≥ 2.
Consequently we have now

a(c1b + c2b2 + · · · + cmbm) = (
m∑

j=1
cj)b2a for all c1x + c2x2 + · · · + cmxm ∈ xK[x].

Therefore every r ∈ R can be expressed by
r = k0 + k1a + (α1ba + α2b2a + α3b3a) + g(b) = k0 + k1a + (α1b + α2b2 + α3b3)a + g(b),

where ki, αj ∈ K and g(x) ∈ xK[x].
Let r ∈ R with
r = k0 +k1a+f(b)a+g(b) where f(x) = α1x+α2x2 +α3x3, g(x) ∈ xK[x] and ki, αj ∈ K.

Suppose that r2 = r, i.e., r ∈ I(R). Then

r2 = (k0 + k1a + f(b)a + g(b))2 = k0 + k1a + f(b)a + g(b) = r.

This entails that k2
0 = k0 (i.e., k0 = 0 or k0 = 1) and g(b) = g(b)2, and so g(b) = 0 follows.

Thus r = k0 + k1a + (α1b + α2b2 + α3b3)a.
Case I. Let k0 = 0: Then we have

r2 = (k1a + f(b)a)2 = k2
1a + k1af(b)a + k1f(b)a + f(b)af(b)a

= k2
1a + k1cb2a + k1f(b)a + f(b)cb2a

= k2
1a + (k1cb2 + k1f(b) + cf(b)b2)a = k1a + f(b)a = r,

where c =
∑3

j=1 αj . We also have that k1 = 0 or k1 = 1.
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Let k1 = 0. Then r = f(b)a and

r2 = (f(b)a)2 = (cf(b)b2)a = f(b)a = r.

Here if f(b)a 6= 0 then c = 1 and

(α1b + α2b2 + α3b3)a = (α1b + α2b2 + α3b3)b2a = α1b3a + α2b2a + α3b3a,

entailing α1 = 0 and r = (α2b2 + α3b3)a. But c = 1, and so r = b2a or r = b3a.
Let k1 = 1. Then r = a + f(b)a and

r2 = a + (cb2 + f(b) + cf(b)b2)a = a + f(b)a = r,

entailing cb2a + cf(b)b2a = 0. Here if f(b)a 6= 0 then c = 1 and so f(b)a = b2a by the
same argument as the above. So r = a + b2a follows.
Case II. Let k0 = 1: Then we have

r2 = (1 + k1a + f(b)a)2 = 1 + k2
1a + k1f(b)a + k1af(b)a + f(b)af(b)a

= 1 + k2
1a + (k1f(b) + k1cb2 + cf(b)b2)a

= 1 + k1a + f(b)a = r,

entailing k2
1 = k2 (i.e., k1 = 0 or k1 = 1) and k1f(b)a + k1cb2a + cf(b)b2a = f(b)a. Here

assume f(b)a 6= 0.
Let k1 = 0. Then r = 1 + f(b)a and cf(b)b2a = f(b)a. Hence c = 1 and so r = 1 + b2a

or r = 1 + b3a by the similar computation to the above.
Let k1 = 1. Then r = 1 + a + f(b)a and f(b)a + cb2a + cf(b)b2a = f(b)a, entailing c = 0

or b2a = f(b)b2a (when c = 1). So if c = 1 then f(b)a = b2a.
Consequently we now have

I(R) = {0, 1, a, b2a, b3a, a + b2a, 1 + a, 1 + b2a, 1 + b3a, 1 + a + b2a}.

Next we examine the set of nilpotents in R. Suppose rn = 0 for

r = k0 +k1a+f(b)a+g(b) where f(x) = α1x+α2x2 +α3x3, g(x) ∈ xK[x] and ki, αj ∈ K.

Then g(b) = 0 because rn = k0 + k1a + (γ1b + γ2b2 + γ3b3)a + g(b)n = 0 with γj ∈ K.
Similarly, we get k0 = 0 and k1 = 0. Thus r = f(b)a, and by the fact that af(b) = cb2a,
we have

rn = f(b)cn−1b2a = cn−1α2b2a + αn−1(α1 + α3)b3a = cα2b2a + c(α1 + α3)b3a = 0,

where c =
∑3

j=1 αj . It then follows that cα2 = 0 and c(α1 + α3) = 0. If c = 0, then we are
done. Assume c 6= 0. Then α2 = 0 and α1 + α3 = 0. This yields c = 0, a contradiction.
Consequently, we must have c = 0 for rn to be zero. Moreover if c = 0 then r2 = 0.
Therefore

N(R) = {α1ba + α2b2a + α3b3a | α1, α2, α3 ∈ K with α1 + α2 + α3 = 0}
= {0, ba + b2a, ba + b3a, b2a + b3a}.

Now we claim that R is an IQNN ring. Let e ∈ I(R)′ and n = α1ba+α2b2a+α3b3a ∈ N(R).
Then α1 + α2 + α3 = 0.

If e ∈ {a, b2a, b3a, a + b2a} then en = 0 because an = 0, and so en = 0 ∈ N(R)f for any
f ∈ I(R)′.
Next let e ∈ {1 + a, 1 + b2a, 1 + b3a, 1 + a + b2a}. Then

(1+a)n = n = na; (1+b2a)n = n = na; (1+b3a)n = n = na; and (1+a+b2a)n = n = na.

Therefore R is right IQNN.
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Let e ∈ {a, b2a, b3a, a + b2a}. Then
na = n = (1 + a)n;

nb2a = α2b2a + (α1 + α3)b3a = α2b2a + α2b3a) = (1 + a)(α2b2a + α2b3a);
nb3a = α2b2a + (α1 + α3)b3a = α2b2a + α2b3a) = (1 + a)(α2b2a + α2b3a); and

n(a + b2a) = α1ba + α1b3a) = (1 + a)(α1ba + α1b3a),

noting that α2b2a + α2b3a), α1ba + α1b3a ∈ N(R) because c = α1 + α2 + α3 = 0.
Next let e ∈ {1 + a, 1 + b2a, 1 + b3a, 1 + a + b2a}. Then

n(1 + a) = 0 ∈ fN(R) for any f ∈ I(R)′;
n(1 + b2a) = α1ba + α1b3a = (1 + a)(α1ba + α1b3a);
n(1 + b3a) = α1ba + α1b3a = (1 + a)(α1ba + α1b3a); and

n(1 + a + b2a) = nb2a = (1 + a)(α2b2a + α2b3a),
by a similar method to the above. Therefore R is left IQNN.

McCoy [18] called a ring R π-regular if for each a ∈ R there exist a positive integer n,
depending on a, and b ∈ R such that an = anban. Note that Matn(D) over a division
ring D for n ≥ 2 is π-regular by [8, Theorem 1.7]. If a ring R is Abelian π-regular, then
N(R) = N∗(R) = J(R) by [19, Theorem 2]. However this result is not valid for right
IQNN π-regular rings. Consider the ring R = Mat2(A) over a field A in Theorem 2.4.
Then R is IQNN π-regular, but 0 = N∗(R) ( N(R) and J(R) = 0.

The one-sided IQNN property is not left-right symmetric by the following.

Example 2.6. We apply the construction and argument in [14, Example 2.3(1,2)]. Let
K = Z2 and A = K〈a, b〉 be the free algebra with noncommuting indeterminates a, b over
K.

(1) Consider the ideal I of A generated by ba, a2−a, b2 and let R1 = A/I and identify the
elements in A with their images in R1 for simplicity. Then a2 = a and ba = 0 = b2 in R1.
By help of [14, Example 2.3(1)], every element r ∈ R is of the form r = α0+α1a+α2ab+α3b,
where α0, α1, α2, α3 ∈ K.

Let (1 + f)2 = 1 + f with f = α1a + α2ab + α3b. Then 1 + 2f + f2 = 1 + f2 = 1 + f
and f2 = f follows. Thus

I(R1)′ = {α + a + γab | α, γ ∈ K} =
{
1 + a + γab, a + γ′ab | γ, γ′ ∈ K

}
by help of the computation [14, Example 2.3(1)]. Moreover, N(R1) = {αab + βb | α, β ∈ K}
by the computation to [14, Example 2.3(1)]. In fact, N(R1) is an ideal of R. We directly
obtain that

S1 = {en | e ∈ I(R1)′, n ∈ N(R1)} = {δb + δab, ηab | δ, η ∈ K}
and

S2 = {n′e′ | n′ ∈ N(R1), e′ ∈ I(R1)′} = N(R1).
Thus S1 ( S2, and this implies that R1 is right IQNN but not left IQNN.

(2) Consider the ideal J of A generated by ab, a2 − a, b2. Let R2 = B/J and identify
the elements in A with their images in R2 for simplicity. Then R2 is left IQNN but not
right IQNN by a similar argument to (1).

As a generalization of reduced rings, Marks [17] called a ring R NI if N∗(R) = N(R).
Note that a ring R is NI if and only if N(R) forms an ideal if and only if R/N∗(R) is
reduced.

The class of NI rings and the class of right IQNN rings do not imply each other by next
example.
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Example 2.7. (1) The IQNN ring Mat2(A) over a field A in Theorem 2.4 is not NI
clearly.

(2) Let S be a domain and consider a ring R = D2(S). Then R is NI since N∗(R) =(
0 D
0 0

)
= N(R). Thus Tn(R) for all n ≥ 2 is NI by [11, Proposition 4.1(1)], but it is

neither left nor right IQNN by Example 3.2 to follow.
Example 2.6 illuminates that the IQNN property is not left-right symmetric, even if

given rings are NI. Indeed, each N(Ri) forms an ideal of Ri for i = 1, 2.
Let R be a right IQNN ring and suppose that e ∈ I(R)′ and a ∈ N(R). Then ea = bf

for some b ∈ N(R) and f ∈ I(R)′. Here ea = bf = (bf)f = (ea)f . We will freely us this
fact in the procedure. Moreover, we note that if a ring R is NI then ea, ae ∈ N(R) for all
e ∈ I(R) and a ∈ N(R). So we get the following.
Proposition 2.8. Let R be an NI ring. Then the following conditions are equivalent:

(1) R is right IQNN;
(2) for any e ∈ I(R)′ and a ∈ N(R), there exists f ∈ I(R)′ such that ea ∈ N(R)f ;
(3) for any e ∈ I(R)′ and a ∈ N(R), there exists f ∈ I(R)′ such that ea = eaf .
We see in the following a condition under which the IQNN property is left-right sym-

metric. Recall that an involution on a ring R is a function ∗ : R → R which satisfies the
properties that (x+y)∗ = x∗ +y∗, (xy)∗ = y∗x∗, 1∗ = 1, and (x∗)∗ = x for all x, y ∈ R. We
get 0∗ = 0 because 0∗ = (0 + 0)∗ = 0∗ + 0∗, and e∗ = (ee)∗ = e∗e∗ implies that e∗ ∈ I(R)
for all e ∈ I(R).
Proposition 2.9. Let R be a ring with an involution ∗. Then the following conditions
are equivalent:

(1) R is right IQNN;
(2) R is left IQNN.

Proof. First note that e∗ ∈ I(R)′ for all e ∈ I(R)′. Note that e 6= 0 and e 6= 1, entailing
1 − e ∈ I(R)′. If e∗ = 0 then e = (e∗)∗ = 0∗ = 0, a contradiction. So e∗ 6= 0. If e∗ = 1
then 0 = (0∗)∗ = ((e(1 − e))∗)∗ = ((1 − e)∗e∗)∗ = ((1 − e)∗)∗ = 1 − e, a contradiction. So
e∗ 6= 1.

Next, if a ∈ N(R), then ak = 0 for k ≥ 1. Since (ak)∗ = (a∗)k and 0∗ = 0, a∗ ∈ N(R).
(1) ⇔ (2): Let R be a right IQNN. For a ∈ N(R), e ∈ I(R)′, we have a∗ ∈ N(R),

e∗ ∈ I(R)′. So there exist b ∈ N(R) and f ∈ I(R)′ such that e∗a∗ = bf . Thus we have
ae = ((ae)∗)∗ = (e∗a∗)∗ = (bf)∗ = f∗b∗.

But f∗ ∈ I(R)′, so R is left IQNN. The converse can be similarly proved. �
Following [5], a ring R is called right (resp., left) quasi-Abelian provided that either

I(R)′ is empty, or else for any (e, a) ∈ I(R)′ × R (resp., (a, e) ∈ R × I(R)′) there exists
(b, f) ∈ R × I(R)′ (resp., (f, b) ∈ I(R)′ × R) such that ea = bf (resp., ae = fb).

The concept of right IQNN coincides with one of right quasi-Abelian when R is restricted
to N(R). But there exists a right IQNN ring which is not right quasi-Abelian, even though
it is NI, as we see in the following.

Example 2.10. Consider R =
(
Z Z2
0 Z

)
. Then R is not right quasi-Abelian by [5, Ex-

ample 1.8]. Note that

I(R)′ =
{(

0 b
0 1

)
,

(
1 b′

0 0

)
| b, b′ ∈ Z2

}
and N(R) =

(
0 Z2
0 0

)
.

Then {AB | A ∈ I(R)′, B ∈ N(R)} = N(R) = {CD | C ∈ N(R), D ∈ I(R)′}, and so R is
both left and right IQNN. Moreover, R is NI since N∗(R) = N∗(R) = N(R).
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Use
∏

γ∈Γ Rγ (resp.,
⊕

γ∈Γ Rγ) to denote the direct product (resp., direct sum) of rings
Rγ .

Proposition 2.11. (1) Let {Rγ | γ ∈ Γ} be a family of rings, and R be the subring of∏
γ∈Γ Rγ generated by

⊕
γ∈Γ Rγ and 1∏

γ∈Γ Rγ
. If Rγ is right IQNN for all γ ∈ Γ then R

is right IQNN.
(2) Let R be a ring and e ∈ I(R)′ be central. If R is right IQNN then both eR and

(1 − e)R are right IQNN.

Proof. (1) Note first N(R) =
⊕

γ∈Γ N(Rγ). We refer to the argument of [5, Theorem
2.2(2)]. Assume that Rγ is right IQNN for all γ. Consider (eγ)γ∈Γ ∈ I(R)′ and (rγ)γ∈Γ ∈
N(R). Then we have the following two cases:

Case I. There exists a finite nonempty subset Γ1 of Γ such that eα ∈ I(Rα)′ for all
α ∈ Γ1 and eβ ∈ {0Rβ

, 1Rβ
} for all β ∈ Γ\Γ1.

Since every Rγ is right IQNN, there exists gα ∈ I(Rα)′ and tα ∈ N(Rα) such that
eαrα = tαgα, for all α ∈ Γ1. Let (fγ)γ∈Γ ∈ I(R) and (sγ)γ∈Γ ∈ N(R) be such that

fα = gα for all α ∈ Γ1 and fβ = eβ for all β ∈ Γ\Γ1;
and

sα = tα for all α ∈ Γ1 and sβ = rβ for all β ∈ Γ\Γ1.

Then (eγ)γ∈Γ(rγ)γ∈Γ = (sγ)γ∈Γ(fγ)γ∈Γ because eαrα = tαgα = sαfα and eβrβ = rβeβ =
sβfβ. Moreover (fγ)γ∈Γ and (sγ)γ∈Γ are contained in I(R)′ and N(R), respectively.

Case II. There exists a finite nonempty subset Γ2 of Γ such that eα′ = 0Rα′ for all α′ ∈ Γ2
and eβ′ = 1Rβ′ for all β′ ∈ Γ\Γ2. Then (eγ)γ∈Γ is central in R, and (eγ)γ∈Γ(rγ)γ∈Γ =
(rγ)γ∈Γ(eγ)γ∈Γ follows.

Therefore R is right IQNN.
(2) Notice that

N(eR) = eN(R), I(eR) ⊆ I(R)′ ∪ {0}; and
N((1 − e)R) = (1 − e)N(R), I((1 − e)R) ⊆ I(R)′ ∪ {0}.

Suppose that R is right IQNN, and let ef ∈ I(eR)′ and es ∈ N(eR). If (ef)(es) = 0
then we are done. So assume (ef)(es) 6= 0. Since R is right IQNN, there exist t ∈ N(R)
and h ∈ I(R)′ such that (ef)(es) = th, entailing (ef)(es) = (et)(eh). But et ∈ N(eR),
and eh ∈ I(eR)′ because eh 6= 0. Thus eR is right IQNN. Similarly, we can prove that
(1 − e)R is right IQNN. �

For finite rings we obtain a useful information. Recall that if Mk = 0 for some k ≥ 1
then M2 = 0, where M ∈ Mat2(F ) and F is a field.

Corollary 2.12. Let R be a finite ring of bounded index (of nilpotency) ≤ 2. Then
R/J(R) is an IQNN ring.

Proof. Let R be a finite ring. Then R/J(R) is a finite direct product of Matni(Fi) where
Fi is a finite field for all i. Here ni is either 1 or 2 because R (hence R/J(R)) is of
bounded index (of nilpotency) ≤ 2. This completes the proof by help of Theorem 2.4 and
Proposition 2.11(1). �

3. Properties and examples of right IQNN rings
In this section, we observe the structures of several sorts of right IQNN rings which

are related to matrix rings, factor rings, and polynomial rings. In the procedure, we also
study the structure of NR rings (i.e., rings in which the nilpotents form a subring) with
respect to the Abelian (hence IQNN) property. The work, in this section, enables us to
show that the class of right IQNN rings is quite large.



Quasi-normality of idempotents on nilpotents 1753

Theorem 3.1. If R is a reduced ring then Tn(R) is an IQNN ring for all n ≥ 2.

Proof. Let R be a reduced ring and T = Tn(R) for n ≥ 2. Then N(T ) = {(aij) ∈ T |
aii = 0 for all i = 1, 2, . . . , n} = N∗(T ) = N∗(T ). Let A ∈ N(T ) and E ∈ I(T )′. Then
clearly AE, EA ∈ N(T ), AE = (bij) and EA = (cij) say. Next set

F1 = E11 + E22 + · · · + E(n−1)(n−1) and F2 = E22 + E33 + · · · + Enn.

Then F1, F2 ∈ I(T )′ and moreover AE = F1(bij), EA = (cij)F2. Thus T is IQNN. �

The condition “R is a reduced ring" in Theorem 3.1 is not superfluous as we see in the
following.

Example 3.2. (1) Let S be a domain and consider the non-reduced ring R = D2(S). By

[10, Lemma 2], R is Abelian with I(R) =
{(

0 0
0 0

)
,

(
1 0
0 1

)}
and so it is IQNN. Next set

T = T2(R). Then we have N(R) = {(aij) ∈ R | a11 = a22 = 0} and N(T ) = {(bij) ∈ T |
b11, b12 ∈ N(R)}. We claim that T is neither right nor left IQNN.

Consider two matrices

E =


(

1 0
0 1

) (
0 0
0 0

)
(

0 0
0 0

) (
0 0
0 0

)
 and A =


(

0 1
0 0

) (
1 1
0 1

)
(

0 0
0 0

) (
0 0
0 0

)


in T . Then E ∈ I(T )′ and A ∈ N(T ) with EA =


(

0 1
0 0

) (
1 1
0 1

)
(

0 0
0 0

) (
0 0
0 0

)
 = A. Assume on

the contrary that there exist F ∈ I(T )′ and B ∈ N(T ) such that A = EA = BF , say

B =
(

B1 B2
0 B3

)
and F =

(
F1 F2
0 F3

)
with Bj , Fj ∈ R for j = 1, 2, 3. Then Bj ∈ N(R) and

F 2
j = Fj for j = 1, 3 such that

B1F1 =
(

0 1
0 0

)
and B1F2 + B2F3 =

(
1 1
0 1

)
.

The first equality forces

B1 =
(

0 1
0 0

)
and F1 =

(
1 0
0 1

)
because I(R) =

{(
0 0
0 0

)
,

(
1 0
0 1

)}
. This yields

B2F3 =
(

1 1
0 1

)
− B1F2 =

(
1 1
0 1

)
−

(
0 1
0 0

)
F2 /∈ N(T )

because
(

0 1
0 0

)
F2 ∈ N(T ). But F3 ∈ I(R) and F3 6= 0, and so F3 =

(
1 0
0 1

)
. From these

results, we obtain F2 =
(

0 0
0 0

)
and F =


(

1 0
0 1

) (
0 0
0 0

)
(

0 0
0 0

) (
1 0
0 1

)
, contrary to F ∈ I(T )′.

Therefore T is not right IQNN. Similar proof can be done for the case of T being not left
IQNN.

(2) Consider a non-reduced commutative rings R = Z4. Then R is clearly IQNN with

I(R) = {0, 1}. Consider T = T2(R). Then I(T )′ =
{(

1 a
0 0

)
,

(
0 b
0 1

)
| a, b ∈ R

}
. For
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E =
(

1 0
0 0

)
∈ I(T )′ and A =

(
2 1
0 0

)
∈ N(T ), we have EA =

(
2 1
0 0

)
. However(

2 1
0 0

) (
1 a
0 0

)
=

(
2 2a
0 0

)
and

(
2 1
0 0

) (
0 b
0 1

)
=

(
0 2b + 1
0 0

)
; hence EA 6= EAF for all

F ∈ I(T )′. Thus T is not right IQNN by the argument before Proposition 2.8. Similarly,
it can be shown that T is not left IQNN.

As an application of Theorem 3.1, we assert in the following that the class of right IQNN
rings is not closed under subrings.

Example 3.3. Let S be a domain and T0 = T4(S). Then R0 is IQNN by Theorem 3.1.
Consider the ring T = T2(R) with R = D2(S) as in Example 3.2(1). Then T is not right
IQNN by the argument in Example 3.2(1). Note that T is a subring of T0.

By hint of Example 3.2, we get the following which is in part a converse of Theorem
3.1.

Theorem 3.4. Let R be a ring with I(R) = {0, 1} and n ≥ 2. Then the following
conditions are equivalent:

(1) Tn(R) is right IQNN;
(2) R is reduced;
(3) Tn(R) is left IQNN.

Proof. (1) ⇒ (2): Suppose that T = Tn(R) is right IQNN. Assume on the contrary
that a2 = 0 for some 0 6= a ∈ R. Consider two matrices E =

∑n−1
i=1 Eii and A =

a(
∑n−1

i=1 Eii) + E(n−1)n in T . Then E ∈ I(T )′ and A ∈ N(T ) such that EA = A.
Since T is right IQNN, there exist F ∈ I(T )′ and B ∈ N(T ) such that EA = BF , say

B = (bij) and F = (fij). Then bii ∈ N(R) and fii ∈ I(R) such that biifii = a for all
i = 1, 2, . . . , n − 1 and bnnfnn = 0 . Since I(R) = {0, 1}, every fii is 0 or 1. This forces
fii = 1 (hence bii = a) for all i = 1, 2, . . . , n − 1. But F ∈ I(T )′ and fnn = 0 follows. Since
F 2 = F , we can obtain directly that fij = 0 for all i, j ∈ {1, 2, . . . , n − 1} with i 6= j; that
is, F = E11 + E22 + · · · + E(n−1)(n−1) + f1nE1n + f2nE2n + · · · + f(n−1)nE(n−1)n.
This yields 1 = b(n−1)(n−1)f(n−1)n + b(n−1)nfnn = af(n−1)n, so we get 0 6= a = a2f(n−1)n =
0, a contradiction. Thus R is reduced.

The proof of (3) ⇒ (2) is similar. Both (2) ⇒ (1) and (2) ⇒ (3) are proved by Theorem
3.1. �

Considering a reduced ring R with I(R) = {0, 1} as in Theorem 3.4, one may ask whether
such a reduced ring is a domain. However the answer is negative by the following.

Example 3.5. Consider the polynomial ring P = Z6[x]. Then P is a reduced ring, and
I(P ) = {0, 1, 3, 4} by [13, Lemma 8]. Next set

R = {0, 1} + Z6[x]x.

Then R is a reduced ring with I(R) = {0, 1}, but it is not a domain.

The following example shows that the converse of Theorem 3.1 does not hold in general as
well as the condition “R is a ring with I(R) = {0, 1}" in Theorem 3.4 is not superfluous.

Example 3.6. Let R1 be the right IQNN ring in Example 2.6(1) with
N(R1) = {αab + βb | α, β ∈ K}

and
I(R1) =

{
0, 1, 1 + a + γab, a + γ′ab | α, γ, γ′ ∈ K

}
.

We will use the argument in Example 2.6(1) without referring. Then R1 is clearly not
reduced.
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Set T = T2(R1). Then

N(T ) =
{(

c s
0 d

)
| c, d ∈ N(R1) and s ∈ R1

}
,

and every idempotent E in I(T )′ is contained in the set{(
e r
0 f ′

)
,

(
e′ r
0 f

)
,

(
1 r
0 f ′

)
,

(
e′ r
0 1

)}
,

where e, f ∈ I(R1)′, e′, f ′ ∈ {0} ∪ I(R1)′, and r ∈ R1. Note that N(R1) = N∗(R1) and
{n′e′ | n′ ∈ N(R1), e′ ∈ I(R1)′} = N(R1).

We will show that T is a right IQNN ring. Let E ∈ I(T )′ and A =
(

c s
0 d

)
∈ N(T ).

Note c, d ∈ N(R1) and N(R1) = N∗(R1).

(i) Consider the case of E =
(

e r
0 f ′

)
. Then EA =

(
ec es + rd
0 f ′d

)
. Since R1 is right

IQNN, ec = c1e1 for some c1 ∈ N(R1) and e1 ∈ I(R1)′. So EA =
(

c1 es + rd
0 f ′d

) (
e1 0
0 1

)
,

noting that
(

c1 es + rd
0 f ′d

)
∈ N(T ) and

(
e1 0
0 1

)
∈ I(T )′.

(ii) Consider the case of E =
(

e′ r
0 f

)
. Then EA =

(
e′c e′s + rd
0 fd

)
. If e′ = 0 then

EA =
(

0 rd
0 fd

)
=

(
0 rd
0 fd

) (
0 0
0 1

)
, noting that

(
0 rd
0 fd

)
∈ N(T ) and

(
0 0
0 1

)
∈ I(T )′.

Suppose e′ 6= 0. Since R1 is right IQNN, e′c = c2e2 for some c2 ∈ N(R1) and e2 ∈

{0} ∪ I(R1)′. So EA =
(

c2 es + rd
0 fd

) (
e2 0
0 1

)
, noting that

(
c1 e′s + rd
0 fd

)
∈ N(T ) and(

e2 0
0 1

)
∈ I(T )′.

(iii) Consider the case of E =
(

1 r
0 f ′

)
. Then EA =

(
c s + rd
0 f ′d

)
. Since {n′e′ | n′ ∈

N(R1), e′ ∈ I(R1)′} = N(R1), c = c3e3 for some c3 ∈ N(R1) and e3 ∈ {0} ∪ I(R1)′. So

EA =
(

c3 s + rd
0 f ′d

) (
e3 0
0 1

)
, noting that

(
c3 s + rd
0 f ′d

)
∈ N(T ) and

(
e3 0
0 1

)
∈ I(T )′.

(iv) Consider the case of E =
(

e′ r
0 1

)
. Then EA =

(
e′c e′s + rd
0 d

)
. If e′ = 0 then

EA =
(

0 rd
0 d

)
=

(
0 rd
0 d

) (
0 0
0 1

)
, noting that

(
0 rd
0 d

)
∈ N(T ) and

(
0 0
0 1

)
∈ I(T )′.

Suppose e′ 6= 0. Since R1 is right IQNN, e′c = c4e4 for some c4 ∈ N(R1) and e4 ∈

{0} ∪ I(R1)′. So EA =
(

c4 e′s + rd
0 d

) (
e4 0
0 1

)
, noting that

(
c4 e′s + rd
0 d

)
∈ N(T ) and(

e4 0
0 1

)
∈ I(T )′.

Therefore T is a right IQNN ring by (i), (ii), (iii), and (iv).

In the following we consider a method to extend the class of right IQNN rings, by
factorizations modulo nil ideals. Recall that an ideal I of a ring R is said to be idempotent-
lifting if idempotents in R/I can be lifted to R. Nil ideals are idempotent-lifting by
[16, Proposition 3.6.1].
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Proposition 3.7. Let R be a ring and I be a nil ideal of R. If R is right IQNN then R/I
is right IQNN.

Proof. Suppose that R is right IQNN. Write r̄ = r+I with r ∈ R and R̄ = R/I. Since I is
nil, we have that I is idempotent-lifting by [16, Proposition 3.6.1], N(R̄) = {ā | a ∈ N(R)},
and I ∩ I(R)′ = ∅.

Let x̄ ∈ I(R̄)′ and ā ∈ N(R̄). Then a ∈ N(R), and there exists e ∈ I(R) such that ē = x̄.
Here x̄ ∈ I(R̄)′ implies e ∈ I(R)′. Since R is right IQNN, ex = bf for some b ∈ N(R)
and f ∈ I(R)′. Here b̄ ∈ N(R̄), and f ∈ I(R)′ implies f̄ 6= 0̄ because I ∩ I(R)′ = ∅.
Furthermore, f̄ 6= 1̄ (otherwise, 0 6= 1 − f ∈ I, contrary to I ∩ I(R)′ = ∅). Thus f̄ ∈ I(R̄)′

such that x̄ā = ēā = ea = bf = b̄f̄ , showing that R̄ is right IQNN. �
The condition “I is nil" in Proposition 3.7 cannot be dropped as we see in the following.

Let R = T2(Z). Then R is IQNN by Theorem 3.1 or Theorem 3.4. Consider the ideal
I = T2(4Z) of R. Then R/I is isomorphic to T2(Z4), and I(Z4) = {0, 1}. But Z4 is not
reduced, and so T2(Z4) is not right IQNN by Theorem 3.4. Note that I is not nil. One
can see another example in Example 2.6(2).

As a byproduct of the preceding argument, we can conclude that the class of right IQNN
rings is not closed under homomorphic images.

The converse of Proposition 3.7 need not hold by the ring T2(R) in Example 3.2, where
R = D2(S) over a domain S. T2(R) is not right IQNN, but T2(R)/I ∼= R ⊕ R is a right

IQNN ring by Proposition 2.11(1), where I =
(

0 R
0 0

)
is a nil ideal of T2(R).

From Proposition 3.7, we can obtain an information for matrix rings to be right IQNN.

Corollary 3.8. Let R be a ring and n ≥ 2. If Dn(R) is a right IQNN ring, then so is R.

Proof. Suppose that Dn(R) is a right IQNN ring. Consider the nilpotent ideal I =
{(aij) ∈ Dn(R) | aii = 0 for all i} of Dn(R). Then Dn(R)/I ∼= R is right IQNN by
Proposition 3.7. �

Following [6], a ring R is called NR if N(R) forms a subring of R. NI rings are clearly
NR, but the converse need not hold by Antoine [2, Example 4.8]. We first observe the NR
property of the rings in Theorem 2.4 and Example 2.5 for our purpose.

Remark 3.9. (1) Let R = Mat2(A) be the IQNN ring in Theorem 2.4. Then R is clearly
not NR. Note that R/N∗(R) ∼= R is non-Abelian because N∗(R) = J(R) = 0.

(2) Let R be the IQNN ring in Example 2.5. Then N(R) = {0, ba + b2a, ba + b3a, b2a +
b3a}. So we have aN(R) = 0, N(R)a = N(R), bN(R) = {0, b2a + b3a}, N(R)b =
{0, b2a + b3a}, and N(R)2 = 0. This implies N(R) = N∗(R) = N∗(R), and so R is NI
(hence NR). Thus R/N∗(R) is a reduced ring. Moreover R/N∗(R) is a commutative ring,
since ab − ba = ab + ba = b2a + ba ∈ N∗(R).

We can construct an NR ring that is neither right IQNN nor NI by help of Theorem
3.4 and [2, Example 4.8] by next example.

Example 3.10. Let R be the ring in [2, Example 4.8], i.e., R is the factor ring of the
free algebra K〈a, b〉 modulo the ideal generated by b2, where K is a field and a, b are
noncommuting indeterminates over K. Then R is NR by [2, Corollary 3.3], but not NI by
the argument in [2, Example 4.8]. Thus T2(R) is NR but not NI by [6, Theorem 2.1] and
[11, Proposition 4.(1)], respectively.

We identify a and b with their images in R for simplicity. Assume that I(R)′ is
nonempty. Let e ∈ I(R)′. Then e(1 − e) = 0 = (1 − e)e with 1 − e ∈ I(R)′. So, by
the argument in [12], we get e ∈ Rb ∩ bR. Then rb = e = bs for some r, s ∈ R, and this
yields 0 6= e = e2 = (rb)(bs) = 0 because b2 = 0, a contradiction. Thus I(R)′ is empty,
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and I(R) = {0, 1} follows. From this result, we can conclude that T2(R) is neither right
nor left IQNN by Theorem 3.4 because R is not reduced.

Based on the example above, we observe a relation between Abelian and NR as follows.

Proposition 3.11. Let R be an NR ring.
(1) If R is non-Abelian then R[x]/N∗(R)[x] is an Abelian ring with N∗(R)[x] 6= 0.
(2) Suppose that J(R) is idempotent-lifting. If R is non-Abelian then R[x]/J(R)[x] is

an Abelian ring with J(R)[x] 6= 0.

Proof. (1) Since R is NR, R/N∗(R) is Abelian by Ster [21, Proposition 3.1]. Let r ∈ R
and e ∈ I(R). Then e(r − re) = er − ere = er(1 − e) and (r − er)e = re − ere = (1 − e)re
are contained in N(R). By the proof of [21, Proposition 3.1], R(re − ere) and (er − ere)R
are both nil. Here if R is non-Abelian, then there exist f ∈ I(R) and s ∈ R such that
fs−fsf 6= 0 or sf −fsf 6= 0. Hence R(sf −fsf) 6= 0 or (fs−fsf)R 6= 0 by the preceding
result. But since R is NR, these are contained in N∗(R). This implies N∗(R) 6= 0, hence
N∗(R)[x] 6= 0. From the isomorphism R[x]/N∗(R)[x] ∼= (R/N∗(R))[x], we obtain that
R[x]/N∗(R)[x] is Abelian by [13, Lemma 8].

(2) It is shown that R/J(R) is an Abelian ring with J(R) 6= 0 (hence J(R)[x] 6= 0),
by combining (1) and the results of Chen [4, Propositions 2.2 and 2.16]. Then the result
follows the isomorphism R[x]/J(R)[x] ∼= (R/J(R))[x] and [13, Lemma 8]. �

Let R be a ring with N∗(R) = N(R). Then R is NR clearly, but we can obtain more
strong results related to nilradicals and Jacobson radicals of R[x] as follows. Since N∗(R) =
N(R), we get N∗(R) = N∗(R) = N(R); hence N(R[x]) = N∗(R[x]) = N∗(R[x]) =
N∗(R)[x] = N∗(R)[x] = N(R)[x] by [1, Theorem 3] and [3, Proposition 2.6]. This implies
R[x]/N∗(R[x]) is a reduced ring. By [1, Theorem 1], J(R[x]) = I[x] for some nil ideal I
of R. This entails J(R[x]) = I[x] ⊆ N∗(R)[x] = N∗(R[x]) ⊆ J(R[x]) by the preceding
argument. So we obtain J(R[x]) = N(R[x]) = N∗(R[x]) = N∗(R[x]) = N∗(R)[x] =
N∗(R)[x] = N(R)[x]. Thus R[x]/J(R[x]) is also a reduced ring.

However, the preceding argument is not valid for NI rings, even if the rings R with
N∗(R) = N(R) are obviously NI. In fact, there exist NI rings R in Theorem 3.14 to follow
such that 0 = N∗(R[x]) ( N∗(R)[x] 6= 0 in (1) and 0 = J(R[x]) ( N∗(R)[x] = J(R)[x] 6= 0
in (2).

The condition “J(R) is idempotent-lifting" in Proposition 3.11(2) is not superfluous as
follows.

Example 3.12. Let S be the localization of Z at the prime ideal pZ, where p is an odd
prime; and set R0 be the quaternions over S. Note J(R0) = pR0 that is the quaternions
over pZ. Next set R = T2(R0). Since R0 is a domain and I(R0) = {0, 1}, I(R) ={(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 a
0 0

)
,

(
0 b
0 1

)
| a, b ∈ R0

}
. Note that R is a non-Abelian ring with

J(R) = pR =
(

pR0 R0
0 pR0

)
.

We claim that J(R) is not idempotent-lifting. By the argument in [9, Exercise 2A],
R0/J(R0) is isomorphic to Mat2(Zp). Hence R/J(R) is isomorphic to Mat2(Zp)×Mat2(Zp)
that is non-Abelian. Here J(R) is not idempotent-lifting. Let c̄ = c + J(R) 7→ (E11, E11)
for (E11, E11) ∈ Mat2(Zp) × Mat2(Zp). Then c̄ ∈ I(R/J(R))′ because (E11, E11) ∈

I(Mat2(Zp) × Mat2(Zp))′. Moreover c̄ =
(

c1 d
0 c2

)
+ J(R) with ci /∈ pR0. Assume that

there exists e ∈ I(R) such that c̄ = ē. Since c̄ 7→ (E11, E11), e must be 1 because

I(R) =
{(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 a
0 0

)
,

(
0 b
0 1

)
| a, b ∈ R0

}
. This implies 1−c ∈ J(R), hence

c is a unit, a contradiction. Thus c̄ cannot be lifted to an idempotent in R.
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We next consider the right IQNN property of polynomial rings. Recall that Köthe’s
conjecture means that the sum of two nil right ideals is nil. In the following we see two
kinds of Abelian polynomial rings which is not NI. To see that, we need to observe a
property of the nil ring constructed by Smoktunowicz [20].
Example 3.13. Let K be any countable field. Then, by [20, Theorem 12], there is a nil
algebra R0 over K generated by three elements (say a, b, c), such that R0[x, y] is not nil,
where R0[x, y] is the polynomial ring with commuting indeterminates x, y over R0. Set
R = K + R0. Then N(R) = R0 = N∗(R) because R/R0 ∼= K, concluding that R is an NI
ring. Moreover R0[x, y] being non-nil implies R[x, y] being non-NI, because a + bx + cy is
not nilpotent by the proof of [20, Theorem 12], in spite of a, bx, cy ∈ N(R[x, y]).

We claim that N∗(R) ( N∗(R). Assume N∗(R) = N∗(R). Since a, b, c ∈ N∗(R), we
have a, b, c ∈ N∗(R). Hence a+bx+cy ∈ N∗(R[x, y]) because N∗(R)[x, y] = N∗(R[x])[y] =
N∗(R[x, y]) by [1, Theorem 3]. This is contrary to a + bx + cy /∈ N(R[x, y]). Thus
N∗(R) ( N∗(R).

The following is based on the construction of Smoktunowicz and argument in Example
3.13.
Theorem 3.14. (1) Given any countable field K, there exists a semiprime non-reduced
NI algebra R over K such that N∗(R[x]) = 0 and R[x] is Abelian but not NI.

(2) If Köthe’s conjecture has a negative solution, then there exists a semiprime non-
reduced NI ring R such that J(R[x]) = 0 and R[x] is Abelian but not NI.
Proof. (1) By [4, Theorem 3.8], there exists a nil algebra S over K such that N∗(S[x]) = 0.
Set R = K + S. Then N(R) = S = N∗(R) = J(R) and so R is NI. Furthermore, R is
Abelian because R/J(R) ∼= K (hence R is local). Then R[x] is also Abelian by [13, Lemma
8]. We can assume that R is semiprime through the isomorphism R

N∗(R)
∼= R

N∗(R)/N∗(R)
N∗(R) .

From the isomorphism R[x]/S[x] = R[x]/N∗(R)[x] ∼= (R/N∗(R))[x] = (R/S)[x] ∼=
K[x], we have N∗(R[x]) ⊆ N(R[x]) ⊆ S[x]. This implies that

N(R[x]) = N(R[x]) ∩ S[x] = N(S[x]) and N∗(R[x]) = N∗(R[x]) ∩ S[x] ⊆ N∗(S[x]),
noting that N∗(R[x]) is a nil ideal of S[x]. But N∗(S[x]) = 0 and N∗(R[x]) = 0 follows.
Every monomial in S[x] is nilpotent, and so 0 6= N(S[x]) ⊆ R[x]. Hence R[x] is not NI.

(2) Krempa [15] proved that Köthe’s conjecture is equivalent to the problem of whether
for each nil algebra S over a field, the polynomial ring over S is Jacobson radical.

Suppose that Köthe’s conjecture has a negative solution. Then, by Chen [4, Lemma
3.6], there exists a nil algebra S over some countable field K such that J(S[x]) = 0. Chen
obtained this result, based on the construction of Smoktunowicz [20] and the preceding
fact of Krempa.

Next set R = K + S and consider R[x]. Then R[x] is Abelian by the argument in (1).
We can assume that R is semiprime through the isomorphism R

J(R)
∼= R

N∗(R)/ J(R)
N∗(R) . By

[1, Theorem 1], J(R[x]) = I[x] for some nil ideal I of R. But I is contained in S by a
similar method to (3). This implies J(R[x]) = S[x] ∩ J(R[x]) = J(S[x]) = 0. Since R[x]
is not reduced, N∗(R[x]) ⊆ J(R[x]) = 0 implies that R[x] is not NI. �

The following shows that the condition “a ring R being right IQNN" is necessary for
the condition “R[x] being right IQNN".
Proposition 3.15. Let R be a ring.

(1) Let f(x) =
∑m

i=0 aix
i ∈ I(R[x]). If a0 is central, then f(x) = a0.

(2) If f(x) =
∑m

i=0 aix
i ∈ I(R[x])′, then a0 ∈ I(R)′.

(3) If R[x] is a right IQNN ring, then so is R.
(4) If R is a reduced ring then Tn(R)[x] is an IQNN ring for all n ≥ 2.
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Proof. (1) This is shown by the proof of [13, Lemma 8].
(2) Let f(x) =

∑m
i=0 aix

i ∈ I(R[x])′. Then a0 6= 0 obviously. Assume a0 = 1. Then
f(x) = 1 by (1), contrary to f(x) /∈ I(R[x])′. Therefore a0 ∈ I(R)′.

(3) Assume that R[x] is right IQNN. Let a ∈ N(R) and e ∈ I(R)′. Since R[x] is right
IQNN, there exist g(x) =

∑n
j=0 bjxj ∈ N(R[x]) and f(x) =

∑m
i=0 aix

i ∈ I(R[x])′ such that
ea = g(x)f(x). Then b0 ∈ N(R) clearly, and a0 ∈ I(R)′ by (1). Thus ea = b0a0 and so R
is right IQNN.

(4) Let R be a reduced ring. Then Tn(R[x]) is IQNN by Theorem 3.1 since R[x] is
reduced. Moreover Tn(R)[x] ∼= Tn(R[x]) implies that Tn(R)[x] is IQNN. �
Finally, regarding Theorem 2.4, we raise the following question.
Question. Is Mat2(A) a right IQNN ring over a commutative domain A?
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