

RESEARCH ARTICLE

On selective sequential separability of function spaces with the compact-open topology

Alexander V. Osipov

Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, 620219, Ekaterinburg, Russia

Abstract

For a Tychonoff space X, we denote by $C_k(X)$ the space of all real-valued continuous functions on X with the compact-open topology. A subset $A \subset X$ is said to be sequentially dense in X if every point of X is the limit of a convergent sequence in A. A space $C_k(X)$ is selectively sequentially separable (in Scheepers' terminology: $C_k(X)$ satisfies $S_{fin}(\mathcal{S}, \mathcal{S})$) if whenever $(S_n : n \in \mathbb{N})$ is a sequence of sequentially dense subsets of $C_k(X)$, one can pick finite $F_n \subset S_n$ $(n \in \mathbb{N})$ such that $\bigcup \{F_n : n \in \mathbb{N}\}$ is sequentially dense in $C_k(X)$. In this paper, we give a characterization for $C_k(X)$ to satisfy $S_{fin}(\mathcal{S}, \mathcal{S})$.

Mathematics Subject Classification (2010). 54C25, 54C35, 54C40, 54D20

Keywords. compact-open topology, function space, selectively sequentially separable, $S_1(\mathcal{S}, \mathcal{S})$, sequentially dense set, property α_2 , property α_4

1. Introduction

If X is a topological space and $A \subseteq X$, then the sequential closure of A, denoted by $[A]_{seq}$, is the set of all limits of sequences from A. A set $D \subseteq X$ is said to be sequentially dense if $X = [D]_{seq}$. A space X is called sequentially separable if it has a countable sequentially dense set [26, 27].

Let X be a topological space, and $x \in X$. Consider the following collections:

- $\Omega_x = \{A \subseteq X : x \in \overline{A} \setminus A\};$
- $\Gamma_x = \{A \subseteq X : x = \lim A\}.$

Note that if $A \in \Gamma_x$, then there exists $\{a_n\} \subset A$ converging to x. So, simply Γ_x may be the set of non-trivial convergent sequences to x.

Many topological properties are defined or characterized in terms of the following classical selection principles. Let \mathcal{A} and \mathcal{B} be sets consisting of families of subsets of an infinite set X. Then:

 $S_1(\mathcal{A}, \mathcal{B})$ is the selection hypothesis: for each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $\{b_n\}_{n\in\mathbb{N}}$ such that for each $n, b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $S_{fin}(\mathcal{A}, \mathcal{B})$ is the selection hypothesis: for each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $\{B_n\}_{n\in\mathbb{N}}$ of finite sets such that for each $n, B_n \subseteq A_n$, and $\bigcup_{n\in\mathbb{N}} B_n \in \mathcal{B}$.

Email address: OAB@list.ru

Received: 13.05.2018; Accepted: 09.07.2018

In this paper, by a cover we mean a cover \mathcal{U} with $X \notin \mathcal{U}$.

A cover \mathcal{U} of a space X is called:

• a k-cover if each compact subset C of X is contained in an element of \mathcal{U} ;

• a γ_k -cover if \mathcal{U} is infinite and for each compact subset C of X the set $\{U \in \mathcal{U} : C \nsubseteq U\}$ is finite.

Note that a γ_k -cover is a k-cover, and a k-cover is infinite. A compact space has no k-covers.

For a Tychonoff space X, we denote by $C_k(X)$ the space of all real-valued continuous functions on X with the compact-open topology. Subbase open sets of $C_k(X)$ are of the form $[A, U] = \{f \in C(X) : f(A) \subset U\}$, where A is a compact subset of X and U is a non-empty open subset of \mathbb{R} . Sometimes we will write the basic neighborhood of a point $f \in C_k(X)$ as $\langle f, A, \epsilon \rangle$ where $\langle f, A, \epsilon \rangle := \{g \in C(X) : |f(x) - g(x)| < \epsilon \ \forall x \in A\}$, A is a compact subset of X and $\epsilon > 0$.

For a topological space X we denote:

- Γ_k the family of open γ_k -covers of X;
- \mathcal{K} the family of open k-covers of X;
- $\mathcal{K}_{cz}^{\omega}$ the family of countable co-zero k-covers of X;
- \mathcal{D} the family of dense subsets of $C_k(X)$;
- S the family of sequentially dense subsets of $C_k(X)$;
- $\mathbb{K}(X)$ the family of all non-empty compact subsets of X.

A space X is said to be a γ_k -set if each k-cover \mathcal{U} of X contains a countable set $\{U_n : n \in \mathbb{N}\}$ which is a γ_k -cover of X [9].

2. Main definitions and notation

- A space X is R-separable, if X satisfies $S_1(\mathcal{D}, \mathcal{D})$ ([2, Definition 47]).
- A space X is selectively separable (M-separable), if X satisfies $S_{fin}(\mathcal{D}, \mathcal{D})$.
- A space X is selectively sequentially separable (*M*-sequentially separable), if X satisfies $S_{fin}(S, S)$ ([4, Definition 1.2]).

For a topological space X we have the next relations of selectors for sequences of dense sets of X.

$$S_{1}(\mathbb{S},\mathbb{S}) \Rightarrow S_{fin}(\mathbb{S},\mathbb{S}) \Rightarrow S_{fin}(\mathbb{S},\mathcal{D}) \Leftarrow S_{1}(\mathbb{S},\mathcal{D})$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$S_{1}(\mathcal{D},\mathbb{S}) \Rightarrow S_{fin}(\mathcal{D},\mathbb{S}) \Rightarrow S_{fin}(\mathcal{D},\mathcal{D}) \Leftarrow S_{1}(\mathcal{D},\mathcal{D})$$

We write $\Pi(\mathcal{A}_x, \mathcal{B}_x)$ without specifying x, we mean $(\forall x)\Pi(\mathcal{A}_x, \mathcal{B}_x)$.

- A space X has property α_2 (α_2 in the sense of Arhangel'skii), if X satisfies $S_1(\Gamma_x, \Gamma_x)$ [1].
- A space X has property α_4 (α_4 in the sense of Arhangel'skii), if X satisfies $S_{fin}(\Gamma_x, \Gamma_x)$ [1].

So we have three types of topological properties described through the selection principles:

- local properties of the form $S_*(\Phi_x, \Psi_x)$;
- global properties of the form $S_*(\Phi, \Psi)$;
- semi-local properties of the form $S_*(\Phi, \Psi_x)$.

In a series of papers it was demonstrated that γ -covers, Borel covers, k-covers play a key role in function spaces ([5],[10]-[8], [13]-[15], [18]-[25] and many others). We continue to investigate applications of k-covers in function spaces with the compact-open topology.

A great attention has recently received the notions of selective separability and selective sequential separability $(S_{fin}(\mathfrak{S},\mathfrak{S}))$ [2,3,6,7]. In this paper, we give characterizations for $C_k(X)$ to satisfy $S_{fin}(\mathfrak{S},\mathfrak{S})$, $S_{fin}(\mathfrak{S},\Gamma_x)$, and $S_{fin}(\Gamma_x,\Gamma_x)$.

3. Main results

Definition 3.1. A γ_k -cover \mathcal{U} of co-zero sets of X is γ_k -shrinkable if there exists a γ_k -cover $\{F(U) : U \in \mathcal{U}\}$ of zero-sets of X with $F(U) \subset U$ for every $U \in \mathcal{U}$.

Note that every γ_k -shrinkable cover contains a countable γ_k -shrinkable cover.

For a topological space X we denote:

• Γ_k^{sh} — the family of γ_k -shrinkable covers of X.

-Similar to the proof that $S_1(\mathcal{K}, \Gamma_k) = S_{fin}(\mathcal{K}, \Gamma_k)$ ([9, Theorem 5]), we prove the following.

Lemma 3.2. For a space X the following are equivalent:

(1) X satisfies $S_{fin}(\Gamma_k^{sh}, \Gamma_k)$; (2) X satisfies $S_1(\Gamma_k^{sh}, \Gamma_k)$.

Proof. (1) \Rightarrow (2). Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of (countable) γ_k -shrinkable covers of X; suppose that for each $n \in \mathbb{N}$, $\mathcal{U}_n = \{U_{n,m} : m \in \mathbb{N}\}$. Let $V_{n,m} = U_{1,m} \cap ... \cap U_{n,m}$ and let $\mathcal{V}_n = \{V_{n,m} : m \in \mathbb{N}\}$. Then $(\mathcal{V}_n : n \in \mathbb{N})$ is a sequence of γ_k -shrinkable covers of X. Since X satisfies $S_{fin}(\Gamma_k^{sh}, \Gamma_k)$ choose for each $n \in \mathbb{N}$ a finite subset \mathcal{W}_n of \mathcal{V}_n such that $\bigcup_{n\in\mathbb{N}} \mathcal{W}_n$ is a γ_k -cover of X. (Note that some \mathcal{W}_n 's can be empty.)

As $\bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ is infinite and all \mathcal{W}_n 's are finite, there exists a sequence $m_1 < m_2 < ... < m_n$ $m_p < \dots$ in \mathbb{N} such that for each $i \in \mathbb{N}$ we have $\mathcal{W}_{m_i} \setminus \bigcup_{j < i} \mathcal{W}_{m_j} \neq \emptyset$. Choose an element $W_{m_i} \in \mathcal{W}_{m_i} \setminus \bigcup_{j < i} \mathcal{W}_{m_j}, i \in \mathbb{N}$, and fix its representation $\check{W}_{m_i} = \check{U}_{1,k_{m_i}} \cap U_{2,k_{m_i}} \cap ... \cap U_{m_i,k_{m_i}}$ as above.

Since each infinite subset of a γ_k -cover is also a γ_k -cover, we have that the set $\{W_{m_i}:$ $i \in \mathbb{N}$ is a γ_k -cover of X. For each $n \leq m_1$ let $U_n \in \mathcal{U}_n$ be the n-th coordinate of W_{m_1} in the chosen representation of W_{m_1} , and for each $n \in (m_i, m_{i+1}]$, $i \ge 1$, let $U_n \in \mathcal{U}_n$ be the *n*-th coordinate of $W_{m_{i+1}}$ in the above representation of $W_{m_{i+1}}$. Observe that each $U_n \supset W_{m_{i+1}}$. Therefore, we obtain a sequence $(U_n : n \in \mathbb{N})$ of elements, one from each \mathcal{U}_n , which form a γ_k -cover of X and show that X satisfies $S_1(\Gamma_k^{sh}, \Gamma_k)$.

The symbol **0** denotes the constantly zero function in $C_k(X)$. Because $C_k(X)$ is homogeneous we can work with **0** to study local and semi-local properties of $C_k(X)$.

Theorem 3.3. For a Tychonoff space X the following statements are equivalent:

(1) $C_k(X)$ satisfies $S_1(\Gamma_0, \Gamma_0)$ [property α_2];

(2) X satisfies $S_1(\Gamma_k^{sh}, \Gamma_k)$.

Proof. (1) \Rightarrow (2). Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of (countable) γ_k -shrinkable covers of X; suppose that for each $n \in \mathbb{N}$, $\mathcal{U}_n = \{U_{n,m} : m \in \mathbb{N}\}$ and $\{F(U_{n,m}) : U_{n,m} \in \mathcal{U}_n\}$ is a γ_k -cover of zero-sets of X with $F(U_{n,m}) \subset U_{n,m}$ for every $U_{n,m} \in \mathcal{U}_n$. For each $n,m \in \mathbb{N}$ we fix $f_{n,m} \in C(X)$ such that $f_{n,m} \upharpoonright F(U_{n,m}) \equiv 0, f_{n,m} \upharpoonright (X \setminus U_{n,m}) \equiv 1.$ Consider $S_n = \{f_{n,m} : m \in \mathbb{N}\}$. Since $\{F(U_{n,m}) : U_{n,m} \in \mathcal{U}_n\}$ is a γ_k -cover of X, then $S_n \in \Gamma_0$ for each $n \in \mathbb{N}$. By (1), there is $\{f_{n,m(n)} : n \in \mathbb{N}\}$ such that $f_{n,m(n)} \in S_n$ and $\{f_{n,m(n)}: n \in \mathbb{N}\} \in \Gamma_0$. We show that $\{U_{n,m(n)}: n \in \mathbb{N}\} \in \Gamma_k$. Suppose $A \in \mathbb{K}(X)$ and $W = [A, (-\frac{1}{2}, \frac{1}{2})]$ is a base neighborhood of **0** then there exists $n' \in \mathbb{N}$ such that $f_{n,m(n)} \in W$ for every n > n'. It follows that $A \subset U_{n,m(n)}$ for every n > n'.

(2) \Rightarrow (1). Let $S_n \in \Gamma_0$ for every $n \in \mathbb{N}$; suppose that for each $n \in \mathbb{N}$, $S_n = \{f_{n,j} : j \in \mathbb{N}\}$

 $\mathbb{N}.$ Consider $\mathcal{V}_n = \{f_{n,j}^{-1}((-\frac{1}{n},\frac{1}{n})) : f_{n,j} \in S_n\}$ for each $n \in \mathbb{N}.$ Let $J = \{n \in \mathbb{N} : f_{n,j}^{-1}((-\frac{1}{n},\frac{1}{n})) = X$ for some $j \in \mathbb{N}\}$. If J is finite, then we can ignore such finitely many n. If J is infinite, then for some j_n $(n \in J), f_{n,j_n} \to \mathbf{0}$ uniformly. Thus, without loss of generality, we may assume $f_{n,j}^{-1}((-\frac{1}{n},\frac{1}{n})) \neq X$ for each $n, j \in \mathbb{N}.$

Note that $\mathcal{W}_n = \{f_{n,j}^{-1}([-\frac{1}{n+1},\frac{1}{n+1}]) : f_{n,j} \in S_n\}$ is a γ_k -cover of zero-sets of X. Hence, $\mathcal{V}_n \in \Gamma_k^{sh}$ for each $n \in \mathbb{N}$. By (2), there is $\{f_{n,j(n)} : n \in \mathbb{N}\}$ such that $\{f_{n,j(n)}^{-1}((-\frac{1}{n},\frac{1}{n})):$ $n \in \mathbb{N}\} \in \Gamma_k$. We show that $\{f_{n,j(n)} : n \in \mathbb{N}\} \in \Gamma_0$. Let $[A, (-\epsilon, \epsilon)]$ be a base neighborhood of **0** where $A \in \mathbb{K}(X)$ and $\epsilon > 0$. There is $n' \in \mathbb{N}$ such that $A \subset f_{n,j(n)}^{-1}((-\frac{1}{n}, \frac{1}{n}))$ for each n > n'. There is n'' > n' such that $\frac{1}{n''} < \epsilon$, hence, $f_{n,j(n)} \in [A, (-\frac{1}{n''}, \frac{1}{n''})] \subset [A, (-\epsilon, \epsilon)]$ for each n > n''.

Proposition 3.4 ([3, Proposition 4.2]). Every selectively sequentially separable space is sequentially separable.

We shall prove the following theorem under the condition that the space $C_k(X)$ is sequentially separable.

Theorem 3.5. For a Tychonoff space X such that $C_k(X)$ is sequentially separable the following statements are equivalent:

- (1) $C_k(X)$ satisfies $S_1(\mathfrak{S},\mathfrak{S})$;
- (2) $C_k(X)$ satisfies $S_1(\mathfrak{S}, \Gamma_0)$;
- (3) $C_k(X)$ satisfies $S_1(\Gamma_0, \Gamma_0)$ [property α_2];
- (4) X satisfies $S_1(\Gamma_k^{sh}, \Gamma_k)$;
- (5) $C_k(X)$ satisfies $S_{fin}(\mathfrak{S},\mathfrak{S})$ [selectively sequentially separable];
- (6) $C_k(X)$ satisfies $S_{fin}(\mathfrak{S}, \Gamma_0)$;
- (7) $C_k(X)$ satisfies $S_{fin}(\Gamma_0, \Gamma_0)$ [property α_4];
- (8) X satisfies $S_{fin}(\Gamma_k^{sh}, \Gamma_k)$.

Proof. (1) \Rightarrow (4). Let $\{\mathcal{U}_i\} \subset \Gamma_k^{sh}$, $\mathcal{U}_i = \{U_i^m : m \in \mathbb{N}\}$ for each $i \in \mathbb{N}$ and let $S = \{h_m : m \in \mathbb{N}\}$ be a countable sequentially dense subset of $C_k(X)$.

For each $i, m \in \mathbb{N}$ we fix $f_i^m \in C(X)$ such that $f_i^m \upharpoonright F(U_i^m) = h_m$ and $f_i^m \upharpoonright (X \setminus U_i^m) = 1$. Let $S_i = \{f_i^m : m \in \mathbb{N}\}$. Since S is a countable sequentially dense subset of $C_k(X)$, we have that S_i is a countable sequentially dense subset of $C_k(X)$ for each $i \in \mathbb{N}$. Let $h \in C(X)$, there is a set $\{h_{m_s} : s \in \mathbb{N}\} \subset S$ such that $\{h_{m_s}\}_{s \in \mathbb{N}}$ converges to h. Let K be a compact subset of $X, \epsilon > 0$ and let $W = \langle h, K, \epsilon \rangle$ be a base neighborhood of h, then there is a number m_0 such that $K \subset F(U_i^m)$ for $m > m_0$ and $h_{m_s} \in W$ for $m_s > m_0$. Since $f_i^{m_s} \upharpoonright K = h_{m_s} \upharpoonright K$ for each $m_s > m_0$, $f_i^{m_s} \in W$ for each $m_s > m_0$. It follows that a sequence $\{f_i^{m_s}\}_{s \in \mathbb{N}}$ converges to h.

Since $C_k(X)$ satisfies $S_1(\mathcal{S}, \mathcal{S})$, there is a sequence $\{f_i^{m(i)}\}_{i \in \mathbb{N}}$ such that for each i, $f_i^{m(i)} \in S_i$, and $\{f_i^{m(i)} : i \in \mathbb{N}\}$ is an element of \mathcal{S} .

We show that $\{U_i^{m(i)}: i \in \mathbb{N}\}$ is a γ_k -cover of X.

There is a sequence $\{f_{i_j}^{m(i_j)}\}$ converges to **0**. Let K be a compact subset of X and let $U = \langle \mathbf{0}, K, (-1, 1) \rangle$ be a base neighborhood of **0**. Then there exists $j_0 \in \mathbb{N}$ such that $f_{i_j}^{m(i_j)} \in U$ for each $j > j_0$. It follows that $K \subset U_{i_j}^{m(i_j)}$ for $j > j_0$. By Lemma 3.2, $S_{fin}(\Gamma_k^{sh}, \Gamma_k) = S_1(\Gamma_k^{sh}, \Gamma_k)$.

(4) \Leftrightarrow (3). By Theorem 3.3.

 $(3) \Rightarrow (2)$ is immediate.

 $(2) \Rightarrow (1)$. For each $n \in \mathbb{N}$, let S_n be a sequentially dense subset of $C_k(X)$ and let $\{h_n : n \in \mathbb{N}\}$ be sequentially dense in $C_k(X)$. Take a sequence $\{f_n^m : m \in \mathbb{N}\} \subset S_n$ such that $f_n^m \mapsto h_n \ (m \mapsto \infty)$. Then $f_n^m - h_n \mapsto \mathbf{0} \ (m \mapsto \infty)$. Hence, there exists $f_n^{m_n}$ such that $f_n^{m_n} - h_n \mapsto \mathbf{0} \ (n \mapsto \infty)$. We see that $\{f_n^{m_n} : n \in \mathbb{N}\}$ is sequentially dense. Let $h \in C_k(X)$ and take a sequence $\{h_{n_j} : j \in \mathbb{N}\} \subset \{h_n : n \in \mathbb{N}\}$ converging to h. Then, $f_{n_j}^{m_{n_j}} = (f_{n_j}^{m_{n_j}} - h_{n_j}) + h_{n_j} \mapsto h \ (j \mapsto \infty)$.

 $(4) \Leftrightarrow (8)$. By Lemma 3.2.

The proofs of the remaining implications are similar to those proved above.

Recall that the *i*-weight iw(X) of a space X is the smallest infinite cardinal number τ such that X can be mapped by a one-to-one continuous mapping onto a Tychonoff space of the weight not greater than τ .

It is well known that if X is hemicompact then $C_k(X)$ is metrizable. It follows that $C_k(X)$ is sequential separable for a hemicompact space X with $iw(X) = \aleph_0$. But, for general case, the author does not know the answer to the next question.

Question 1. Characterize a Tychonoff space X such that a space $C_k(X)$ is sequential separable?

Proposition 3.6 ([3, Corollary 4.8 (Dow-Barman)]). Every Fréchet-Urysohn separable T_2 space is selectively separable (hence, selectively sequentially separable).

It is well known that a Tychonoff space X the space $C_k(X)$ is Fréchet-Urysohn if and only if X satisfies $S_1(\mathcal{K}, \Gamma_k)$ ([11]).

A Tychonoff space X the space $C_k(X)$ is separable if and only if $iw(X) = \aleph_0$ [16].

Question 2. Is there a Tychonoff space X with $iw(X) = \aleph_0$ such that $C_k(X)$ satisfies $S_1(\mathbb{S}, \mathbb{S})$, but $C_k(X)$ is not Fréchet-Urysohn (i.e. X satisfies $S_1(\Gamma_k^{sh}, \Gamma_k)$, but it has not property $S_1(\mathcal{K}, \Gamma_k)$)?

Acknowledgment. I would like to thank the anonymous referee who read carefully the manuscript and helped me to simplify and improve the presentation of the results of the paper.

References

- A.V. Arhangel'skii, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Dokl. 13, 1186–1189, 1972.
- [2] A. Bella, M. Bonanzinga, and M. Matveev, Variations of selective separability, Topol. App. 156, 1241–1252, 2009.
- [3] A. Bella, M. Bonanzinga, and M. Matveev, Sequential+separable vs sequentially separable and another variation on selective separability, Cent. Eur. J. Math. 11 (3), 530–538, 2013.
- [4] A. Bella and C. Costantini, Sequential Separability vs Selective Sequential Separability, Filomat 29 (1), 121–124, 2015.
- [5] A. Caserta, G. Di Maio, Lj.D.R. Kočinac, and E. Meccariello, Applications of k-covers II, Topol. App. 153, 3277–3293, 2006.
- [6] P. Gartside, J.T.H. Lo, and A. Marsh, Sequential density, Topol. App. 130, 75–86, 2003.
- [7] G. Gruenhage and M. Sakai, Selective separability and its variations, Topol. App. 158 (12), 1352–1359, 2011.
- [8] Lj.D.R. Kočinac, Closure properties of function spaces, App. Gen. Top. 4 (2), 255–261, 2003.
- [9] Lj.D.R. Kočinac, γ -sets, γ_k -sets and hyperspaces, Mathematica Balkanica **19**, 109–118, 2005.
- [10] Lj.D.R. Kočinac, Selection principles and continuous images, Cubo Math. J. 8 (2), 23–31, 2006.
- [11] S. Lin, C. Liu, and H. Teng, Fan tightness and strong Fréchet property of $C_k(X)$, Adv. Math. (Chinese) **23** (3), 234–237, 1994.
- [12] G.Di Maio, Lj.D.R. Kočinac, and E. Meccariello, Applications of k-covers, Acta Math. Sin. (English Series) 22 (4), 1151–1160, 2006.
- G.Di Maio, Lj.D.R. Kočinac, and T. Nogura Convergence properties of hyperspaces, J. Korean Math. Soc. 44 (4), 845–854, 2007.

- [14] A.J. Marsh, Topology of function spaces, Doctoral Dissertation, University of Pittsburgh, 2004.
- [15] R.A. McCoy, Function spaces which are k-spaces, Topol. P. 5, 139–146, 1980.
- [16] N. Noble, The density character of functions spaces, Proc. Amer. Math. Soc. 42, 228–233, 1974.
- [17] A.V. Osipov, Different kinds of tightness of a functional space, Tr. Inst. Mat. Mekh. (Russian), 22 (3), 192–199, 2016.
- [18] A.V. Osipov, Application of selection principles in the study of the properties of function spaces, Acta Math. Hungar. 154 (2), 362–377, 2018.
- [19] A.V. Osipov, Classification of selectors for sequences of dense sets of $C_p(X)$, Topology Appl. **242**, 20–32, 2018.
- [20] A.V. Osipov, The functional characterizations of the Rothberger and Menger properties, Topology Appl. 243, 146–152, 2018.
- [21] A.V. Osipov, Classification of selectors for sequences of dense sets of Baire functions, submitted.
- [22] A.V. Osipov and S. Özçağ, Variations of selective separability and tightness in function spaces with set-open topologies, Topology Appl. 217, 38–50, 2017.
- [23] A.V. Osipov and E.G. Pytkeev, On sequential separability of functional spaces, Topology Appl. 221, 270–274, 2017.
- [24] B.A. Pansera and V. Pavlović, Open covers and function spaces, Matematički Vesnik 58, 57–70, 2006.
- [25] M. Sakai, k-Frechet-Urysohn Property of $C_k(X)$, Topol. App. **154** (7), 1516–1520, 2007.
- [26] G. Tironi and R. Isler, On some problems of local approximability in compact spaces, In: General Topology and its Relations to Modern Analysis and Algebra III, 443–446, Prague, August 30-September 3, 1971, Academia, Prague, 1972.
- [27] A. Wilansky, How separable is a space?, Amer. Math. Monthly **79** (7), 764–765, 1972.