

Research Article

On selective sequential separability of function spaces with the compact-open topology

Alexander V. Osipov

Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, 620219, Ekaterinburg, Russia

Abstract

For a Tychonoff space X, we denote by $C_k(X)$ the space of all real-valued continuous functions on *X* with the compact-open topology. A subset $A \subset X$ is said to be sequentially dense in *X* if every point of *X* is the limit of a convergent sequence in *A*. A space $C_k(X)$ is selectively sequentially separable (in Scheepers' terminology: $C_k(X)$ satisfies $S_{fin}(S, S)$) if whenever $(S_n : n \in \mathbb{N})$ is a sequence of sequentially dense subsets of $C_k(X)$, one can pick finite $F_n \subset S_n$ ($n \in \mathbb{N}$) such that $\bigcup \{F_n : n \in \mathbb{N}\}\$ is sequentially dense in $C_k(X)$. In this paper, we give a characterization for $C_k(X)$ to satisfy $S_{fin}(S, S)$.

Mathematics Subject Classification (2010). 54C25, 54C35, 54C40, 54D20

Keywords. compact-open topology, function space, selectively sequentially separable, $S_1(\mathcal{S}, \mathcal{S})$, sequentially dense set, property α_2 , property α_4

1. Introduction

If *X* is a topological space and $A \subseteq X$, then the sequential closure of *A*, denoted by $[A]_{seq}$, is the set of all limits of sequences from *A*. A set $D \subseteq X$ is said to be sequentially dense if $X = [D]_{seq}$. A space X is called sequentially separable if it has a countable sequentially dense set [26, 27].

Let *X* be a topological space, and $x \in X$. Consider the following collections:

• $\Omega_x = \{A \subseteq X : x \in \overline{A} \setminus A\};\$

• $\Gamma_x = \{A \subseteq X : x = \lim A\}.$

Note [th](#page-5-0)at if $A \in \Gamma_x$, th[en t](#page-5-1)here exists $\{a_n\} \subset A$ converging to *x*. So, simply Γ_x may be the set of non-trivial convergent sequences to *x*.

Many topological properties are defined or characterized in terms of the following classical selection principles. Let A and B be sets consisting of families of subsets of an infinite set *X*. Then:

*S*₁(*A*, *B*) is the selection hypothesis: for each sequence $(A_n : n \in \mathbb{N})$ of elements of *A* there is a sequence ${b_n}_{n \in \mathbb{N}}$ such that for each $n, b_n \in A_n$, and ${b_n : n \in \mathbb{N}}$ is an element of B.

*S*_{*fin}*(*A*, *B*) is the selection hypothesis: for each sequence $(A_n : n \in \mathbb{N})$ of elements of *A*</sub> there is a sequence ${B_n}_{n \in \mathbb{N}}$ of finite sets such that for each $n, B_n \subseteq A_n$, and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

Email address: OAB@list.ru

Received: 13.05.2018; Accepted: 09.07.2018

In this paper, by a cover we mean a cover \mathcal{U} with $X \notin \mathcal{U}$.

A cover U of a space *X* is called:

• a *k*-cover if each compact subset *C* of *X* is contained in an element of U;

• a *γ*_{*k*}-cover if U is infinite and for each compact subset *C* of *X* the set $\{U \in \mathcal{U} : C \not\subseteq U\}$ is finite.

Note that a γ_k -cover is a *k*-cover, and a *k*-cover is infinite. A compact space has no *k*-covers.

For a Tychonoff space X, we denote by $C_k(X)$ the space of all real-valued continuous functions on X with the compact-open topology. Subbase open sets of $C_k(X)$ are of the form $[A, U] = \{f \in C(X) : f(A) \subset U\}$, where A is a compact subset of X and U is a non-empty open subset of R. Sometimes we will write the basic neighborhood of a point $f \in C_k(X)$ as $\langle f, A, \epsilon \rangle$ where $\langle f, A, \epsilon \rangle := \{ g \in C(X) : |f(x) - g(x)| < \epsilon \; \forall x \in A \}, A$ is a compact subset of *X* and $\epsilon > 0$.

For a topological space *X* we denote:

- Γ_k the family of open γ_k -covers of *X*;
- K the family of open *k*-covers of *X*;
- $\mathcal{K}_{cz}^{\omega}$ the family of countable co-zero *k*-covers of *X*;
- \mathcal{D} the family of dense subsets of $C_k(X)$;
- δ the family of sequentially dense subsets of $C_k(X)$;
- $K(X)$ the family of all non-empty compact subsets of X.

A space *X* is said to be a γ_k -set if each *k*-cover U of *X* contains a countable set $\{U_n : n \in \mathbb{N}\}\$ which is a γ_k -cover of *X* [9].

2. Main definitions and notation

- A s[p](#page-4-0)ace *X* is *R*-separable, if *X* satisfies $S_1(\mathcal{D}, \mathcal{D})$ ([2, Definition 47]).
- A space *X* is selectively separable (*M*-separable), if *X* satisfies $S_{fin}(\mathcal{D}, \mathcal{D})$.
- *•* A space *X* is selectively sequentially separable (*M*-sequentially separable), if *X* satisfies $S_{fin}(\mathcal{S}, \mathcal{S})$ ([4, Definition 1.2]).

For a topological space *X* we have the next relations of s[ele](#page-4-1)ctors for sequences of dense sets of *X*.

$$
S_1(\mathcal{S}, \mathcal{S}) \Rightarrow S_{fin}(\mathcal{S}, \mathcal{S}) \Rightarrow S_{fin}(\mathcal{S}, \mathcal{D}) \Leftarrow S_1(\mathcal{S}, \mathcal{D})
$$

\n
$$
\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow
$$

\n
$$
S_1(\mathcal{D}, \mathcal{S}) \Rightarrow S_{fin}(\mathcal{D}, \mathcal{S}) \Rightarrow S_{fin}(\mathcal{D}, \mathcal{D}) \Leftarrow S_1(\mathcal{D}, \mathcal{D})
$$

We write $\Pi(\mathcal{A}_x, \mathcal{B}_x)$ without specifying *x*, we mean $(\forall x)\Pi(\mathcal{A}_x, \mathcal{B}_x)$.

- A space *X* has *property* α_2 (α_2 in the sense of Arhangel'skii), if *X* satisfies $S_1(\Gamma_x,\Gamma_x)$ [1].
- *•* A space *X* has *property α*⁴ (*α*⁴ in the sense of Arhangel'skii), if *X* satisfies $S_{fin}(\Gamma_x, \Gamma_x)$ [1].

So we have three ty[p](#page-4-3)es of topological properties described through the selection principles:

- local properties of the form $S_*(\Phi_x, \Psi_x);$
- global proper[ti](#page-4-3)es of the form $S_*(\Phi, \Psi)$;
- semi-local properties of the form $S_*(\Phi, \Psi_x)$.

In a series of papers it was demonstrated that *γ*-covers, Borel covers, *k*-covers play a key role in function spaces $([5],[10]-[8], [13]-[15], [18]-[25]$ and many others). We continue to investigate applications of *k*-covers in function spaces with the compact-open topology.

A great attention has recently received the notions of selective separability and selective sequential separability $(S_{fin}(S, S))$ [2, 3, 6, 7]. In this paper, we give characterizations for $C_k(X)$ $C_k(X)$ $C_k(X)$ $C_k(X)$ to satisfy $S_{fin}(S, S), S_{fin}(S, \Gamma_x)$ $S_{fin}(S, S), S_{fin}(S, \Gamma_x)$, [and](#page-5-2) $S_{fin}(\Gamma_x, \Gamma_x)$.

3. Main results

Definition 3.1. A γ_k -cover U of co-zero sets of X is γ_k -shrinkable if there exists a *γ*_{*k*}-cover $\{F(U): U \in \mathcal{U}\}$ of zero-sets of *X* with $F(U) \subset U$ for every $U \in \mathcal{U}$.

Note that every γ_k -shrinkable cover contains a countable γ_k -shrinkable cover.

For a topological space *X* we denote:

• Γ_k^{sh} — the family of γ_k -shrinkable covers of *X*.

-Similar to the proof that $S_1(\mathcal{K}, \Gamma_k) = S_{fin}(\mathcal{K}, \Gamma_k)$ ([9, Theorem 5]), we prove the following.

Lemma 3.2. *For a space X the following are equivalent:*

- (1) *X satisfies* $S_{fin}(\Gamma_k^{sh}, \Gamma_k)$;
- (2) *X satisfies* $S_1(\Gamma_k^{sh}, \Gamma_k)$ *.*

Proof. (1) \Rightarrow (2). Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of (countable) γ_k -shrinkable covers of *X*; suppose that for each $n \in \mathbb{N}$, $\mathcal{U}_n = \{U_{n,m} : m \in \mathbb{N}\}\$. Let $V_{n,m} = U_{1,m} \cap ... \cap U_{n,m}$ and let $\mathcal{V}_n = \{V_{n,m} : m \in \mathbb{N}\}\$. Then $(\mathcal{V}_n : n \in \mathbb{N})$ is a sequence of γ_k -shrinkable covers of X. Since *X* satisfies $S_{fin}(\Gamma_k^{sh}, \Gamma_k)$ choose for each $n \in \mathbb{N}$ a finite subset \mathcal{W}_n of \mathcal{V}_n such that $\bigcup_{n\in\mathbb{N}}\mathcal{W}_n$ is a γ_k -cover of *X*. (Note that some \mathcal{W}_n 's can be empty.)

As $\bigcup_{n\in\mathbb{N}}\mathcal{W}_n$ is infinite and all \mathcal{W}_n 's are finite, there exists a sequence $m_1 < m_2 < ... <$ *m*^{*p*} \lt *...* in N such that for each *i* ∈ N we have $W_{m_i} \setminus \bigcup_{j \leq i} W_{m_j} \neq \emptyset$. Choose an element $W_{m_i} \in W_{m_i} \setminus \bigcup_{j, and fix its representation $W_{m_i} = U_{1, k_{m_i}} \cap U_{2, k_{m_i}} \cap ... \cap U_{m_i, k_{m_i}}$$ as above.

Since each infinite subset of a γ_k -cover is also a γ_k -cover, we have that the set $\{W_{m_i} :$ $i \in \mathbb{N}$ is a γ_k -cover of *X*. For each $n \leq m_1$ let $U_n \in \mathcal{U}_n$ be the *n*-th coordinate of W_{m_1} in the chosen representation of W_{m_1} , and for each $n \in (m_i, m_{i+1}], i \geq 1$, let $U_n \in \mathcal{U}_n$ be the *n*-th coordinate of $W_{m_{i+1}}$ in the above representation of $W_{m_{i+1}}$. Observe that each $U_n \supset W_{m_{i+1}}$. Therefore, we obtain a sequence $(U_n : n \in \mathbb{N})$ of elements, one from each U_n, which form a γ_k -cover of *X* and show that *X* satisfies $S_1(\Gamma_k^{sh}, \Gamma_k)$.

The symbol **0** denotes the constantly zero function in $C_k(X)$. Because $C_k(X)$ is homogeneous we can work with **0** to study local and semi-local properties of $C_k(X)$.

Theorem 3.3. *For a Tychonoff space X the following statements are equivalent:*

- (1) $C_k(X)$ *satisfies* $S_1(\Gamma_0, \Gamma_0)$ *[property* α_2 *];*
- (2) *X satisfies* $S_1(\Gamma_k^{sh}, \Gamma_k)$.

Proof. (1) \Rightarrow (2). Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of (countable) γ_k -shrinkable covers of *X*; suppose that for each $n \in \mathbb{N}$, $\mathcal{U}_n = \{U_{n,m} : m \in \mathbb{N}\}\$ and $\{F(U_{n,m}) : U_{n,m} \in \mathcal{U}_n\}$ is a γ_k -cover of zero-sets of X with $F(U_{n,m}) \subset U_{n,m}$ for every $U_{n,m} \in \mathcal{U}_n$. For each $n, m \in \mathbb{N}$ we fix $f_{n,m} \in C(X)$ such that $f_{n,m} \upharpoonright F(U_{n,m}) \equiv 0$, $f_{n,m} \upharpoonright (X \setminus U_{n,m}) \equiv 1$. Consider $S_n = \{f_{n,m} : m \in \mathbb{N}\}\$. Since $\{F(U_{n,m}) : U_{n,m} \in \mathcal{U}_n\}$ is a γ_k -cover of *X*, then $S_n \in \Gamma_0$ for each $n \in \mathbb{N}$. By (1), there is $\{f_{n,m(n)} : n \in \mathbb{N}\}\$ such that $f_{n,m(n)} \in S_n$ and ${f_{n,m(n)}: n \in \mathbb{N}} \in \Gamma_0$. We show that ${U_{n,m(n)}: n \in \mathbb{N}} \in \Gamma_k$. Suppose $A \in \mathbb{K}(X)$ and $W = [A, (-\frac{1}{2})]$ $\frac{1}{2}, \frac{1}{2}$ $\left(\frac{1}{2}\right)$ is a base neighborhood of **0** then there exists $n' \in \mathbb{N}$ such that $f_{n,m(n)} \in W$ for every $n > n'$. It follows that $A \subset U_{n,m(n)}$ for every $n > n'$.

 $(2) \Rightarrow (1)$. Let $S_n \in \Gamma_0$ for every $n \in \mathbb{N}$; suppose that for each $n \in \mathbb{N}$, $S_n = \{f_{n,j} : j \in \mathbb{N}\}$ N^{*}*}. Consider $\mathcal{V}_n = \{f_{n,j}^{-1}((-\frac{1}{n})$ $\frac{1}{n}$, $\frac{1}{n}$ $\left(\frac{1}{n}\right)$: $f_{n,j} \in S_n$ for each $n \in \mathbb{N}$.

Let $J = \{ n \in \mathbb{N} : f_{n,j}^{-1}((-\frac{1}{n})$ $\frac{1}{n}$, $\frac{1}{n}$ $\frac{1}{n}$)) = *X* for some $j \in \mathbb{N}$. If *J* is finite, then we can ignore such finitely many *n*. If *J* is infinite, then for some j_n $(n \in J)$, $f_{n,j_n} \to \mathbf{0}$ uniformly. Thus, without loss of generality, we may assume $f_{n,j}^{-1}((-\frac{1}{n})$ $\frac{1}{n}$, $\frac{1}{n}$ $\left(\frac{1}{n}\right)$ \neq *X* for each *n*, *j* \in N.

Note that $W_n = \{f_{n,j}^{-1}([- \frac{1}{n+1}, \frac{1}{n+1}]) : f_{n,j} \in S_n\}$ is a γ_k -cover of zero-sets of *X*. Hence, $\mathcal{V}_n \in \Gamma_k^{sh}$ for each $n \in \mathbb{N}$. By (2), there is $\{f_{n,j(n)} : n \in \mathbb{N}\}\$ such that $\{f_{n,j(n)}^{-1}((-\frac{1}{n})\}$ $\frac{1}{n}$, $\frac{1}{n}$ $\frac{1}{n})$) :

 $n \in \mathbb{N}$ $\} \in \Gamma_k$. We show that $\{f_{n,j(n)} : n \in \mathbb{N}\} \in \Gamma_0$. Let $[A, (-\epsilon, \epsilon)]$ be a base neighborhood of **0** where $A \in K(X)$ and $\epsilon > 0$. There is $n' \in \mathbb{N}$ such that $A \subset f_{n,j(n)}^{-1}((-\frac{1}{n})$ $\frac{1}{n}$, $\frac{1}{n}$ $(\frac{1}{n})$ for each $n > n'$. There is $n'' > n'$ such that $\frac{1}{n''} < \epsilon$, hence, $f_{n,j(n)} \in [A, (-\frac{1}{n''}, \frac{1}{n''})] \subset [A, (-\epsilon, \epsilon)]$ for each $n > n''$. .

Proposition 3.4 ([3, Proposition 4.2])**.** *Every selectively sequentially separable space is sequentially separable.*

We shall prove the following theorem under the condition that the space $C_k(X)$ is sequentially separab[le](#page-4-8).

Theorem 3.5. For a Tychonoff space X such that $C_k(X)$ is sequentially separable the *following statements are equivalent:*

- (1) $C_k(X)$ *satisfies* $S_1(\mathcal{S}, \mathcal{S})$ *;*
- (2) $C_k(X)$ *satisfies* $S_1(\mathcal{S}, \Gamma_0)$ *;*
- (3) $C_k(X)$ *satisfies* $S_1(\Gamma_0, \Gamma_0)$ *[property* α_2 *];*
- (4) *X satisfies* $S_1(\Gamma_k^{sh}, \Gamma_k)$;
- (5) $C_k(X)$ satisfies $S_{fin}(S, S)$ *[selectively sequentially separable]*;
- (6) $C_k(X)$ *satisfies* $S_{fin}(S, \Gamma_0)$;
- (7) $C_k(X)$ *satisfies* $S_{fin}(\Gamma_0, \Gamma_0)$ *[property* α_4 *];*
- (8) *X satisfies* $S_{fin}(\Gamma_k^{sh}, \Gamma_k)$.

Proof. (1) \Rightarrow (4). Let $\{\mathcal{U}_i\} \subset \Gamma_k^{sh}$, $\mathcal{U}_i = \{U_i^m : m \in \mathbb{N}\}$ for each $i \in \mathbb{N}$ and let $S = \{h_m : m \in \mathbb{N}\}\$ be a countable sequentially dense subset of $C_k(X)$.

For each $i, m \in \mathbb{N}$ we fix $f_i^m \in C(X)$ such that $f_i^m \restriction F(U_i^m) = h_m$ and $f_i^m \restriction (X \setminus U_i^m) =$ 1. Let $S_i = \{f_i^m : m \in \mathbb{N}\}\.$ Since *S* is a countable sequentially dense subset of $C_k(X)$, we have that S_i is a countable sequentially dense subset of $C_k(X)$ for each $i \in \mathbb{N}$. Let $h \in C(X)$, there is a set $\{h_{m_s} : s \in \mathbb{N}\} \subset S$ such that $\{h_{m_s}\}_{s \in \mathbb{N}}$ converges to h. Let K be a compact subset of *X*, $\epsilon > 0$ and let $W = \langle h, K, \epsilon \rangle$ be a base neighborhood of *h*, then there is a number m_0 such that $K \subset F(U_i^m)$ for $m > m_0$ and $h_{m_s} \in W$ for $m_s > m_0$. Since $f_i^{m_s} \upharpoonright K = h_{m_s} \upharpoonright K$ for each $m_s > m_0$, $f_i^{m_s} \in W$ for each $m_s > m_0$. It follows that a sequence $\{f_i^{m_s}\}_{s \in \mathbb{N}}$ converges to *h*.

Since $C_k(X)$ satisfies $S_1(\mathcal{S}, \mathcal{S})$, there is a sequence $\{f_i^{m(i)}\}$ $\{e_i^{m(i)}\}_{i\in\mathbb{N}}$ such that for each *i*, $f_i^{m(i)} \in S_i$, and $\{f_i^{m(i)}\}$ $i^{m(i)}$: $i \in \mathbb{N}$ is an element of S.

We show that ${U_i^{m(i)}}$ $\{e_i^{m(i)} : i \in \mathbb{N}\}\$ is a γ_k -cover of X.

There is a sequence $\{f_{i_j}^{m(i_j)}\}$ $\binom{m(i_j)}{i_j}$ converges to **0**. Let *K* be a compact subset of *X* and let $U = \langle 0, K, (-1, 1) \rangle$ be a base neighborhood of **0**. Then there exists $j_0 \in \mathbb{N}$ such that $f_{i,j}^{m(i_j)}$ $\sum_{i_j}^{m(i_j)} e U$ for each $j > j_0$. It follows that $K \subset U_{i_j}^{m(i_j)}$ $\int_{i_j}^{m(i_j)}$ for $j > j_0$. By Lemma 3.2, $S_{fin}(\Gamma_k^{sh}, \Gamma_k) = S_1(\Gamma_k^{sh}, \Gamma_k).$

 $(4) \Leftrightarrow (3)$. By Theorem 3.3.

 $(3) \Rightarrow (2)$ is immediate.

 $(2) \Rightarrow (1)$. For each $n \in \mathbb{N}$, let S_n be a sequentially dense subset of $C_k(X)$ an[d let](#page-2-0) *{h*_n : *n* ∈ N^{*}*} be sequentially dense in *C_k*(*X*). Take a sequence $\{f_n^m : m \in \mathbb{N}\}$ ⊂ *S_n* such that $f_n^m \mapsto h_n$ $(m \mapsto \infty)$. [Th](#page-2-1)en $f_n^m - h_n \mapsto \mathbf{0}$ $(m \mapsto \infty)$. Hence, there exists $f_n^{m_n}$ such that $f_n^{m_n} - h_n \mapsto \mathbf{0}$ ($n \mapsto \infty$). We see that $\{f_n^{m_n} : n \in \mathbb{N}\}\$ is sequentially dense. Let *h* ∈ $C_k(X)$ and take a sequence $\{h_{n_j} : j \in \mathbb{N}\}\subset \{h_n : n \in \mathbb{N}\}\)$ converging to *h*. Then, $f_{n_j}^{m_{n_j}} = (f_{n_j}^{m_{n_j}} - h_{n_j}) + h_{n_j} \mapsto h \ (j \mapsto \infty).$

 $(4) \Leftrightarrow (8)$. By Lemma 3.2.

The proofs of the remaining implications are similar to those proved above. \Box

Recall that the *i*-weight $iw(X)$ of a space X is the smallest infinite cardinal number τ such that *X* can be mapped by a one-to-one continuous mapping onto a Tychonoff space of the weight not greater than *τ* .

It is well known that if X is hemicompact then $C_k(X)$ is metrizable. It follows that $C_k(X)$ is sequential separable for a hemicompact space X with $iw(X) = \aleph_0$. But, for general case, the author does not know the answer to the next question.

Question 1. Characterize a Tychonoff space *X* such that a space $C_k(X)$ is sequential separable ?

Proposition 3.6 ([3, Corollary 4.8 (Dow-Barman)])**.** *Every Fréchet-Urysohn separable T*² *space is selectively separable (hence, selectively sequentially separable).*

It is well known that a Tychonoff space *X* the space $C_k(X)$ is Fréchet-Urysohn if and only if *X* satisfies $S_1(\mathcal{K}, \Gamma_k)$ $S_1(\mathcal{K}, \Gamma_k)$ $S_1(\mathcal{K}, \Gamma_k)$ ([11]).

A Tychonoff space *X* the space $C_k(X)$ is separable if and only if $iw(X) = \aleph_0$ [16].

Question 2. Is there a Tychonoff space *X* with $iw(X) = \aleph_0$ such that $C_k(X)$ satisfies *S*₁(S, S), but $C_k(X)$ is not Fr[éch](#page-4-9)et-Urysohn (i.e. *X* satisfies $S_1(\Gamma_k^{sh}, \Gamma_k)$, but it has not property $S_1(\mathcal{K}, \Gamma_k)$?

Acknowledgment. I would like to thank the anonymous referee who read carefully the manuscript and helped me to simplify and improve the presentation of the results of the paper.

References

- [1] A.V. Arhangel'skii, *The frequency spectrum of a topological space and the classification of spaces*, Soviet Math. Dokl. **13**, 1186–1189, 1972.
- [2] A. Bella, M. Bonanzinga, and M. Matveev, *Variations of selective separability*, Topol. App. **156**, 1241–1252, 2009.
- [3] A. Bella, M. Bonanzinga, and M. Matveev, *Sequential+separable vs sequentially separable and another variation on selective separability*, Cent. Eur. J. Math. **11** (3), 530–538, 2013.
- [4] A. Bella and C. Costantini, *Sequential Separability vs Selective Sequential Separability*, Filomat **29** (1), 121–124, 2015.
- [5] A. Caserta, G. Di Maio, Lj.D.R. Kočinac, and E. Meccariello, *Applications of k-covers II*, Topol. App. **153**, 3277–3293, 2006.
- [6] P. Gartside, J.T.H. Lo, and A. Marsh, *Sequential density*, Topol. App. **130**, 75–86, 2003.
- [7] G. Gruenhage and M. Sakai, *Selective separability and its variations*, Topol. App. **158** (12), 1352–1359, 2011.
- [8] Lj.D.R. Kočinac, *Closure properties of function spaces*, App. Gen. Top. **4** (2), 255– 261, 2003.
- [9] Lj.D.R. Kočinac, *γ-sets, γk-sets and hyperspaces*, Mathematica Balkanica **19**, 109– 118, 2005.
- [10] Lj.D.R. Kočinac, *Selection principles and continuous images*, Cubo Math. J. **8** (2), 23–31, 2006.
- [11] S. Lin, C. Liu, and H. Teng, *Fan tightness and strong Fréchet property of* $C_k(X)$, Adv. Math. (Chinese) **23** (3), 234–237, 1994.
- [12] G.Di Maio, Lj.D.R. Kočinac, and E. Meccariello, *Applications of k-covers*, Acta Math. Sin. (English Series) **22** (4), 1151–1160, 2006.
- [13] G.Di Maio, Lj.D.R. Kočinac, and T. Nogura *Convergence properties of hyperspaces*, J. Korean Math. Soc. **44** (4), 845–854, 2007.
- [14] A.J. Marsh, *Topology of function spaces*, Doctoral Dissertation, University of Pittsburgh, 2004.
- [15] R.A. McCoy, *Function spaces which are k-spaces*, Topol. P. **5**, 139–146, 1980.
- [16] N. Noble, *The density character of functions spaces*, Proc. Amer. Math. Soc. **42**, 228–233, 1974.
- [17] A.V. Osipov, *Different kinds of tightness of a funtional space*, Tr. Inst. Mat. Mekh. (Russian), **22** (3), 192–199, 2016.
- [18] A.V. Osipov, *Application of selection principles in the study of the properties of function spaces*, Acta Math. Hungar. **154** (2), 362–377, 2018.
- [19] A.V. Osipov, *Classification of selectors for sequences of dense sets of* $C_p(X)$, Topology Appl. **242**, 20–32, 2018.
- [20] A.V. Osipov, *The functional characterizations of the Rothberger and Menger properties*, Topology Appl. **243**, 146–152, 2018.
- [21] A.V. Osipov, *Classification of selectors for sequences of dense sets of Baire functions*, submitted.
- [22] A.V. Osipov and S. Özçağ, *Variations of selective separability and tightness in function spaces with set-open topologies*, Topology Appl. **217**, 38–50, 2017.
- [23] A.V. Osipov and E.G. Pytkeev, *On sequential separability of functional spaces*, Topology Appl. **221**, 270–274, 2017.
- [24] B.A. Pansera and V. Pavlović, *Open covers and function spaces*, Matematički Vesnik **58**, 57–70, 2006.
- [25] M. Sakai, *k*-Frechet-Urysohn Property of $C_k(X)$, Topol. App. 154 (7), 1516–1520, 2007.
- [26] G. Tironi and R. Isler, *On some problems of local approximability in compact spaces*, In: General Topology and its Relations to Modern Analysis and Algebra **III**, 443–446, Prague, August 30-September 3, 1971, Academia, Prague, 1972.
- [27] A. Wilansky, *How separable is a space?*, Amer. Math. Monthly **79** (7), 764–765, 1972.