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Abstract
Beer studied the structure of sets equipped with the extended metrics with a focus on
bornologies. In the paper [A. Piekosz and E. Wajch, Quazi-metrizability of bornological
biuniverses inZF, J. Convex Anal. 2015], Piekosz and Wajch extended the well-known
Hu’s Theorem on boundedness in a topological space (see [S.-T. Hu, Boundedness in a
topological space, J. Math. Pures Appl. 1949 ]) to the framework of quasi-metric spaces.
In this note, we continue the work of Piekosz and Wajch. We show that many results on
bornology of extended metric spaces due to Beer do not use the symmetry axiom of the
extended metric, with appropriate modifications they still hold in the context of extended
T0-quasi-metric spaces.
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1. Introduction
A bornology on a set X is a collection B of subsets of X which satisfies the following

conditions:
(a) B forms a cover of X, i.e. X =

∪
B ;

(b) for any B ∈ B and A ⊆ B, then A ∈ B ;
(c) B is stable under finite unions, i.e. if X1, X2, · · · , Xn ∈ B , then

n∪
i=1

Xi ∈ B .

If 〈X,m〉 is an extended metric space, then the bornology of m-bounded subsets of X
is denoted by Bm and it is called the metric bornology determined by the metric m.

In [1] Beer studied extended metric spaces and bornologies of these spaces. For instance,
for a metrizable space X, he constructed an extended metric space 〈W,ρm〉 such that
whenever m is a compatible extended metric on X, one can find an isometry ϕ : 〈X,m〉 →
〈W,ρm〉 ([1, Theorem 3.2]).

Furthermore, he characterized the metric bornology Bm of an extended metric space
〈X,m〉 by using the well-know Hu’s Theorem (see [3]) in the following ways:
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(1) Given a metrizable space X and a bornology B on X, when does there exist an
extended real-valued metric m such that B = Bm?

(2) Given an extended metric m on X, when does there exist a bona fide metric
m′ = min{1,m} on X such that Bm′ = Bm?

Piekosz and Wajch in [9] introduced the concepts of bornological biuniverse, properness
and characteristic function in a bitopological space in the following way:

(a) A bornological biuniverse is an ordered pair ((X, τ1, τ2),B ) where, (X, τ1, τ2) is a
bitopological space and B is a bornology on X.

(b) Let (X, τ1, τ2) be a bitopological space. A boundedness B on X is called (τ1, τ2)-
proper if for each A ∈ B, there exists B ∈ B such that clτ2A ⊆ intτ1B.

(c) Let (X, τ1, τ2) be a bitopological space. Then a (τ1, τ2)-characteristic function for a
bornology B on X, is a bicontinuous function f : X → [0,∞) such that B = {A ⊆ X :
sup{f(x) : x ∈ A} < ∞}.

The following theorem is proved in [9].

Theorem 1.1. [9, Theorem 4.7] If (X, τ1, τ2) is a quasi-metrizable bitopological space and
B is a bornology on X, then the following conditions are equivalent:

(i) the bornological biuniverse ((X, τ1, τ2),B ) is quasi-metrizable;
(ii) there exists a (τ1, τ2)-characteristic function for B;
(ii) the bornology B is (τ1, τ2)-proper and it has a countable base.

The above theorem extended Hu’s theorem from metric point of view to quasi-metrizable
settings. Naturally this has led to the conjecture that Beer’s results on bornology of
extended metrics may also be investigated in the framework of extended quasi-metric
spaces. The goal of this note is to give a careful study of the afore-mentioned conjecture.

2. Preliminaries
In this section we introduce the terminology and notation for quasi-metric spaces we

will use in the sequel. Further details about theory of asymmetric topology can be found
in [2] and [5].

Definition 2.1. Let X be a set and let q : X × X → [0,∞) be a function mapping into
the set [0,∞) of the nonnegative reals. Then q is called a quasi-pseudometric on X if

(a) q(x, x) = 0 whenever x ∈ X,
(b) q(x, z) ≤ q(x, y) + q(y, z) whenever x, y, z ∈ X. Then pair (X, q) is called quasi-

pseudometric space.

We shall say that q is a T0-quasi-metric provided that q also satisfies the following
condition: For each x, y ∈ X,
q(x, y) = 0 = q(y, x) implies that x = y. Then the pair (X, q) is called T0-quasi-metric

space.

Remark 2.2. If we replace [0,∞) by [0,∞] (where for a q attaining the value ∞ the trian-
gle inequality is interpreted in the obvious way), then in such a case we shall speak of an ex-
tended quasi-pseudometric. IfX is a nonempty set and q is an extended quasi-pseudometric
on X, then the pair 〈X, q〉 is called extended quasi-pseudometric space. Moreover, if q is an
extended T0-quasi-pseudometric on X, the pair 〈X, q〉 is called extended T0-quasi-metric
space. Note that if q is an extended quasi-pseudometric on X then q−1 : X ×X → [0,∞]
defined by q−1(x, y) = q(y, x) whenever x, y ∈ X is also an extended quasi-pseudometric
and qs = q ∨ q−1 is an extended pseudometric on X.
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Let 〈X, q〉 be an extended quasi-pseudometric space. For each x ∈ X and ϵ > 0, the
set Bq(x, ϵ) = {y ∈ X : q(x, y) < ϵ} denotes the open ϵ-ball at x. The collection of all
“open” balls yields a base for a topology τ(q). It is called the topology induced by q on X.
Similarly for each x ∈ X and ϵ ≥ 0, we define the ball Cq(x, ϵ) = {y ∈ X : q(x, y) ≤ ϵ}.
Note that this latter set is τ(q−1)-closed, but not τ(q)-closed in general.

A pair (Bq(x, r);Bq−1(x, s)) with x ∈ X and nonnegative reals r, s will be called a double
ball at x.

Let us recall that a quasi-uniformity on a set X is a filter U on X ×X such that:
(i) for each U ∈ U, {(x, x) : x ∈ X} ⊆ U ;
(ii) for each U ∈ U, there is V ∈ U such that V 2 ⊆ U . Here V 2 = V ◦ V = {(x, z) ∈

X × X : there is y ∈ X such that (x, y) ∈ V and (y, z) ∈ V }. A quasi-uniform space is a
pair (X,U) such that X is a (nonempty) set and U is a quasi-uniformity on X.

Definition 2.3. [8, Definition 2.1] Let (X,U) be a quasi-uniform space and A ⊆ X. The
set A is said to be bounded if for any U ∈ U, there exists n ∈ N and a finite subset F of
X such that A ⊆ Un[F ], where

U [F ] =
∪

f∈F

U(f) = {y ∈ X : there exists f ∈ F such that (f, y) ∈ U}.

Remark 2.4. It has been observed in [8] that if a set is bounded in the sense of the above
definition, then it is also bounded in the metric sense.

Let 〈X, q〉 be an extended quasi-metric space. Then for any x, y ∈ X, we define a
relation Rq on X by

xRq y provided q(x, y) < ∞ and q(y, x) < ∞.

Remark 2.5. If 〈X, q〉 is an extended quasi-metric space, then the relation Rq is an
equivalence relation on X.

Note that if q = q−1 then the relation Rq is exactly the equivalence relation in sense of
Beer (see [1]).

Let x ∈ X. Then the equivalence class of x denoted by qmcq(x) will be called quasi-
metric component of x.

Remark 2.6. For any extended T0-quasi-metric space 〈X, q〉, it is easy to see that
qmcqs(x) ⊆ qmcq(x) whenever x ∈ X. Here qmcqs(x) is a metric component in the
sense of [1].

Let 〈X, q〉 be an extended T0-quasi-pseudometric space and let x ∈ X. Obviously
qmcq(x) 6= ∅, since x ∈ qmcq(x). We equip qmcq(x) with the quasi-metric qx defined by
qx := q|qmcq(x). It follows that

τ(q) =
∪

x∈X

τ(qx) and X =
⊕
x∈X

qmcq(x).

Moreover, ifX can be partitioned into nonempty τ(q)-clopen sets {qmcq(x) : x ∈ X} which
are quasi-metrizable, then choosing a compatible quasi-metric qx for qmcq(x) whenever
x ∈ X, the extended T0-quasi-metric q can be defined by

q(y, z) =
{
qx(y, z) if {y, z} ∈ qmcq(x) for some x ∈ X,

∞ otherwise.
The proof of the next lemma follows from the proof of [1, Proposition 2.3] since the

symmetric axiom of a metric is not used.

Lemma 2.7. A quasi-metrizable space X is connected if and only if each extended T0-
quasi-metric on X is a T0-quasi-metric.
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3. Construction of the universal space
Let (X, q) be a quasi-pseudometric space. In the sequel, we set

C(X, q) = {(f1, f2) : f1 and f2 are continuous real-valued functions on X}
and

Cb(X, q) = {(f1, f2) ∈ C(X, q) : f1 and f2 are bounded on (X, qs)}.
If a, b ∈ R we shall put a−̇b = max{a − b, 0}. We equip C(X, q) with the extended
T0-quasi-metric Qq defined by

Qq(f, g) = sup
x∈X

(f1(x)−̇g1(x)) ∨ sup
x∈X

(g2(x)−̇f2(x))

whenever f = (f1, f2), g = (g1, g2) ∈ C(X, q) (see [4]).

Obviously, (Cb(X, q), Q) is a T0-quasi-metric space, when Q = Qq|Cb(X,q). Note that for
a fixed a ∈ X and for any b ∈ X, define the function pair eX(b) = ((eX)1(b), (eX)2(b)),
where

(eX)1(b) = q(b, x) − q(a, x)
and

(eX)2(b) = q(x, b) − q(x, a),
whenever x ∈ X. It is clear that (eX)1 and (eX)2 are bounded by qs(a, b).

Then the map eX : 〈X, q〉 −→ (Cb(X, q), Q) defined by b 7→ eX(b) yields an isometric
embedding. Indeed, for any b, b′ ∈ X, it follows that

sup
x∈X

[(q(b, x) − q(a, x))−̇(q(b′, x) − d(a, x))] = q(b, b′)

and
sup
x∈X

[(q(x, b′) − q(x, a))−̇(q(x, b) − d(x.a))] = q(b, b′).

Therefore Q(eX(b), eX(b′)) = q(b, b′).

We observe that
Qs(f, g) = sup

x∈X
|f1(x) − g1(x)| ∨ sup

x∈X
|g2(x) − f2(x)|

whenever f = (f1, f2), g = (g1, g2) ∈ Cb(X, q).

Let 4q(X, q) = {(f ;A) : f = (f1, f2) ∈ C(A, q) and A ∈ C0(X, qs)}. Here, C0(X, qs)
is the set of nonempty subsets of X which are closed with respect to τ(qs).

We define an extended T0-quasi-metric EX on 4q(X, q) by

EX((f ;A), (g;B)) =
{

∞ if A 6= B
supx∈A(f1(x)−̇g1(x)) ∨ supx∈A(g2(x)−̇f2(x)) if A = B.

Remark 3.1. We observe that

(Es
X)((f ;A), (g;B)) =

{
∞ if A 6= B

supx∈A |f1(x) − g1(x)| ∨ supx∈A |g2(x) − f2(x)| if A = B.

Furthermore, 〈4q(X, q), Es
X〉 is a complete extended metric space by [1, Proposition 3.1].

Therefore, the extended T0-quasi-metric space 〈4q(X, q), EX〉 is bicomplete by [4, Corol-
lary 3].

Proposition 3.2. Let (X, q) be a T0-quasi-metric space. Then the map θ : 〈X, q〉 −→
〈4q(X, q), EX〉 defined by θ(x) = ((θ1(x), θ2(x)); qmcq(x)), where θ1(x) = q(x, ·)|qmcq(x)
and θ2(x) = q(·, x)|qmcq(x) whenever x ∈ X is an isometry. Moreover, θ is injective.
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Proof. Let x, y ∈ X such that x 6= y.
Case 1. If q(x, y) = ∞ and q(y, x) = ∞, then qmcq(x) 6= qmcq(y). We have EX(θ(x), θ(y)) =

∞ = q(x, y).

Case 2. If q(x, y) = ∞ and q(y, x) < ∞, then qmcq(x) 6= qmcq(y). So EX(θ(x), θ(y)) =
∞ = q(x, y).

Case 3. If q(x, y) < ∞ and q(y, x) = ∞, then case is similar to Case 2.

Case 4. If q(x, y) < ∞ and q(y, x) < ∞, then
qmcq(x) = qmcq(y).

One sees that
sup

a∈qmcq(x)
(q(x, a) − q(y, a)) = q(x, y)

by letting y = a and by the triangle inequality. Similarly,
sup

a∈qmcq(x)
(q(a, y) − q(a, x)) = q(x, y).

Thus, EX(θ(x), θ(y)) = q(x, y). Hence θ is an isometry map. Since 〈X, q〉 is T0, it follows
that map θ is injective by [6, Lemma 4].

�
Example 3.3. (compare [4, Remark 4]) Let (X, q) be a T0-quasi-metric space and let
P0(X) be the set of nonempty subsets of X. Then for any A ∈ P0(X), set (fA)1(x) :=
dist(A, x) and (fA)2(x) := dist(x,A) whenever x ∈ X. Then for the function pair fA =
((fA)1, (fA)2), we have (fA)1 : (X, q−1) −→ (R, u) is a nonexpansive map and (fA)2 :
(X, q) −→ (R, u) is a nonexpansive map, where u(x, y) = max{x−y, 0} whenever x, y ∈ R.
Furthermore, qH(A,B) = Qq(fA, fB) whenever A,B ∈ P0(X), where qH(A,B) is the
extended Hausdorff quasi-pseudometric on P0(X).

Proposition 3.4. If (X,m) is a metric space, then the map ρ(f) = (f, f) defines an
isometric embedding of 〈4m(X,m), ρX〉 into 〈4q(X,m), EX〉.

Proof. Suppose that (f ;A) ∈ 4m(X,m). Then ((f, f);A) ∈ 4q(X,m) as (f, f) is a pair
of continuous functions and A is a nonempty τ(d)-closed subset of X.

Let ((f, f);A), ((g, g);B) ∈ 4q(X, d). If A = B, then
ρX((f ;A), (g;B)) = sup

a∈A
|f(a) − g(a)|

= sup
a∈A

(f(a)−̇g(a)) ∨ sup
a∈A

(g(a)−̇f(a))

= EX [((f, f);A), ((g, g);B)].
If A 6= B, then obviously we have

ρX((f ;A), (g;B)) = ∞ = EX [((f, f);A), ((g, g);B)].
�

The following result extends Beer’s result about the existence of a contravariant functor
from the category of Hausdorff spaces and continuous surjective maps as morphisms and
the category of spaces of partial maps (that is, continuous real valued functions restricted
to the nonempty closed subsets) and isometric embedding maps as morphisms.

Theorem 3.5. Let (X, qX) and (Y, qY ) be two T0-quasi-metric spaces.
If ρ : X → Y is a continuous surjective map, then there exists an isometry ψ :

〈4q(Y, qY ), EY 〉 → 〈4q(X, qX), EX〉.
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Proof. Suppose that A ⊆ Y and f = (f1, f2) ∈ C(A, qY ). Then we define ψ by
ψ((f ;A)) = [((f1 ◦ ρ)|ρ−1(A), (f2 ◦ ρ)|ρ−1(A)); ρ−1(A)].

We prove that ψ is an isometry.
Case 1. If A is τ(qs

Y )-closed subset of Y and f = (f1, f2), g = (g1, g2) ∈ C(A, qY ), then
ρ−1(A) is τ(qs

X)-closed subset of X.
Since ρ is surjective, we have

EX(ψ((f ;A)), ψ((g;A))) = sup
x∈ρ−1(A)

[(f1 ◦ h)(x)−̇(g1 ◦ h)(x)] ∨ sup
x∈ρ−1(A)

[(g2 ◦ h)(x)−̇(f2 ◦ h)(x)]

= sup
y∈A

(f1(y)−̇g1(y)) ∨ sup
y∈A

(g2(y)−̇f2(y))

= EY ((f ;A), (g;A)).
Case 2. Let A1 and A2 are two different τ(qs

Y )-closed subsets of Y . Then by continuity
and surjectiveness of ρ we have the sets ρ−1(A1) and ρ−1(A2) as the two different τ(qs

X)-
closed subsets of X. Therefore,

EX(ψ((f ;A1)), ψ((g;A2))) = ∞ = EY ((f ;A1), (g;A2))
whenever f = (f1, f2) ∈ C(A1, qY ) and g = (g1, g2) ∈ C(A2, qY ). �

4. Bornology of quasi-metrically bounded subsets
In what follows, we use the terminology of [9].

Definition 4.1. [7, p.4] Let (X, q) be a quasi-pseudometric space. An arbitrary subset A
of X is called q-bounded if and only if there exists x ∈ X, r > 0 and s > 0 such that A ⊆
Bq(x, r)∩Bq−1(x, s). Note that one can replace Bq(x, r)∩Bq−1(x, s) by Cq(x, r)∩Cq−1(x, s).

We recall that any the set of the form Bq(x, r) ∩Bq−1(x, s) is called double open ball.
We point out that Definition 4.1 is slightly different from [9, Definition 1.5]. In the

sense of [9] a subset A of X can be q-bounded and not necessary q−1-bounded. Obviously
in our context a subset A is q-bounded if and only if it is q−1-bounded. Moreover, if A is
q-bounded, then A is qs-bounded too, but the converse is not true in general (see Remark
4.2 below).
Remark 4.2. [8, p.370] It is easy to see that if a set is qs-bounded, then it is q-bounded
but the converse is not true. Indeed let’s equip [0, 1] with the T0-quasi-metric

q(x, y) =
{
y − x if x ≤ y

1 x > y

and U is the quasi-uniformity generated by q on [0, 1] and U−1 the conjugate quasi-
uniformity of U on [0, 1], then ([0, 1],U) and ([0, 1],U−1) are bounded quasi-uniform spaces
but ([0, 1],Us) is the discrete uniform space and it is not bounded.

One can easily show that Definition 4.1 is equivalent to Definition 4.3 below.
Definition 4.3. One says that a subset A of a quasi-pseudometric space (X, q) is q-
bounded if there exist ϵ > 0 such that q(x, y) < ϵ, whenever x, y ∈ A.

Definition 4.4. Let (X, q) be a quasi-pseudometric space. Then Bq(X) is the collection
of all q-bounded subsets of X in the sense of Definition 4.1.

As in metric settings, the collectionBq(X) of q-bounded subsets of a quasi-pseudometric
space (X, q) forms a bornology on X. Then we call Bq(X) the quasi-metric bornology
determined by q. Moreover, we observe that Bqs(X) is a metric bornology determined
by the metric qs in the sense of [1].

From Remark 4.2, we have the following observation.
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Lemma 4.5. Let (X, q) be a quasi-metric space. Then the following statements are true:
(a) Bqs(X) ⊆ Bq(X),
(b) Bqs(X) ⊆ Bq−1(X).

We recall that two bornologies on set are equivalent if they determine the same collection
of bounded sets (see [1, p.3]).

Lemma 4.6. Let (X, q) be a quasi-metric space. Then it follows that Bq(X) is equivalent
to Bq−1(X).

Proof. Since any subset A of X is q-bounded if and only if it is q−1-bounded. 2

It is well-known that any quasi-pseudometric space (X, q) can be seen as a bitopological
space (X, τ(q), τ(q−1)). This motivates the following definition that we translate from [9]
to our context.

Definition 4.7. (compare [9, Definition 1.4]) Let (X, q) be a quasi-pseudometric space
and B be a bornology on X. Then (X, q,B ) is a bornological bi-universe.

In the above definition if q = q−1, then (X, q,B ) is bornological universe in the sense
of [3].

Definition 4.8. (compare [9, Definition 1.7]) A bornological bi-universe (X, q,B ) is
called quasi-metrizable if B = Bq(X).

Definition 4.9. Let (X, q) be a quasi-metric space. Then q is said to induce a bornological
bi-universe (X, q,B ) if B = Bq(X).

Remark 4.10. Let (X, q) be a quasi-metric space. Note that the bornological bi-universe
(X, q,B ) is quasi-metrizable if and only if the bornological bi-universe (X, q−1,B ) is
quasi-metrizable.

Example 4.11. [9] Consider the real line R. Then
UB(R) = {A ⊆ R : there exists r ∈ R such that A ⊆ (−∞, r)}

and
LB(R) = {A ⊆ R : there exists r ∈ R such that A ⊆ (r,+∞)}

are bornologies in R.

The topology u = {∅,R} ∪ {(−∞, a) : a ∈ R} in R is called the upper topology and the
topology l = {∅,R} ∪ {(a,+∞) : a ∈ R} in R is called the lower topology.

Definition 4.12. (compare [9, Definition 4.1]) Let (X, qX) and (Y, qY ) two quasi-metric
spaces. A map f : X → Y is called bicontinuous with respect to (τ(qX), τ(q−1

X ), τ(qY ), τ(q−1
Y ))

(in short bicontinuous) if
{f−1(V ) : V ∈ τ(qY )} ⊆ τ(qX)

and
{f−1(V ) : V ∈ τ(q−1

Y )} ⊆ τ(q−1
X ).

Definition 4.13. (compare [9, Definition 4.2]) Let (X, q) be a quasi-metric space. Then
a q-characteristic function for a bornology B on X, is a bicontinuous function f : X →
[0,+∞) with respect to (τ(q), τ(q−1), u, l) such that B = {A ⊆ X : sup{f(x) : x ∈ A} <
+∞}.

Example 4.14. (compare [9, Fact 4.3]) Let (X, q) be a quasi-metric space and a ∈ X.
Then the function f : X → [0,+∞) defined by f(x) = q(a, x) whenever x ∈ X is bicon-
tinuous.
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Lemma 4.15. (compare [9, Proposition 4.5]) Let (X, q) be a quasi-metric space. If
bornological bi-universe (X, q,B ) is quasi-metrizable, then there exists q-characteristic
function for the bornology B.

Definition 4.16. Let (X, q) be a quasi-metric space. A bornology B on X will be called
q-proper if for each A ∈ B , there exists B ∈ B such that clτ(q−1)(A) ⊆ intτ(q)(B).

Remark 4.17. From [9, Proposition 4.6], it follows that if (X, q,B ) is a bornological
bi-universe such that B has a q-characteristic function, then B is q-proper and second
countable.

The following important theorem proved in [9] extends the well-known Hu’s Theorem
(see [3]) from metric point of view to quasi-metric settings.

Theorem 4.18. (compare [9, Theorem 4.7]) Let (X, q) be a quasi-metric space. If B is
a bornology on X, then the following conditions are equivalent:

(a) the bornological bi-universe respect to B is quasi-metrizable;
(b) there exists a q-characteristic function for B;
(c) B is q-proper and it has countable base.

5. Bornology on extended quasi-metric spaces
Let X be a set. If A ⊆ P(X), then ↓ A and

∑
A are defined by

↓ A := {B ∈ P(X) : B ⊆ A for some A ∈ A }
and

∑
A :=

{ n∪
i=1

Ai : Ai ∈ A whenever i ∈ {1, · · · , n} with n ∈ N
}
.

If B is a bornology on X, then we say that a family B0 of subsets of X is a base of
B if ↓ (B0) = B.

Definition 5.1. Let 〈X, q〉 be an extended quasi-metric space and A be a subset of X.
We say that A is τ(q)-relatively compact if A is τ(qs)-relatively compact.

Note that the family of τ(q)-relatively compact subsets of X is a natural bornology on
〈X, q〉.

Lemma 5.2. (compare [1, Lemma 2.1]) Let 〈X, q〉 be a T0-extended quasi-metric space.
Then

(a) the family of all finite union of double open balls forms a base for Bq(X);
(b) Bq(X) contains the bornology of τ(q)-relatively compact subsets of X;
(c) if the sequence (xn) is q-convergent and q−1-convergent on X, then {xn : n ∈ N} ∈

Bq(X).

Proof. (a) Consider

FB =
{ n∪

k=1
Bq(xk, rk) ∩Bq−1(xk, sk) : xk ∈ X and rk, sk ∈ (0,∞) whenever n ∈ N

}
.

We show that ↓ (FB ) = Bq(X).
Let A ∈ FB. Then A =

∪n
k=1Bq(xk, rk) ∩Bq−1(xk, sk). Therefore A ∈ Bq(X) as A is

q-bounded. So ↓ (FB ) ⊆ Bq(X).
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Conversely, if B ∈ Bq(X), then there exists x ∈ X and r, s > 0 such that B ⊆
Bq(x, r) ∩Bq−1(x, s). Since Bq(x, r) ∩Bq−1(x, s) ∈ FB, it follows that B ∈↓ (FB ).

(b) Let A be a τ(q)-relatively compact subset of X. Then by Definition 5.1, A is τ(qs)-
bounded. Hence A ∈ Bq(X) by Remark 4.2.

(c) Suppose that the sequence (xn) is q-convergent to x ∈ X. Then, for ϵ = 1, there
exists N ′ ∈ N such that q(xn, x) < ϵ whenever n ≥ N ′.

If r = max{1, q(x0, x), q(x1, x), · · · , q(xN ′ , x)}, then q(xn, x) < r whenever n ∈ N.
By similar arguments, if (xn) is q−1-convergent to x ∈ X, then q(x, xn) < s whenever

n ∈ N. Therefore, xn ∈ Bq(x, r) ∩Bq−1(x, s) whenever n ∈ N. �

Theorem 5.3. Let 〈X, q〉 be a T0-extended quasi-metric space and let B be a bornology
on X. Then B = Bq(X) if and only if there exist A ⊆ B such that ↓ (

∑
(A )) = B

and a partition
{
Ai : i ∈ I

}
of A with the following properties:

(1) Ai contains a nonempty subset of X whenever i ∈ I;
(2) for all A1 ∈ Ai , there exists A2 ∈ Ai with clτ(q−1)(A1) ⊆ intτ(q)(A2) whenever

i ∈ I;
(3) whenever Ai ∈ Ai and Aj ∈ Aj for i 6= j, then Ai ∩Aj = ∅;
(4) each Ai has a countable subfamily which is cofinal in Ai with respect to inclusion.

Proof. Suppose q is a T0-extended quasi-metric on X and B = Bq(X).
Let {Xi : i ∈ I} be quasi-metric components of X,

Ai = {Bq(y, r) ∩Bq−1(y, s) : y ∈ Xi and s, r > 0}

and A be the collection of double open balls in X. Then by Lemma 5.2 (a)∑ ( ∪
i∈I

Ai

)
=

∑ ( ∪
i∈I

{Bq(y, r) ∩Bq−1(y, s) : y ∈ Xi and s, r > 0}
)

and
{
Ai : i ∈ I

}
is a partition of A . Thus, we have

Bq(X) = ↓
( ∑ ( ∪

i∈I

Ai

))
= ↓

( ∑ (
A

))
.

If A ∈ Ai whenever i ∈ I, then A is double open ball. Therefore A 6= ∅ and the
property (1) holds.

Moreover, since Ai is a bornology on Xi whenever i ∈ I, then by Theorem 4.18 Ai

is qi-proper and has a countable base. Therefore, properties (2), (3) and (4) hold.

Conversely, suppose that there exists A with A ⊆ B such that ↓ (
∑

(A )) = B

for some A with
{
Ai : i ∈ I

}
is a partition of A , where A satisfies properties (1),

(2), (3) and (4).
Let Xi =

∪
i∈I

Ai . Then Xi 6= ∅ since the family Ai contains a nonempty subset of X

whenever i ∈ I.
Furthermore, by property (2) we have that Xi is τ(q)-open whenever i ∈ I. Moreover,

from property (3) {Xi : i ∈ I} is a pairwise disjoint family. Then we have that Xi is
τ(q1)-closed and τ(q)-open whenever i ∈ I.
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For each i ∈ I, we set Bi := ↓
( ∑

(Ai )
)

. It follows that for each i ∈ I, Bi

is bornology on Xi since Ai is a cover of Xi. Any member of Bi is a finite union
of elements of Ai and since the τ(q−1)-closure of a finite union is the union of τ(q−1)-
closures, then family Bi satisfies the property (2) whenever i ∈ I. Similarly, the family
Bi satisfies the property (3) whenever i ∈ I.

Finally, if Ci is a countable and cofinal family in Ai whenever i ∈ I, then
∑

(Ci ) is
countable and cofinal in Bi. That is whenever i ∈ I, the family Bi satisfies the property
(4). Then by Theorem 4.18, there exists a quasi-metric qi on Xi such that Bi = Bqi(Xi).

Since ↓
( ∑

(A )
)

is assumed to be a cover of X, we conclude that A is a cover of

X and so is {Xi : i ∈ I} a cover of X. So we can define q : X ×X → [0,∞] by

q(x, y) =
{
qi(x, y), there exists i ∈ I with {x, y} ⊆ Xi

∞, otherwise.
Therefore, we have

↓
( ∑

(
∪
i∈I

Ai )
)

= ↓
( ∑

(A )
)

= B. (5.1)

Since any member of Bi is a finite union of elements of Ai , with q defined above, we
have

Bq(X) =
∑

(
∪
i∈I

Bi ) = ↓
( ∑

(
∪
i∈I

Ai )
)
. (5.2)

Combining (5.1) and (5.2), we have

Bq(X) = B.

�
Theorem 5.4. (compare [1, Theorem 4.3]) Let 〈X, q〉 be a T0-extended quasi-metric space.
Then the set of quasi-metric components induced by q is countable if and only if there exists
a compatible quasi-metric q′ such that Bq(X) = Bq′(X).

Proof. Let I be a countable set and (xi)i∈I be a family of points in X. Suppose
{qmcq(xi) : i ∈ I} is the set of distinct quasi-metric components induced by q. Then∑

({Bq(xi, n)∩Bq−1(xi,m) : i ∈ I, n,m ∈ N}) is a countable base for Bq(X) and for each
A ∈ Bq(X), there exists B ∈ Bq(X) with clτ(q−1)(A) ⊆ intτ(q)(B). Then by Theorem
4.18, there exists a compatible quasi-metric q′ = min{1, q} such that Bq(X) = Bq′(X).

Conversely, suppose that there exists a compatible quasi-metric q′ such that Bq(X) =
Bq′(X). Then by Theorem 4.18, Bq(X) has a countable base and hence

∑
({Bq(xi, n) ∩

Bq−1(xi,m) : i ∈ I, n,m ∈ N}) contains a countable cofinal family within Bq(X). It
follows that I is countable as {{xi} : i ∈ I} is a family of q-bounded sets. �
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