
Avrupa Bilim ve Teknoloji Dergisi

Sayı 14, S. 70-76, Aralık 2018

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

No. 14, pp. 70-76, December 2018

Copyright © 2014 EJOSAT

Research Article

www.ejosat.com 70

Negligence Minimum Spanning Tree Algorithm

Jumana H.S. Alkhalissi1, Ayla Saylı1*
1 Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Mathematical Engineering,

 Istanbul, Turkey

 (First received 30 January 2018 and in final form 23 October 2018)

(DOI: 10.31590/ejosat.386716)

Abstract

In the life, we always aim to do anything with the less cost considering time and distance. In graph theory, finding a minimum weight

(cost or path) is a well-known problem. A minimum spanning tree is one of the methods brought for this purpose. In this work, we

consider a negligence algorithm to find a minimum spanning tree in another way. We report a comparison between our algorithm and

Kruskal's MST algorithm. We implemented some examples of the graphs to get the results in less time and more effectively.

Keywords: Minimum Spanning Tree, Kruskal’s, Prim’s and Reverse Delete Algorithm, Running Time.

1. Introduction

A special type of tree that connected between edges to

minimize the lengths or “weights can be called as a Minimum

Spanning Tree (MST) graph. It is useful for many applications

like taxonomy, cluster analysis, data dissemination, routing and

coordinator election etc. The aim of the MST construction is used

to minimize the weight (cost) in objects of a graph. For instance,

a salesman who needs to travel between different places with less

distance or less time. There are different types of algorithms for

the MST such as Kruskal’s, Prim’s, Reverse Delete, Borøuvka’s

algorithms. Where V. Loncar and others studied serial variants of

Prim’s and Kruskal’s algorithms and presented their

parallelization targeting message passing parallel machines with

distributed memory [1]. S. Dutta and others developed a new GIS

tool using Prim’s algorithm to construct the MST of a connected,

undirected and weighted road network [2]. While S. Mohanram

and T. D. Sudhakar used the reverse delete algorithm to find the

optimal path of a power flow for a given network [3]. There are a

lot of applications of the MST studied by different researchers

depending on the specific field that he/she wants to employ them.

We consider some of these applications as the following list [4]:

• In approximation algorithms, the MST represents an essential

part of these algorithms as Steiner tree and the Christofede’s

algorithm for the traveling salesman.

• In image processing, the arrangement of the image cells can

be formed in the MST graph.

• In single-linkage clustering, the MST represents the basis for

single-linkage clustering. At each step, two clusters are separated

by the shortest distance which is combined.

• In road or telephone networks, places/houses are in the need

of a connection path with the minimum length of road/wire

1 Corresponding Author: Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Mathematical Engineering,

Istanbul, Turkey, sayli@yildiz.edu.tr

possible.

In this work, we shed light on the MST and some of MSTs

algorithms and then we propose our new algorithm called as “A

Negligence Minimum Spanning Tree Algorithm (NMST)”. In

addition, we implement one of a classical algorithm to find the

MST of a graph which is Kruskal’s algorithm. Our goal is to

develop this algorithm to compare the performance of our NMST

algorithm with minimized costs. The following section is given to

explain what the minimum spanning tree is and how it can be

constructed.

In graph theory, a connected graph G with n vertices and n − 1

edges, and not having any loop among the vertices that can be

called as a tree. A tree consisting of all vertices of the graph is

called a spanning tree. Thus the MST of a graph in Figure 1 is a

spanning tree containing all vertices of the graph with the

minimum sum of the weights of all edges [2].

Figure 1. Minimum Spanning Tree

2. Kruskal’s, Prim’s and Reverse Delete

Algorithms

In this section, two most popular algorithms for MSTs will be

given in detail, which are Kruskal’s and Prim’s algorithms.

mailto:sayli@yildiz.edu.tr

European Journal of Science and Technology

www.ejosat.com ISSN:2148-2683 71

2.1. Kruskal’s Algorithm

 Kruskal discovered this algorithm in 1956 [5]. The procedures

of this algorithm start with a sorted list of edges and add each edge

to the tree if it does not form a cycle. Since we examine the edges

in order from lightest “in value of lenghts or weights”to heaviest,

any edge we examine is safe if and only if its endpoints are in

different components of the partial MST. To be clear about its

procedures, an example is given in Figure 2.

Figure 2. Procedures of Kruskal’s Algorithm

2.2. Prim’s Algorithm

Rebort Prim developed Prim’s algorithm in 1957 [5]. The

procedures of this algorithm start from an arbitrary vertex in the

graph as a single partial MST, at each step add an edge of the light

(lowest) weight connecting the vertex nearest to but not already

in the current partial minimum spanning tree with a condition that

the properties of a tree should be passing through all vertices (n)

of the graph with (n−1) edges. Figure 3 represents the procedures

of Prim’s algorithm.

2.3. Reverse Delete Algorithm

This is known as a Greedy Algorithm. It is the reverse of

Kruskal’s algorithm to find a minimum spanning tree.

Figure 3. Procedures of Prim’s Algorithm

The algorithm works as follows:

Step 1: Start with graph G, which contains a list of edges E.

Step 2: Go through E in decreasing order of edge weights.

Step 3: Check if deleting current edge will further disconnect

graph.

Step 5: If G is not further disconnected, delete the edge.

We can see its procedures of the same example in Figure (4).

Avrupa Bilim ve Teknoloji Dergisi

www.ejosat.com ISSN:2148-2683 72

Figure 4. Procedures of Reverse Delete Algorithm

Now, we will introduce our NMST algorithm in Section 4.

3. Negligence Minimum Spanning Tree

Algorithm

The procedures of the NMST algorithm can be described as

follows:

Step 1: Sort of max weight to minimum weight (ordered the

graph decreasingly).

Step 2: Make an array with the number of vertices to record the

last visit to each vertex.

Step 3: Remove the heaviest weighted edge if this edge makes

no loss of one of the vertices.

Step 4: Repeat the removing producer till reaching the

condition that will be sure the number of edges less than of

vertices minus one.

Step 5: Resort the reminder edges.

Step 6: Build the MST.

Figure 5. Procedures of NMST Algorithm

Figure 5 shows the NMST algorithm procedures for the same

given example. In mathematical terms, let G represents the given

European Journal of Science and Technology

www.ejosat.com ISSN:2148-2683 73

graph with n vertices and E edges. Ordered E in decreasing order,

put the vertices in a sequence set. Delete the edge e which is the

edge with the biggest weight if this edge does not affect the

number of vertices. Continue of deleting the next bigger weight

till we satisfy the condition number of E equal to (n − 1). The

reminder edges connected to be minimum spanning tree.

The difference between the reverse delete algorithm and the

NMST is that the reverse delete algorithm starts with the original

graph and eliminates the expensive weights that did not make the

graph disconnected, while the NMST starts with the sort of the

weight by descending order, then creates another graph which

contains the result of edges with the less weight. Also, the NMST

has two sorts: one at the beginning and the other at the end is

resorting the result to generate the MST which is not like the

reverse delete algorithm.

In the other hand, the similarities between the Kruskal’s

algorithm and the NMST are sorting the edges, choosing the

wanted edges and building the MST. While the difference

between the Kruskal’s algorithm and the NMST is the way of

sorting. Kruskal’s algorithm is using sorting increasingly and the

NMST algorithm is using sorting decreasingly and also the NMST

algorithm has two sortings one at the beginning and one at the end

which is not like Kruskal’s algorithm.

4. MATLAB Application of Kruskal’ and

NMST Algorithms

In MATLAB (version R2015b), we have implemented our

application for the algorithms and its interface is given in Figure

6-10. From the interface, the first procedure is to define the graph,

then select one of the algorithms (Kruskal's or NMST), after that

the procedures of the chosen algorithms are executed up to the

final MST is reached.

In order to show the procedures, we implemented two more

examples using Kruskal’s and NMST algorithms and executed

them in our application to estimate the execution times and the

final MSTs.

Example 4.1: At the beginning, we implemented the Kruskal’s

algorithm on the graph with 7 vertices and 9 edges. Figure 6

shows how we select the data for Example 4.1, which is inserted

before and click draw to appear the original graph.

Figure 6. Procedure 1 for Example 4.1’s Implementation

 In Figure 7, we choose Kruskal’s algorithm to find the MST and shows the final MST.

Avrupa Bilim ve Teknoloji Dergisi

www.ejosat.com ISSN:2148-2683 74

Figure 7. Procedure 2 for Example 4.1’s Implementation

 In Figure 8, procedure 3 of Example 4.1’s implementation is given to select the NMST algorithm to get the MST.

Figure 8. Procedure 3 for Example 4.1’s Implementation

 The final result is given in Figure 9.

European Journal of Science and Technology

www.ejosat.com ISSN:2148-2683 75

Figure 9. Procedure 4 for Example 4.1’s Implementation

 Example 4.2 In this example, we will consider a graph with 10 vertices and 17 edges. The original graphs and the final MSTs are

given in Figure 10.

Figure 10. MSTs using Kruskal’s and the NMST algorithms of Example 4.2’s Implementations

Avrupa Bilim ve Teknoloji Dergisi

www.ejosat.com ISSN:2148-2683 76

5. Experimental Results

To make the above analysis more clearly, we show the

execution time of Kruskal’s and the NMST algorithms for

Example 4.1 and 4.2 in Table 1.

Table 1. Execution Times of Kruskal and NMST Algorithms

for Example 4.1 and 4.2

From Table 1, we can see that the NMST takes more time in

sorting than Kruskal’s algorithm, however, the time of generating

the MST of the graph is less than Kruskal’s algorithm. As a result,

in total, it can be pointed out that the NMST is faster than

Kruskal’s algorithm to find the MST for a graph. For more spatial

cases and more complicated graphs, respectively this difference

between two algorithms will increase and we will study these

cases in the future.

6. Conclusion

We can analyze the complexity of the Kruskal’s and NMST

algorithms assuming that V represents a vertices and E represents

an edge. In order the Kruskal’s algorithm to run faster, we can sort

the edges applying Counting Sort. The time detail can be

underlined as follows:

 The line of loading the matrix requires O (1) time.

 The lines of making a visiting list require O (V) time.

 The lines of sorting the matrix require O (|V| + |E|)

time.

 The lines of adding the small value to the new matrix

require O (|E| α |V|) time.

 (This is the difference between the NMST algorithm).

The line of return or show values requires O (1) time.

So if we use ‘Counting Sort’ in order to solve the edges, the

time complexity of Kruskal will be O (|v| + |E| log |v|). The same

producer in above, only the difference is that O ((|V − 1|) α |V|) +

Time of Tree Construction is O (V− 1). The time complexity of

NMST will be O ((2v − 1) + log (2v − 1)).

References

[1] S. Skrbic, V. Loncar and A. Balaz. Distributed Memory

Parallel Algorithms for Minimum Spanning Trees. The World

Congress on Engineering, 2013.

[2] D. Patraa, S. Duttaa, H. Sankar, P.A. Verma, Development of

GIS tool for the solution of minimum spanning tree problem

using Prim’s algorithm. The International Archives of the

Photogrammetry, Remote Sensing, and 143 Spatial

Information Sciences, 2014, pp. 9–12.

[3] S. Mohanram and T. D. Sudhakar. Power System Restoration

using Reverse Delete Algorithm Implemented in FPGA. Dr.

M.G.R. University, Maduravoyal, Chennai, Tamil Nadu,

India, 2011, pp. 373-378.

[4] S. I. Ramaswamy and R. Patki. Distributed Minimum

Spanning Trees, 2015.

[5] J. Kleinberg and E. Tardos. Greedy Algorithms. In Algorithm

Design; Goldstein, M.; Suarez-Rivas, M., Eds.; Pearson-

Addison Wesley: London, 2005; pp. 115–209.

Number

Of

Examples

Kruskal’s

Sorting

Time

NMST’s

Sorting

Time

Kruskal’s

Generating

Time of

MST

NMST’s

Generating

Time of

MST

Example 4.1 0.00068 0.00090 0.00040 0.00017

Example 4.2 0.00186 0.00287 0.00056 0.00026

