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ABSTRACT: The ultimate success of particle swarm optimization depends on the velocity values of 

previous particles. Velocity is multiplied with inertia weight coefficient, and has a significant effect on 

search capability of the particle swarm optimization. When looking at previous studies that are carried 

out to calculate this coefficient, it is seen that inertia weight coefficient has been handled in several ways. 

In this article; a new ensemble inertia weight calculation strategy is proposed that uses other constant, 

random, linear decreasing, global local best, simulated annealing and chaotic inertia weight calculation 

methods. Other methods results are combined and used to make a final output decision in a proper way. 

In experimental tests, 30 common optimization benchmark test problems are used. Proposed ensemble 

strategy is proven by statistical tests and gives successful results in all optimization benchmark test 

problems. 
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Parçacık Sürü Optimizasyon Algoritmasında Bir Topluluk Atalet Ağırlığı Hesaplama Stratejisi 

 

ÖZ: Parçacık sürüsü optimizasyonunun nihai başarısı, önceki parçacıkların hız değerlerine bağlıdır. Hız, 

atalet ağırlık katsayısı ile çarpılır ve parçacık sürüsü optimizasyonunun arama yeteneği üzerinde önemli 

bir etkiye sahiptir. Bu katsayıyı hesaplamak için yapılan önceki çalışmalara bakıldığında atalet ağırlık 

katsayısının çeşitli şekillerde ele alındığı görülmektedir. Bu makalede; diğer sabit, rasgele, doğrusal 

azalan, küresel yerel en iyi, benzetimli tavlama ve kaotik atalet ağırlığı hesaplama yöntemlerini 

kullanılan yeni bir topluluk atalet ağırlığı hesaplama stratejisi önerilmiştir. Önerilen yöntemde, diğer 

yöntemlerin sonuçları uygun bir şekilde birleştirilerek nihai çıktı kararı üretmek için kullanılmaktadır. 

Deneysel testlerde, bilinen 30 optimizasyon kıyaslama test problemi kullanılmaktadır. Önerilen topluluk 

stratejisi istatistiksel testlerle kanıtlanmış ve tüm optimizasyon kıyaslama test problemlerinde başarılı 

sonuçlar vermiştir. 

 

Anahtar Kelimeler: Atalet ağırlığı, Parçacık sürü optimizasyonu, 

 

INTRODUCTION 

 

Ensemble decision is interpreted as making the same decision together or as acting upon majority’s 

decision. Decision making can be a difficult task if some other alternative decisions exist. In such cases, 

making a final decision based on ensemble decision may be the best preference. The aim of optimization 

process can be defined as to find the optimum values. Metaheuristic optimization techniques are 

preferred instead of conventional search techniques on problems that have hard or impossible solutions 

in an acceptable time. Metaheuristic algorithms cannot provide to find always the best solution. But 

these algorithms do not leave the problem unsolved, and can provide solutions quickly. Particle swarm 
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optimization (PSO) algorithm mimics swarm behaviors in the nature. It imitates birds and fish that live 

in flocks. These animals exhibit social behaviors in together that is very apt for finding food in the 

nature. Particle swarm optimization algorithm was inspired from the search behaviors of these animals 

showing swarm behaviors. PSO is composed of swarm particles. Each particle has its own velocity, 

position and the personal best value. The swarm made up of particles and one of the particles is 

accepted as global best value. Personal and global values determine the next velocity and position of the 

particle thus, convergence process to the optimum solution is realized. Fast convergence may be caused 

the lower the sensitivity of solution, otherwise if it is to slow, time needed to reach the solution extends 

and may lead to some problems such as local optimum. A significant parameter that determines 

convergence quality and speed in PSO is called inertia weight. A number of previous studies have been 

done to calculate inertia coefficient in an effective way (Shi and Eberhart, 1998; Eberhart and Shi, 2001; 

Xin et al., 2009; Arumugam and Rao, 2006; Al-Hassan et al., 2007; Feng et al., 2008). In these studies, it 

was indicated that some inertia weight calculation methods have been successful rather than others in 

such problems. Some of these successful methods are: constant, random, linear decreasing, simulated 

annealing and chaotic inertia weight calculation methods. However, while these studies are suitable for 

such problems, nevertheless, they may not obtain good results in such other problems (Kennedy and 

Eberhart, 1995; Ala’raj and Abbod, 2016; Xu et al., 2016). PSO algorithm runs in a predetermined number 

of iteration times. At each iteration, if optimal inertia value corresponding to the best fitness value is 

determined, more accurate and consistent results may be obtained. However, optimization problems in 

real world always can change, so this parameter value can be handled in a dynamic way too (Kordestani 

et al., 2016). One of the advantages of PSO algorithm is that it can quickly converge to the global 

optimum. Easily applicable and fewer number of parameter values are to be adopted. Inertia weight 

parameter transmits information about the velocity and direction of the previous particle. If this value is 

too high, the convergence speed and search speed of the algorithm increases. If this parameter value is 

too low, the particles cannot transmit information about their previous velocity and direction to the next 

particles (Taherkhani and Safabakhsh, 2016). To assess optimization algorithm, convergence speed and 

success in finding global optimum are some of the main criteria. Providing balance between global and 

local search is important for the success of optimization algorithm (Shi and Eberhart, 2001). Some 

optimization algorithms try to achieve to keep this balance by use of various techniques. After a while 

the emergence of the standard PSO algorithm, inertia weight has been proposed (Shi and Eberhart, 

1998). Higher inertia weight values lead to higher changes in velocity, particles search for new positions. 

At lower values, particles make updates in the local search area (Zhang et al., 2015). 

 

LITERATURE REVIEW 

 

Ala’raj and Abbod (Ala’raj and Abbod, 2016) develop a new combination method to increase 

classification accuracy. By developing a new combination rule, classifiers are combined. Thus, classifiers 

work together like a group or a team and share the decisions they made. Classifiers solve the same 

problem together by using the consensus approach. In general, the idea behind consensus approach is 

acting like a team cooperatively. 

Xu et al. (Xu et al., 2016) propose heuristic preference relations and group decision making. In this study, 

a new method is developed to check and increase consistency between individual preferences and 

consensus among experts. A consensus criterion is developed to assess the level of consensus between 

experts. In this way, the level of closeness between one expert and others are determined. The experts 

make decisions collectively. 

Bharti and Singh (Bharti and Singh, 2016) propose a selection method based on binary particle swarm 

optimization. Fitness based adaptive inertia weight value checks exploration and exploitation 

capabilities of particles in the search space. By integrating contrast and change with binary particle 

swarm optimization, the search capacity of algorithm is increased. The performance of grouping 

algorithm increases based on the properties chosen with this method. Fitness value, which changes 
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depending on the level of similarity between clusters and within the cluster, and inertia weight strategy 

which takes a dynamic value are presented. By using the fitness value of each particle, the inertia weight 

value of other particle is adjusted dynamically. Overall iteration fitness value is determined according to 

the clustering function. 

Taherkhani and Safabakhsh (Taherkhani and Safabakhsh, 2016) propose an adaptive method to find 

inertia weight value for each particle in different dimensions. They regard particle success and the 

amount of replacement for each particle as feedback. It is demonstrated that the proposed model 

generally has optimal performance. The results clearly demonstrate that the proposed model is superior 

to other current models. If the best values of the particle in the last two iterations are close to each other, 

inertia weight shows a higher change. However, if the best particle values in the last two iterations are 

different, inertia weight value shows a lower change. Each particle has a unique inertia weight value and 

all of them are taken into consideration to adjust the general inertia weight of the particle. The advantage 

of this study is that it is demonstrated that successful results are obtained when inertia weight is 

dynamically set. However, making assessments based on the last two iterations and ignoring the general 

fitness value of the current iteration are considered as deficits in this study. 

Pluhacek et al. (Pluhacek et al., 2013) propose a developed PSO algorithm. Algorithm uses inertia weight 

that decreases linearly. Three different chaos are examined by adopting an approach that generates 

random numbers. It is demonstrated that main PSO formula reaches success with dissipative standard 

map-based number generator version. Thus, early convergence problem is prevented and it is 

demonstrated that it is proven to have an edge over other versions. The limitation of this study is that 

convergence is too slow and thus needs long period of time, because of which it requires high numbers 

of iterations. 

 

PARTICLE SWARM OPTIMIZATION ALGORITHM 

 

Particle swarm optimization is developed inspired from social behaviors of bird and fish swarms 

(Kennedy and Eberhart, 1995). In PSO, every candidate solution is named as a particle. These particles 

form the artificial swarm. Algorithm obtains particles’ social and cognitive information and aims to find 

an acceptable optimum value (Çavdar, 2016). The initial population can be prepared with random 

position and velocity in the search space. Later on, optimization starts when particles pass on their next 

velocity and positions and fitness value is calculated. Fitness function differs depending on the related 

study (Gheisari and Meybodi, 2016). In Eq. (1) and Eq. (2), for example; i. particle’s position is shown as 

Xi and velocity is shown as Vi. t represents actual, t+1 represents the next iteration values. Best value of a 

particle is shown as Pi and the global best particle is shown as Pg (Lim and Isa, 2014). 

 

𝑉𝑖(𝑡 + 1) = 𝑤𝑉𝑖 (𝑡) + 𝑐1𝑟1(𝑃𝑖(𝑡) − 𝑋𝑖(𝑡)) + 𝑐2𝑟2(𝑃𝑔(𝑡) − 𝑋𝑖(𝑡))    (1) 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)          (2) 

 

Here, w is called as inertia weight and has an important effect upon exploration and exploitation, which 

form the basis of optimization. While a w with a high value in the search space increases global search 

capability, a w with low value improves local search (Armano and Farmani, 2016). w value has a great 

effect on time spent for reaching solution and on the sensitivity of solution value obtained. r1 and r2 are 

random numbers between 0 and 1. c1 and c2 are called as acceleration coefficient and determine 

acceleration amount that is applied on particle cognitive best and group social or global best 

(Arasomwan and Adewumi, 2013). 
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USED INERTIA WEIGHT STRATEGIES AND OPTIMIZATION TEST FUNCTIONS 

 

Some of the successful inertia weight strategies used in the previous studies (Shi and Eberhart, 1998; 

Eberhart and Shi, 2001; Xin et al., 2009; Arumugam and Rao, 2006; Al-Hassan et al., 2007; Feng et al., 

2008) are presented in Table 1 (Arasomwan and Adewumi, 2013; Maca and Pech, 2015; Nickabadi et al., 

2011; Bansal et al., 2011). In the previous studies, inertia weights are calculated with constant, random or 

with adaptive varying approaches. Adaptive approach calculations are made according to iteration 

number, local or global best values. Constant method uses a constant 0.7 value. Random method takes 

value between 0.5 and 1. Linear decreasing, Global-local best, simulated annealing, the chaotic methods 

take values as given formulas in the table. 

 

Table 1. Used inertia weight strategies 

Inertia Weight Formula of Inertia Weight Reference 

Constant 𝑤 = 0.7 (Shi and Eberhart, 1998) 

Random 𝑤 = 0.5 +
𝑅𝑎𝑛𝑑()

2
 (Eberhart and Shi, 2001) 

Linear Decreasing 𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
 𝑥 𝑘 (Xin et al., 2009) 

Global-Local Best 𝑤 = 1.1 −
𝑔𝑏𝑒𝑠𝑡𝑖

𝑝𝑏𝑒𝑠𝑡𝑖
 (Arumugam and Rao, 2006) 

Simulated Annealing 𝑤 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) 𝑥0.95𝑘−1 (Al-Hassan et al., 2007) 

The Chaotic 
𝑤 = (𝑤1 − 𝑤2) 𝑥

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
+ 𝑤2 𝑥 𝑧 

𝑧 = 4 𝑥 𝑧 𝑥 (1 − 𝑧) 

(Feng et al., 2008) 

  

Widely known and used optimization functions in experiments are given in Table 2 (Arasomwan and 

Adewumi, 2013; Nickabadi et al., 2011; Surjanovic and Bingham, 2013; Bansal et al., 2011; Uymaz et al., 

2015). All CEC 2017 benchmark test functions’ (Awad et al., 2016) global optimum values are set as 0 and 

variables search range is [-100, +100]. 

 

 

 

 

 

 

 

 

 

 

 



İ. B. AYDİLEK 

 
548 

 

Table 2. CEC 2017 optimization test functions 

Type No. Description 

Unimodal 

functions 

1 Shifted and Rotated Bent Cigar Function 

2 Shifted and Rotated Sum of Different Power Function 

3 Shifted and Rotated Zakharov Function 

Simple 

Multimodal 

Functions 

4 Shifted and Rotated Rosenbrock’s Function 

5 Shifted and Rotated Rastrigin’s Function 

6 Shifted and Rotated Expanded Scaffer’s F6 Function 

7 Shifted and Rotated Lunacek Bi_Rastrigin Function 

8 Shifted and Rotated Non-Continuous Rastrigin’s Function 

9 Shifted and Rotated Levy Function 

10 Shifted and Rotated Schwefel’s Function 

Hybrid 

functions 

11 Hybrid Function 1 (N=3) 

12 Hybrid Function 2 (N=3) 

13 Hybrid Function 3 (N=3) 

14 Hybrid Function 4 (N=4) 

15 Hybrid Function 5 (N=4) 

16 Hybrid Function 6 (N=4) 

17 Hybrid Function 6 (N=5) 

18 Hybrid Function 6 (N=5) 

19 Hybrid Function 6 (N=5) 

20 Hybrid Function 6 (N=6) 

Composition 

Functions 

21 Composition Function 1 (N=3) 

22 Composition Function 2 (N=3) 

23 Composition Function 3 (N=4) 

24 Composition Function 4 (N=4) 

25 Composition Function 5 (N=5) 

26 Composition Function 6 (N=5) 

27 Composition Function 7 (N=6) 

28 Composition Function 8 (N=6) 

29 Composition Function 9 (N=3) 

30 Composition Function 10 (N=3) 

 

PROPOSED ENSEMBLE INERTIA WEIGHT STRATEGY 

 

Ensemble decision result obtained from individuals are combined and used successfully to make a final 

decision. Group decision making is an approach in which several experts on the topic come together to 

choose the best among suitable alternatives. Group decision making is used widely to use the minds of 

some experts (Xu et al., 2016). In studies like constructing decision forests (Ho, 1998) or credit score 

calculation, it has recently been observed that rather than more than one artificial intelligence classifier, 

combined classifier structures give better results (Ala’raj and Abbod, 2016). In the studies, majority 

voting, weighted average or accumulation which are simple rule combinations and basic components 

methods are mostly preferred (Ala’raj and Abbod, 2016). In combined methods, each classifier is trained 

independently and produce its own decisions. Later on, a final decision is obtained from combined 

decisions (Ala’raj and Abbod, 2016; Zang et al., 2014; Rokach, 2010). In this paper, more than one inertia 

weight strategies are used. Best optimal inertia weight value is formed to a group decision. In this way, 

final optimization result is provided more successful. At each iteration of particle swarm optimization, 

the new values of particles are calculated. In the proposed method, fitness values are calculated using 
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inertia weight divided into ‘n’ item sub-interval in the same iteration. ‘n’ is the number of the used 

inertia weight methods. Transferring the individual from which the best fitness function value is 

obtained to the following calculations is called as elitism. It is a successful and popular method to 

generate new generation (Whitley, 1994; Xiang et al., 2015; Lim and Isa, 2014; Liang and Leung, 2011). In 

this way, fitness value of the iteration is calculated using the elite inertia weight value. In Figure 1, the 

flowchart of proposed method is shown. During each iteration (i), n number calculations are done by 

each inertia weight method with particles (positions(X) and velocities(V)) that are corresponding to the 

best fitness and then the next iteration starts. 

 

 
Figure 1. Flowchart of proposed ensemble inertia weight strategy  

 

Proposed method calculates the most optimal inertia weight value within iteration. In this method, the 

best particle among these fitness values was used for related iteration. The deficit of suggested method is 

that it needed more run time compared to other methods. The success of the proposed method depends 

on trying and finding the most suitable inertia weight value by looking other inertia weight method 

values. In this way, the best possible inertia weight is searched by constricting the solution pool rapidly 

on the basis of iteration number. In the current methods, more constricted or random values are used. 

Ensemble decision is made using elitism when comparing inertia weight strategies and optimization 

functions. For example, suppose that, on iteration (i), linear decreasing method has best fitness value 

among the all other inertia weight strategies. This best method particle and also w values are extracted 

from strategies to in a list as follows: [0.7, 0.61, 0.8, 0.55, 0.9]. After that, there will be six calculations by 

Eq. (1) and Eq. (2) by use of best particles’ current positions(X), velocities(V) and this w values list. 

Finally, calculated best fitness is accepted as final output result (i). 
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EXPERIMENTAL RESULTS AND DISCUSSION 

 

All experimental tests run in a computer with Intel core i7-4770HQ @ 2.20GHz CPU, 16,0 GB system 

memory and Windows10 operation system by using Matlab2017a software. In studies, the parameter 

values of particle swarm optimization algorithm are as follows: variable dimension (d)= 10, personal 

learning coefficient (c1) = 2, global learning coefficient (c2) = 2, population size (swarm size) = 10, number 

of iterations = 1000, wmax = 0.9 and wmin = 0.4. 25 independent runs are made. As it can be seen in Table 3, 

proposed inertia weight strategy yielded more successful results compared to other methods on 

functions that are between 1 and 10. It can be inferred that most obtained results are nearly at least ten 

times better than the other methods. In Table 4, summary run results of functions between 11 and 20 are 

given. Proposed method is better than other constant, random, linear decreasing, global local best, 

simulated annealing and the chaotic methods in the context of mean values. And finally, on last ten 

functions, it can be seen in Table 5, proposed method outperforms others in the context of mean values. 

A more detail view of changings in fitness function based on iteration can be seen in Figure 2. In every 

iteration, proposed ensemble approach seeks better fitness value by use of other six inertia weight 

strategies w values and global best particle. 

 

 

Figure 2. Iteration and fitness values 
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Table 3. Run results summary (F1-F10) 

Fn. Method Constant Random 
Linear 

Decreasing 

Global 

Local Best 

Simulated 

Annealing 

The 

Chaotic 
Proposed 

F1 

Min. 4.879E+09 5.310E+09 7.513E+09 4.320E+09 4.810E+09 4.502E+09 2.337E+09 

Max. 2.679E+10 3.170E+10 2.834E+10 2.270E+10 2.801E+10 3.016E+10 7.636E+09 

Median 1.458E+10 1.424E+10 1.452E+10 1.522E+10 1.567E+10 1.081E+10 5.242E+09 

Mean 1.480E+10 1.577E+10 1.532E+10 1.373E+10 1.648E+10 1.196E+10 5.066E+09 

Std. 6.028E+09 6.327E+09 5.465E+09 5.698E+09 6.818E+09 5.793E+09 1.363E+09 

F2 

Min. 1.911E+09 9.988E+08 7.079E+09 1.205E+10 2.446E+09 5.533E+07 1.304E+08 

Max. 1.872E+14 2.846E+15 1.600E+15 4.945E+15 7.235E+14 1.418E+16 1.915E+10 

Median 8.242E+11 2.271E+11 5.686E+11 1.105E+12 3.797E+11 1.941E+11 3.388E+09 

Mean 1.184E+13 1.179E+14 6.825E+13 2.096E+14 3.913E+13 5.685E+14 4.675E+09 

Std. 3.753E+13 5.684E+14 3.193E+14 9.874E+14 1.486E+14 2.836E+15 4.592E+09 

F3 

Min. 1.459E+04 1.486E+04 1.094E+04 6.483E+03 1.285E+04 1.177E+04 1.064E+04 

Max. 4.459E+04 6.667E+04 5.471E+04 4.931E+04 4.495E+04 6.402E+04 2.457E+04 

Median 3.194E+04 3.224E+04 2.808E+04 2.739E+04 2.557E+04 2.820E+04 1.662E+04 

Mean 3.027E+04 3.399E+04 2.918E+04 2.811E+04 2.704E+04 2.857E+04 1.666E+04 

Std. 7.915E+03 1.206E+04 1.220E+04 9.667E+03 9.227E+03 1.249E+04 3.491E+03 

F4 

Min. 4.557E+02 2.887E+02 2.460E+02 3.684E+02 2.480E+02 2.284E+02 1.574E+02 

Max. 3.516E+03 4.025E+03 2.453E+03 3.795E+03 3.866E+03 3.446E+03 4.962E+02 

Median 1.114E+03 1.606E+03 1.321E+03 9.402E+02 1.057E+03 1.281E+03 2.808E+02 

Mean 1.380E+03 1.627E+03 1.288E+03 1.213E+03 1.383E+03 1.411E+03 2.943E+02 

Std. 8.562E+02 9.576E+02 6.287E+02 9.129E+02 8.768E+02 9.523E+02 8.272E+01 

F5 

Min. 8.029E+01 9.396E+01 8.788E+01 7.110E+01 7.968E+01 8.489E+01 5.969E+01 

Max. 1.789E+02 2.493E+02 2.027E+02 1.597E+02 2.194E+02 1.908E+02 8.641E+01 

Median 1.258E+02 1.338E+02 1.299E+02 1.138E+02 1.255E+02 1.180E+02 7.577E+01 

Mean 1.287E+02 1.418E+02 1.327E+02 1.159E+02 1.268E+02 1.229E+02 7.605E+01 

Std. 2.420E+01 3.633E+01 2.749E+01 2.595E+01 2.989E+01 2.798E+01 6.877E+00 

F6 

Min. 4.963E+01 5.862E+01 4.004E+01 4.313E+01 4.322E+01 4.008E+01 2.909E+01 

Max. 9.926E+01 9.713E+01 9.566E+01 1.089E+02 9.524E+01 1.061E+02 5.014E+01 

Median 7.771E+01 7.777E+01 6.531E+01 7.276E+01 6.733E+01 6.589E+01 4.314E+01 

Mean 7.571E+01 7.699E+01 6.928E+01 7.234E+01 6.814E+01 7.104E+01 4.139E+01 

Std. 1.379E+01 1.052E+01 1.494E+01 1.693E+01 1.594E+01 1.740E+01 6.046E+00 

F7 

Min. 1.899E+02 2.138E+02 1.737E+02 1.578E+02 1.919E+02 1.992E+02 1.474E+02 

Max. 5.302E+02 5.179E+02 5.738E+02 4.553E+02 4.530E+02 3.953E+02 2.414E+02 

Median 3.371E+02 3.132E+02 3.728E+02 3.055E+02 2.957E+02 3.184E+02 1.923E+02 

Mean 3.400E+02 3.341E+02 3.768E+02 2.986E+02 3.116E+02 3.060E+02 1.941E+02 

Std. 7.490E+01 6.959E+01 9.936E+01 9.370E+01 7.674E+01 5.435E+01 2.606E+01 

F8 

Min. 9.281E+01 7.289E+01 5.963E+01 6.540E+01 6.890E+01 7.692E+01 5.461E+01 

Max. 1.366E+02 1.532E+02 1.575E+02 1.484E+02 1.420E+02 1.352E+02 8.637E+01 

Median 1.138E+02 1.199E+02 1.137E+02 1.047E+02 1.071E+02 9.960E+01 7.765E+01 

Mean 1.120E+02 1.198E+02 1.107E+02 1.017E+02 1.067E+02 1.021E+02 7.553E+01 

Std. 1.183E+01 1.964E+01 1.989E+01 1.846E+01 2.048E+01 1.526E+01 8.143E+00 

F9 

Min. 1.393E+03 1.277E+03 1.457E+03 9.202E+02 1.083E+03 3.532E+02 3.532E+02 

Max. 4.201E+03 4.127E+03 4.588E+03 4.540E+03 3.267E+03 4.559E+03 1.636E+03 

Median 2.311E+03 2.545E+03 2.369E+03 2.287E+03 1.820E+03 2.033E+03 1.023E+03 

Mean 2.421E+03 2.531E+03 2.573E+03 2.366E+03 1.936E+03 2.066E+03 1.032E+03 

Std. 8.248E+02 7.601E+02 7.455E+02 9.141E+02 5.840E+02 1.012E+03 2.958E+02 

F10 

Min. 9.061E+02 1.434E+03 1.330E+03 1.221E+03 1.476E+03 1.428E+03 1.357E+03 

Max. 2.066E+03 2.026E+03 2.146E+03 2.088E+03 2.114E+03 2.191E+03 1.944E+03 

Median 1.828E+03 1.788E+03 1.806E+03 1.838E+03 1.856E+03 1.861E+03 1.671E+03 

Mean 1.750E+03 1.784E+03 1.790E+03 1.794E+03 1.874E+03 1.827E+03 1.649E+03 

Std. 2.565E+02 1.657E+02 2.464E+02 2.204E+02 1.527E+02 1.874E+02 1.166E+02 
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Table 4. Run results summary (F11-F20) 

Fn. Method Constant Random 
Linear 

Decreasing 

Global 

Local Best 

Simulated 

Annealing 

The 

Chaotic 
Proposed 

F11 

Min. 8.648E+02 4.216E+02 3.898E+02 6.105E+02 5.605E+02 2.972E+02 1.708E+02 

Max. 8.797E+03 1.081E+04 1.171E+04 1.437E+04 1.611E+04 2.213E+04 1.612E+03 

Median 2.209E+03 1.419E+03 1.263E+03 1.837E+03 1.548E+03 1.790E+03 6.151E+02 

Mean 2.996E+03 2.446E+03 2.915E+03 2.842E+03 2.618E+03 3.996E+03 6.602E+02 

Std. 2.222E+03 2.657E+03 3.292E+03 3.062E+03 3.474E+03 5.313E+03 3.046E+02 

F12 

Min. 5.827E+07 3.066E+07 6.222E+07 1.973E+08 4.793E+07 7.880E+07 8.583E+06 

Max. 2.321E+09 1.809E+09 5.131E+09 1.615E+09 2.367E+09 3.497E+09 1.872E+08 

Median 3.314E+08 5.107E+08 6.179E+08 6.079E+08 5.478E+08 4.773E+08 8.519E+07 

Mean 5.168E+08 5.601E+08 7.702E+08 7.177E+08 7.459E+08 6.988E+08 9.464E+07 

Std. 5.205E+08 3.941E+08 1.023E+09 4.087E+08 6.392E+08 7.262E+08 4.341E+07 

F13 

Min. 1.471E+05 9.264E+04 3.795E+04 1.452E+05 4.023E+04 5.770E+04 1.701E+04 

Max. 2.300E+08 7.157E+07 2.228E+08 2.374E+08 1.570E+08 8.205E+08 1.098E+06 

Median 2.813E+06 1.597E+06 1.991E+06 4.283E+06 5.009E+06 4.875E+06 2.234E+05 

Mean 2.123E+07 4.973E+06 1.819E+07 1.942E+07 1.264E+07 4.579E+07 3.159E+05 

Std. 4.951E+07 1.404E+07 5.047E+07 4.752E+07 3.072E+07 1.639E+08 2.533E+05 

F14 

Min. 2.205E+02 1.761E+02 2.809E+02 2.849E+02 2.097E+02 1.008E+03 1.169E+02 

Max. 7.244E+05 8.301E+04 2.406E+04 1.358E+06 5.745E+04 9.752E+04 1.317E+03 

Median 2.812E+03 3.817E+03 4.797E+03 3.468E+03 5.152E+03 2.961E+03 4.030E+02 

Mean 3.281E+04 7.650E+03 7.613E+03 6.223E+04 9.536E+03 9.820E+03 5.194E+02 

Std. 1.442E+05 1.633E+04 7.157E+03 2.701E+05 1.257E+04 1.962E+04 3.314E+02 

F15 

Min. 2.102E+03 1.101E+03 2.403E+03 2.734E+03 4.957E+03 2.035E+03 2.814E+02 

Max. 5.509E+05 3.472E+05 8.124E+04 2.665E+05 2.045E+05 9.908E+04 1.150E+04 

Median 1.911E+04 1.663E+04 2.163E+04 1.599E+04 1.562E+04 2.092E+04 3.977E+03 

Mean 4.232E+04 3.902E+04 2.716E+04 3.374E+04 3.062E+04 2.713E+04 4.429E+03 

Std. 1.071E+05 6.810E+04 2.336E+04 5.225E+04 4.291E+04 2.453E+04 2.936E+03 

F16 

Min. 1.646E+02 2.718E+02 3.414E+02 1.559E+02 3.044E+02 1.383E+02 1.827E+02 

Max. 1.174E+03 1.081E+03 1.368E+03 1.148E+03 9.625E+02 1.025E+03 4.538E+02 

Median 6.407E+02 6.102E+02 6.832E+02 5.932E+02 5.949E+02 5.760E+02 3.015E+02 

Mean 6.571E+02 6.233E+02 6.703E+02 6.232E+02 6.351E+02 5.709E+02 3.047E+02 

Std. 2.282E+02 1.784E+02 2.417E+02 1.970E+02 1.763E+02 2.255E+02 6.981E+01 

F17 

Min. 1.297E+02 1.559E+02 1.795E+02 1.225E+02 1.375E+02 1.768E+02 9.090E+01 

Max. 4.530E+02 3.604E+02 3.578E+02 4.337E+02 1.094E+03 4.504E+02 2.210E+02 

Median 3.065E+02 2.826E+02 2.770E+02 2.801E+02 2.662E+02 3.069E+02 1.527E+02 

Mean 2.994E+02 2.755E+02 2.677E+02 2.620E+02 2.922E+02 2.989E+02 1.510E+02 

Std. 8.173E+01 5.706E+01 5.222E+01 8.256E+01 1.795E+02 8.063E+01 3.037E+01 

F18 

Min. 5.365E+05 1.603E+05 2.011E+05 1.834E+05 6.503E+05 6.935E+05 1.183E+05 

Max. 1.258E+09 8.184E+08 1.063E+09 2.559E+09 2.715E+08 1.631E+09 1.715E+06 

Median 1.049E+07 9.266E+06 1.017E+07 8.382E+07 1.257E+07 2.218E+07 4.817E+05 

Mean 1.471E+08 1.108E+08 9.324E+07 2.286E+08 5.599E+07 1.616E+08 5.769E+05 

Std. 2.990E+08 1.886E+08 2.244E+08 5.162E+08 7.622E+07 4.235E+08 4.487E+05 

F19 

Min. 1.813E+03 1.118E+04 5.812E+02 4.727E+03 4.098E+03 7.226E+02 6.209E+02 

Max. 4.657E+07 1.474E+08 4.375E+07 2.354E+08 5.713E+07 2.799E+06 3.069E+04 

Median 9.378E+04 2.603E+05 3.451E+05 1.021E+05 1.522E+05 1.462E+05 5.366E+03 

Mean 2.635E+06 8.183E+06 3.228E+06 1.942E+07 5.482E+06 4.554E+05 8.160E+03 

Std. 9.321E+06 2.989E+07 8.726E+06 5.658E+07 1.325E+07 6.719E+05 7.608E+03 

F20 

Min. 9.936E+01 1.360E+02 1.349E+02 9.265E+01 2.012E+02 1.344E+02 1.000E+02 

Max. 4.009E+02 3.691E+02 4.019E+02 4.216E+02 4.210E+02 3.654E+02 2.509E+02 

Median 2.625E+02 2.828E+02 2.620E+02 2.743E+02 3.139E+02 2.453E+02 1.857E+02 

Mean 2.728E+02 2.575E+02 2.747E+02 2.741E+02 3.140E+02 2.521E+02 1.755E+02 

Std. 7.415E+01 6.895E+01 6.747E+01 7.903E+01 5.675E+01 6.449E+01 4.539E+01 
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Table 5. Run results summary (F21-F30) 

Fn. Method Constant Random 
Linear 

Decreasing 

Global 

Local Best 

Simulated 

Annealing 

The 

Chaotic 
Proposed 

F21 

Min. 1.973E+02 1.469E+02 1.962E+02 1.581E+02 1.387E+02 1.629E+02 1.316E+02 

Max. 3.380E+02 3.598E+02 3.813E+02 3.565E+02 4.089E+02 3.970E+02 2.572E+02 

Median 2.794E+02 2.508E+02 2.870E+02 2.837E+02 2.880E+02 2.509E+02 1.881E+02 

Mean 2.730E+02 2.637E+02 2.799E+02 2.635E+02 2.809E+02 2.639E+02 1.807E+02 

Std. 3.980E+01 5.652E+01 4.531E+01 5.351E+01 5.702E+01 5.960E+01 3.287E+01 

F22 

Min. 3.600E+02 3.353E+02 4.555E+02 2.984E+02 4.061E+02 4.007E+02 2.220E+02 

Max. 1.919E+03 2.084E+03 1.840E+03 1.754E+03 1.813E+03 1.906E+03 7.334E+02 

Median 1.324E+03 1.378E+03 1.295E+03 9.928E+02 1.155E+03 1.113E+03 4.854E+02 

Mean 1.273E+03 1.293E+03 1.202E+03 1.053E+03 1.203E+03 1.109E+03 5.018E+02 

Std. 4.047E+02 4.939E+02 3.619E+02 3.758E+02 4.188E+02 3.776E+02 1.316E+02 

F23 

Min. 4.060E+02 4.151E+02 4.250E+02 4.004E+02 3.941E+02 4.030E+02 3.610E+02 

Max. 6.757E+02 6.328E+02 5.964E+02 5.958E+02 6.417E+02 7.214E+02 3.932E+02 

Median 4.779E+02 4.694E+02 4.942E+02 4.898E+02 4.858E+02 4.756E+02 3.805E+02 

Mean 4.868E+02 4.824E+02 5.006E+02 4.835E+02 4.881E+02 4.897E+02 3.806E+02 

Std. 5.331E+01 5.744E+01 4.495E+01 4.043E+01 6.667E+01 7.042E+01 9.132E+00 

F24 

Min. 3.570E+02 4.675E+02 3.691E+02 3.481E+02 3.839E+02 2.141E+02 2.400E+02 

Max. 7.447E+02 6.496E+02 6.829E+02 6.326E+02 6.285E+02 6.552E+02 4.393E+02 

Median 4.865E+02 5.199E+02 4.976E+02 5.047E+02 5.316E+02 4.818E+02 3.915E+02 

Mean 5.106E+02 5.297E+02 5.046E+02 5.050E+02 5.167E+02 4.811E+02 3.655E+02 

Std. 8.322E+01 4.739E+01 7.299E+01 6.096E+01 6.267E+01 9.248E+01 5.560E+01 

F25 

Min. 6.846E+02 6.974E+02 5.673E+02 7.609E+02 7.032E+02 6.249E+02 5.410E+02 

Max. 4.906E+03 3.583E+03 3.319E+03 2.218E+03 2.489E+03 2.941E+03 7.684E+02 

Median 1.566E+03 1.147E+03 1.420E+03 1.276E+03 1.468E+03 1.038E+03 6.274E+02 

Mean 1.636E+03 1.308E+03 1.533E+03 1.316E+03 1.435E+03 1.275E+03 6.491E+02 

Std. 8.961E+02 6.501E+02 6.082E+02 3.969E+02 5.474E+02 6.595E+02 7.012E+01 

F26 

Min. 1.085E+03 1.079E+03 1.008E+03 8.084E+02 1.024E+03 1.085E+03 6.936E+02 

Max. 2.905E+03 2.667E+03 2.949E+03 2.800E+03 2.222E+03 2.494E+03 1.098E+03 

Median 1.904E+03 1.776E+03 2.034E+03 1.629E+03 1.646E+03 1.677E+03 8.428E+02 

Mean 1.861E+03 1.743E+03 1.949E+03 1.687E+03 1.666E+03 1.702E+03 8.560E+02 

Std. 4.125E+02 4.699E+02 4.992E+02 5.871E+02 2.777E+02 3.394E+02 1.212E+02 

F27 

Min. 4.197E+02 4.262E+02 4.367E+02 4.728E+02 4.382E+02 4.538E+02 4.128E+02 

Max. 7.652E+02 6.244E+02 7.900E+02 8.457E+02 8.760E+02 7.084E+02 4.494E+02 

Median 5.513E+02 5.250E+02 5.527E+02 6.018E+02 5.630E+02 5.514E+02 4.325E+02 

Mean 5.615E+02 5.318E+02 5.605E+02 6.128E+02 5.739E+02 5.494E+02 4.331E+02 

Std. 9.230E+01 5.623E+01 8.336E+01 9.129E+01 8.984E+01 6.074E+01 1.012E+01 

F28 

Min. 6.971E+02 6.648E+02 5.593E+02 4.956E+02 7.060E+02 6.818E+02 4.293E+02 

Max. 1.411E+03 1.775E+03 1.623E+03 1.316E+03 1.404E+03 1.500E+03 7.158E+02 

Median 1.081E+03 9.883E+02 1.046E+03 1.007E+03 1.016E+03 1.016E+03 6.227E+02 

Mean 1.050E+03 1.018E+03 1.022E+03 9.774E+02 1.030E+03 1.039E+03 6.245E+02 

Std. 2.148E+02 2.417E+02 2.642E+02 2.092E+02 1.778E+02 1.890E+02 6.396E+01 

F29 

Min. 4.879E+02 3.549E+02 4.657E+02 3.719E+02 4.480E+02 4.763E+02 3.420E+02 

Max. 1.115E+03 7.796E+02 8.846E+02 1.041E+03 1.072E+03 8.526E+02 5.219E+02 

Median 6.472E+02 6.145E+02 6.656E+02 5.964E+02 6.980E+02 6.345E+02 4.202E+02 

Mean 6.669E+02 6.090E+02 6.632E+02 6.307E+02 6.812E+02 6.594E+02 4.205E+02 

Std. 1.518E+02 1.021E+02 1.168E+02 1.596E+02 1.584E+02 1.048E+02 3.784E+01 

F30 

Min. 5.819E+06 1.561E+05 3.846E+06 4.777E+06 2.189E+06 2.533E+06 2.334E+05 

Max. 8.587E+07 1.429E+08 1.592E+08 5.219E+07 6.927E+07 8.866E+07 6.360E+06 

Median 1.642E+07 1.836E+07 2.089E+07 1.785E+07 2.298E+07 2.100E+07 3.109E+06 

Mean 2.527E+07 3.170E+07 3.048E+07 2.112E+07 2.623E+07 2.945E+07 2.932E+06 

Std. 2.295E+07 3.582E+07 3.578E+07 1.424E+07 1.850E+07 2.292E+07 1.566E+06 
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The run time of the proposed method depends on the number of the other method number and is far 

higher than the others. As can be seen in Figure 3, the proposed strategy has high computational time 

than the other methods. In a single iteration, the proposed strategy used six-different strategies and also 

the new particles obtained by these strategies were evaluated by fitness function. Then, the best one was 

selected. So, in a single iteration the proposed method used six function evaluations. The number of 

function evaluation (number of particles × number of maximum iteration) is not same for the proposed 

method. The proposed method used six times more the number of function evaluation. This explains the 

difference of computational time in Figure 3 between proposed strategy and other methods. 

 

 
Figure 3. Inertia weight strategies run time 

 

In Figure 4, changing of inertia weight value upon iteration is given. First constant is always 0.7. Second 

random method takes values are between 0.5 and 1. Linear decreasing method starts from 0.9 and 

decreases to 0.4 by iterations. Rest methods also take values by use of global, personal best and iteration 

values. Proposed method uses one of the each other w value upon an iteration and can be tracked on last 

chart. When the general results are examined, it is seen that ultimate accomplishment is based on the 

convergence in the first iterations. Therefore, it is seen that initial inertia weight value the non-constant 

method which changes depending on iteration and which can change in wide range of values was 

superior compared to the other methods. In Figure 4, it is seen that proposed method prevents the 

production of uniform inertia weight value by scanning a larger area in iterations. All values in the other 

methods are tried respectively and the relevant iteration calculations are made using the particle that 

corresponds to the best fitness value. It is concluded that lower values are preferred as convergence to 

the optimal value of the function is attained at higher iteration values. 
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Figure 4. Iteration and inertia weight values 
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STATISTICAL TESTS 

 

In order to see obtained results in performance are statistically significant or not, Wilcoxon rank sum test 

is employed. In statistical test 5% significance level (p-value=0.05) is adopted. If a lower value than this 

p-value is indicates that the two compared methods are statistically different. In Table 6, proposed 

method is compared with other methods one by one. In the obtained results is showed that all p-values 

are lower than 0.05 and proposed method is statistically significant different than the others. 

 

Table 6. Wilcoxon rank sum test results 

Fn. 
Proposed/ 

Constant 

Proposed/ 

Random 

Proposed/ 

Linear Dec. 

Proposed/ 

Global-Loc. 

Proposed/ 

Simulated 

Proposed/ 

The Chaotic 

F1 2.297E-08 4.638E-09 1.597E-09 5.559E-07 1.167E-08 4.102E-07 

F2 1.836E-08 2.924E-06 2.898E-09 1.597E-09 2.870E-08 6.891E-08 

F3 1.993E-07 4.541E-07 4.609E-05 1.814E-06 1.652E-05 1.128E-04 

F4 2.898E-09 7.380E-09 2.722E-07 4.126E-09 1.465E-08 3.017E-07 

F5 4.122E-09 1.414E-09 1.414E-09 6.180E-08 4.122E-09 2.284E-09 

F6 1.597E-09 1.416E-09 9.513E-08 1.836E-08 5.548E-08 4.975E-08 

F7 1.167E-08 2.898E-09 2.297E-08 7.552E-05 3.996E-08 2.297E-08 

F8 1.416E-09 1.308E-08 1.455E-07 3.344E-07 6.147E-07 1.640E-08 

F9 2.572E-09 3.259E-09 1.799E-09 5.544E-08 6.886E-08 1.875E-04 

F10 1.367E-03 1.784E-03 2.204E-02 1.115E-03 1.355E-06 3.566E-04 

F11 5.212E-09 1.385E-05 3.293E-05 4.541E-07 1.268E-05 4.240E-05 

F12 2.454E-07 4.460E-08 8.294E-07 1.416E-09 9.513E-08 2.054E-08 

F13 1.115E-06 6.795E-07 5.910E-05 2.297E-08 1.059E-07 6.147E-07 

F14 1.115E-06 4.102E-07 1.309E-07 1.230E-06 1.309E-07 2.029E-09 

F15 8.294E-07 4.670E-06 1.230E-06 9.513E-08 4.460E-08 1.997E-06 

F16 2.454E-07 2.870E-08 2.297E-08 4.460E-08 1.465E-08 1.513E-05 

F17 4.460E-08 9.288E-09 6.574E-09 5.618E-06 1.177E-07 6.574E-09 

F18 1.167E-08 3.206E-08 2.454E-07 5.559E-07 4.638E-09 3.669E-09 

F19 3.994E-08 8.274E-09 3.203E-08 2.211E-07 1.177E-07 6.143E-07 

F20 5.123E-06 8.190E-05 1.647E-06 1.160E-05 5.855E-09 6.415E-05 

F21 2.870E-08 5.618E-06 1.640E-08 3.213E-06 3.344E-07 8.294E-07 

F22 3.994E-08 1.229E-06 2.566E-08 7.504E-07 2.867E-08 2.720E-07 

F23 1.416E-09 1.416E-09 1.416E-09 1.416E-09 1.416E-09 1.416E-09 

F24 9.280E-09 1.414E-09 1.464E-08 1.464E-08 3.203E-08 1.115E-06 

F25 3.256E-09 1.040E-08 2.293E-08 1.797E-09 2.893E-09 2.865E-08 

F26 1.800E-09 2.286E-09 1.800E-09 1.309E-07 1.800E-09 1.800E-09 

F27 4.704E-08 1.307E-08 4.122E-09 1.414E-09 4.122E-09 1.414E-09 

F28 2.574E-09 5.855E-09 1.059E-07 2.870E-08 1.800E-09 2.286E-09 

F29 2.284E-09 4.457E-08 2.896E-09 2.211E-07 4.634E-09 2.027E-09 

F30 1.597E-09 6.184E-08 1.167E-08 4.126E-09 1.465E-08 9.288E-09 

 

CONCLUSIONS 

 

In this paper, a new ensemble inertia weight strategy is designed by the use of other successful previous 

inertia weight strategies. In an optimization iteration, different methods calculate their fitness. After, this 

best fitness valued methods’ particle is utilized by all inertia weight strategies. Thus, obtained best 
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fitness value is accepted as final output value of this iteration. In order to see performances of the 

proposed method, experiments are done. In experiments CEC 2017 that has 30 benchmark test functions 

are used. Independent 25 runs are made with all functions. Proposed method outperforms all other 

methods in all 30 functions and Wilcoxon rank sum test is proven that differences in performance are 

statistically significant. 
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