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ABSTRACT 

In this paper, the results of normal stress values in unidirectional fibrous composite with locally 
curved carbon nanotube (CNT)  were obtained as much as the second approximation and the obtained 
results were analyzed.The boundary form perturbation method is used to solve the problem. This 
investigation is made within the framework of a piecewise homogeneous body model by using the 
three-dimensional geometrically nonlinear exact equations of elasticity theory. The concentration of 
carbon nanotubes in the composite is assumed to be low and the interaction between them is 
neglected. Numerous results are obtained for the normal stress distribution and the effect of the 
problem parameters on this stress distribution is analyzed. 
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1. INTRODUCTION 

One of the most important factors determining 
the stress state in fiber composite materials is 
the curvature of the fibers , [1,5,6,9,10]. For this 
reason, Akbarov and Guz [2] focused on the 
stress state in unidirectional composite. The 
investigation in [2] is made within the 
framework of a piecewise homogeneous body 
model, by using the exact three-dimensional 
equations of elasticity theory. But the 
unidirectional fibrous composites are 
traditional materials.  Nowadays, 
nanotechnology is used in the world and the 
importance of nano materials is increasing day 
by day. For this reason researchers have 
concentrated their work on this field. One of 
these studies  Alan and Akbarov [3]  studied  the 
normal stresses state in the nanocomposite with 
a locally curved covered nanofibers.  In [4], a 
method was given for the investigation of  the 
stress distribution in the nanocomposites with 
unidirectional locally  

curved and hollow nanofiber. Coban and 
Kösker [8] was  
 
considered  the stress distribution in the infinite 
elastic body containing a single locally curved 
carbon nanotube (CNT).  However, results for 
the first approximation were obtained only. 
Increasing the number of approaches is crucial 
in order to increase the sensitivity of the results.  
 

In this study, a mathematical formulation was 
developed to determine the normal stress 
distribution of the infinite elastic body 
containing a single local curved carbon 
nanotube (CNT) as much as up to the second  
approximation on the Carbon nanotube and 
matrix interface . The problem is solved using 
the boundary form perturbation method. In 
addition, an Algorithm is designed to solve the 
related problem.  We obtained the numerous 
numerical results on the normal stress 
distribution on the surface between the CNT 
and matrix . The influence of the problem 
parameters on this distribution were analyzed. 
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The investigation is made in the framework of 
the three-dimensional geometrically nonlinear 
exact equations of elasticity theory.  The model 
“ an infinite body containing a single CNT ” 
regards the case where the concentration of 
carbon nanotubes in the composite is assumed 
to be low, and the interaction between the 
carbon nanotubes is neglected.  

We acknowledge that the statements of some 
results of normal stress distribution in an 
infinite elastic body with a locally curved 
carbon nanotube in this paper were presented at 

2nd International Conference of Mathematical 
Sciences (ICMS 2018) [11]. 

2. FORMULATION OF THE PROBLEM 

 

Infinite elastic body with local curved carbon 
nanotube is given as in figure 1 . 

In this work,  the cross section of the carbon 
nanotube  normal to its axial line is described  
two circles of constant radius R1 and R2 along 
the entire length and  the body is compressed or 
stretched of the uniformly distributed normal 

forces with intensity p acting along 3Ox  axis 

direction.  With the middle line of the carbon 
nanotube , we associate Lagrangian rectilinear 

321 xxOx  and cylindrical zOr  system of 

coordinates (Figure 1).  The carbon nanotube 
and matrix materials are homogeneous, 
isotropic and linear elastic.   
The equation of the carbon nanotube middle 
line is given as follows: 

1 3 3 2x (x ) εδ(x ), x =0 F  ; 
2
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Where   A and L geometrical parameter were 
shown in Figure 1.  We assume that A is smaller 

than L, we describe a small parameter  
A

ε=
L

 

)10(   .  The function j
n  is the local 

curving form of the carbon nanotube .  Assume 
that on the contact surface between the carbon 
nanotube and matrix material is  denoted by S. 
Then S  satisfies   the following equations. 
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We determine the components of the normal 
vector on the contact surface as follows. 
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The Carbon nanotube and matrix material values are 
defined by superscripts (2) and (1), respectively. 
Under this situation which has no motion, the 
following field equations must be satisfied for the 
carbon nanotube and matrix, 
The equilibrum equations : 

 (k)in j (k)j
nσ g 0,i nu     k=1,2            (4)  

The strain-displacement relations:  
( ) ( ) ( ) ( ) ( )2 k k k k n k
jm j m m j j m nu u u u      ,       (5) 

The constitutive equations ( Hooke’s Law): 
( ) ( ) ( ) ( ) ( )
( ) ( )2 ,k k k n k k
in i ine     

)k(
)33(

)k(
)22(

)k(
)11(

)k(e                         (6) 

Where   and   the material constants. 

We use the conventional notation is used In 

Eqs.(4) , (5) and (6) , and ( )k  and  ( )k
jm  denote 

the  physical components of the stress tensors 
and the strain  tensors, respectively.  
For detailed explanations and formulations on 
these notations, we refer to Akbarov and Guz 
[1]     
Also, perfect contact conditions are defined at 
the interfaces S: 
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The conditions are in given eq. (8) 
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where jn  are the covariant components of the 

unit normal vector to the surfaces S.   
 
In this way, the mathematical formulation of the 
problem is completed with the solution of the 
equations systems (4), (5) and (6) within  the 
contact condition (7).  
 

 
Figure 1: The geometry of a Locally Curved 
Carbon Nanotube  and its cross section 
 

3. SOLUTION OF THE PROBLEM 

We solve our problem by using the boundary 
form perturbation method given in Akbarov 
and Guz [1].  According to this method, we can 
write the sought  values  in the series form in 
the small parameter    : 
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The quantities  r, z, rn , n  and zn  are also 

given in series forms: 

3
1

( , )i
ri

i

r R a t 




  , 

3 3
1

( , )i
zi

i

z t a t 




  , 

3
1

1 ( , )i
r ri

i

n b t 




  ,    3
1

( , )i
i

i

n b t  




 , 

3
1

( , )i
z zi

i

n b t 





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by using some routine operations, we can 

calculate the coefficients of the kε  in (10)  , for 
whose details see Akbarov Guz [1].  
 
Substituting the power series (9) into Eq.(5), it  
can be  obtain sets of equations for each 
approximation .  Using relations (10) we expand 
the values of each approximation (9) in series 

3*form in the vicinity  3( , , )R t
 
. If we substitute 

these last expressions in boundary conditions and 
use expressions in equation (10), we obtain 
boundary conditions for each approximation after 
some mathematical transformations.  For the 
zeroth and first approximations see Alan [4]. 
 
Now we will discuss the second approximation. 
We can write the mechanical and the geometrical 
relations for this approximation. 
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By using Akbarov and Guz [1], the contact 
conditions can be writen for the second 
approximation. 
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We used in Eq.(12) the following notation. 
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Similar contact conditions can be given for 
subsequent approximation. 
 
By using the method in [1] we can define 
governing equations for the second 

approximation as follows.  We use the physical 
components of the tensors and vectors in this 
equation. 
 

 
( ),2( ),2 ( ),2 2 ( ),2

( ),2 ( ),2 ( ),0

2

1 1
0,

kk k k
k k krrr rz r

rr zz

u

r r z r z




 
  



  
     

   
 

( ),2 ( ),2 ( ),2 2 ( ),2
( ),2 ( ),0

2

1 2
0 (14)

k k k k
k kr z

zzr

u

r r z r z
   



  
 



   
    

   
 

( ),2( ),2 ( ),2 2 ( ),2
( ),2 ( ),0

2

1 1
0,

kk k k
k kzrz zz z

rz zz

u

r r z r z
 

 


  
    

   
              
These equations coincide with the 3-
dimensional linearized elasticity equations.  
 
If we apply the following exponential Fourier 
transform with respect to z to the contact 
conditions in Eq. (12) and if we substitute the 
expressions for the first approximation in eq. 
(12), we obtain the Fourier transformed states of 
the contact conditions that include  single or 
double integral on the right   side. 
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To solve the contact conditions in equation 
(12), we apply the above Fourier transformation 
to the following equations (16) and (17). 
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Where, (m)
iξ  (m=1,2; i=1,2,3) are given in the 

following equations:   
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After this employing, we obtain the following 
equations  
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where )x(In  are Bessel functions of a purely 

imaginary argument and )x(Kn are the 

Macdonald functions.  Moreover, we used the 
Fourier transform parameters s and 1s  in (18) 

and (19) respectively.  Employing  the 

Functions (18) and (19) in boundary-value 
problems of the related approximations, we 
obtain the systems  of the linear equations. If we 
solve this systems  of the linear equations ,   
substituting the solution of the this equation 
systems into the quantities of the stresses, we 

determine the expressions of (1),1 (2),1,..,rr zz  .   If 

we apply the following inverse transform for 
the stresses, we find  the real stress values. 

 
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1
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 (20) 
Thus, the boundary value problem related to the 
second approximation was solved 

4. NUMERICAL RESULT AND 
DISCUSSION 

In the numerical investigation, the improved 
integral (20) are calculated by using the Gauss 
integration algorithm.  In order to calculate this 
improper integrals , we replaced this improper 
integrals by the corresponding definite 
integrals.  Hereafter, we divide the interval of 
these improper integrals into certain number of  
short intervals .  
To determine the number of these intervals, we 
use the numerical convergence of the integral 
values i.e.  we use the relation 
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This process resulted in calculation of triple 
integral.  In these calculating, we used the 
approximation 
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Where (1) (2)
0 0 0 0S S S    and the values of 1N

, 2N , 3N  and (1) (2)
* * *, ,S Z S  were determined 

from convergence criterion.  In addition,  
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We used the Gauss integration algorithm for the 
calculation of triple integrals . To perform all 
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these operations, we wrote a computer program 
in Fortran 77 . 
 
The  numerical results related to the normal 
stress  are analyzed   on the intersection surfaces 
between the CNT and matrix . Due to 
symmetry, we are only examine the distribution 

of these stresses for 0x3   (and) 0  

(Figure 1).  If 0  (i.e. if the curving is 

absent), the stresses    coincide with zz .        

We assume that    used in all figures and table 
is smaller than its critical values   corresponding 
to microbukling of the fiber in the matrix in [5].   

It is assumed that 3.0)2()1(  , 07.0 , 

0  and LR2 , bk= h R .  )1(Ep  

shows   the effect of geometrical non-linearity 
on  the normal stresses values .   
The relationship between    σ / p  and h R   is 

showed  in Figure 2 .   In this graph, m=0, 1, 3 

at 3 1.0L  , 0.3   , 0.00005  and 

E(2)/E(1)=500. 
 
The same  figure shows also the effect of the 
parameter m on the normal stresses values.  
From the graphs, it is seen that the maximal 
values of normal stresses increase 
monotonically with m. The results obtained 
when we increase the carbon nanotube 
thickness are the same in the case of the single 
local curved nanofiber in the infinite body at the 
same parameter values. 
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4*Figure 2: The relationship between the 
p  and h /R for E(2)/E(1)=500, 07.0 ,  

0.25  , 0m  , 1m     and 3m   
 

Figure 3 shows the relationships between 

σ / p  and x3 /L for  h/R=0.5 , 0.3   and  

E(2)/E(1)=400.  Likewise, the effect of the 
parameter m on the distribution of normal 
stresses can be seen.  From Figure 3, we can say 
that absolute maximal values of normal stresses 
are monotonically increasing with m.   
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5*Figure 3: The relationship between the 

p  and Lx3 for E(2)/E(1)=400, 07.0 ,  

0.25  , 0m  , 1m     and 3m    

 
Table 1 shows the effect of various values of 

)1()2( EE , m and   on p/σ  normal stress 

values.   
In this table, p/σ  normal stress values are 

calculated for m = 0, 1 and 3 respectively. In 

this case the values of p/σ  are calculated 

under 0.3  , 0.13 L  for 0m  , 1 and 3 

respectively. From this table it is seen that the 

absolute maximal values of p/σ  normal 

stresses increase monotonically with m.  
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Table 1: The values of p obtained for various   and 
)1()2( EE

 
 
m 

 
 

)1(

)2(

E

E  

 
A
.
N
. 

)1(E

p
  

Tension compression 

0.0005 0.005 0.05 0.03 -0.0005 -0.005 -0.01 -0.015 

0 

300 
1 1.0551 1.0559 1.0554 1.0566 -1.0550 -1.0537 -1.0517 -1.0488 

2 1.2328 1.2337 1.2308 1.0671 -1.2328 -1.2312 -1.0654 -1.0632 

500 
1 1.0312 1.0359 1.0488 1.0466 -1.0311 -1.0248 -1.0160 -1.0035 

2 1.2309 1.0236 1.2486 1.0573 -1.2308 -1.2234 -1.0310 -1.0195 

1000 
1 0.9897 1.0029 1.0403 1.0327 -0.9894 -0.9706 -0.9422 -0.8966 

2 1.2198 1.2348 1.2742 1.0438 -1.2195 -1.1980 -0.9589 -0.9149 

1 

300 
1 1.1593 1.1571 1.1380 1.1460 -1.1593 -1.1613 -1.1631 -1.1644 

2 1.2996 1.2967 1.2715 1.1555 -1.2997 -1.3025 -1.1758 -1.1778 

500 
1 1.1419 1.1428 1.1340 1.1394 -1.1419 -1.1399 -1.1361 -1.1295 

2 1.3017 1.3019 1.2871 1.1493 -1.3016 -1.3002 -1.1501 -1.1445 

1000 
1 1.1093 1.1172 1.1281 1.1293 -1.1091 -1.0968 -1.0767 -1.0424 

2 1.2955 1.3031 1.3084 1.1395 -1.2953 -1.2829 -1.0923 -1.0595 

3 

300 
1 1.4986 1.4866 1.4070 1.4370 -1.4989 -1.5118 -1.5260 -1.5413 

2 1.4940 1.4822 1.4044 1.4487 -1.4942 -1.5069 -1.5376 -1.5528 

500 
1 1.5052 1.4932 1.4120 1.4428 -1.5055 -1.5836 -1.5320 -1.5465 

2 1.5042 1.4924 1.4126 1.4544 -1.5044 -1.5171 -1.5433 -1.5565 

1000 
1 1.5064 1.4954 1.4154 1.4468 -1.5066 -1.5177 -1.5282 -1.5374 

2 1.5104 1.4995 1.4204 1.4578 -1.5106 -1.5216 -1.5392 -1.5477 

In this work, a method was developed to study 
the normal stress distribution in an infinite 
elastic body with a locally curved carbon 
nanotube. In order to examine the normal stress 
distribution, the mathematical formulation of 
the relevant boundary value problem is given. 
In this case, we assume that the concentration 
of an infinite elastic body containing a single 
locally curved carbon nanotube is low. We 
neglect the interaction between the carbon 
6*nanotubes. For the investigation, we used the  
three-dimensional geometrically nonlinear 
exact equations of the theory of elasticity in the 
piecewise homogeneous model.  We have 
developed a method that obtains normal stress 
values as much as  up to the second 
approximation on the interface  the carbon 
nanotube and matrix material.   The numerical 
results were presented for a single locally 
curved and carbon nanotube. As a result of this 
research, the following were obtained : 

(i)  When the radius of hollow 
approach to 0 as a limit , The  
normal stresses values in the carbon 
nanotube  are the same as to the 
locally curved nanofiber in an 

nanocomposite material in same 
parameter values. 

(ii) The absolute maximal values of the 

normal stresses p/σ  increase 

monotonically with m. 
The numerical results obtained agree with well-
known mechanical consideration and, in some 
particular cases, coincide with known results. 
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