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Abstract

In this study, we consider Dirichlet Boundary Vakmblems (DBVPs) for Ordinary
Differential Equations (ODEs) to illustrate the geal procedure of obtaining
numerical solutions using simple Recurrent Neuratvrks (RNNs). Different types
of both linear and nonlinear activation functionseaused in the neural network. The
network is trained by Particle Swarm Optimizati®¥50) method, and cross validation
approach is performed to tune the arbitrary paraemstof neural nets. The exact
solutions and the obtained neural net solutiongarding with the types of activation
functions, are compared to determine the efficientyusing RNNs in solving the
problem. In all cases, the exact solutions arefrmomed with those obtained from
RNNs in the context of absolute errors and averagan squared errors (MSESs) with
standard deviations.
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Dirichlet sinir dger kaullarina sahip adi diferansiyel
denklemlerin nUmerik ¢éztmleri icin basit tekradaysinir glar

Ozet

Bu calsmada, basit tekrarlayan yapay siniglari (RNN’ler) kullanilarak niamerik
¢cbzimlerin elde edilmesine yonelik sureci genelradlaacgiklamak adina, Adi
Diferansiyel Denklemler (ODE) icin Dirichlet SinDeger Problemleri (DBVP) ele
alinmistir. Yapay sinir ginda d@rusal ve dgrusal olmayan tirlerde géli aktivasyon
fonksiyonlari kullanilmitir.  Ag, Parcacik Sdrd Optimizasyonu (PSO) yontemiyle
egitilmigtir ve agin keyfi parametrelerinin ayarlanabilmesi icin cap dg@rulama
yaklasimi  kullaniimgtir. Problemin ¢o6ziminde RNN kullaniminin  etginli
belirlemek igin, gercek ¢dzumler ile aktivasyonkByonunun tirine @ olarak elde
edilen sinir & c¢ozumleri kagilastirilmigtir.  Tim durumlarda gercek c¢ozimler ile
RNN’'den elde edilen sonuclar, mutlak hatalar, catab karesel hatalarin ortalamasi
ve standart sapma gaminda kagilastiriimistir.

Anahtar kelimeler: Tekrarlayan sinir glari, parcacik siri optimizasyonu, adi
diferansiyel denklemler, Dirichlet sinir gier problemi.

1. Introduction

Description of the systems are substantial steghersolution of daily life problems,

and the modelling of the complex systems is mastiye true by the means of stating
differential equations. To obtain the numericdutons of differential equations using
traditional methods such as Shooting Method, Rufgga based methods, Multi-step
methods, and Finite Difference Method, firstly, t@tinuous domain is discretized by
welcoming some cumulative errors. Furthermore nin@erical solutions are available
only at discretization nodes in the problem domain.

Neural Networks (NNs) have been introduced as tarraltive approach to overcome
these bottlenecks [1-5]. NNs are superior to atassiumerical methods by means of
training with the discretization nodes and provigime approximate solutions at any
point of continuous search space. NNs are mostdingd by derivative based

optimization methods such as Gradient Descent, eBc&onjugate Gradient and
Levenberg-Marquardt optimizers. However, the tr@jfNNs can occur by dissimilar

ways such as derivative free or heuristic optim@aimethods. With this direction,

some of the works that can be considered milestesearch in literature is summarized
in the following.

The first study is presented by Lee and Kang (12&€yuding utilizing Hopfield Neural
Network models for solving the finite differenceuagjon [1]. Meade and Fernandez
(1994) demonstrate that Feedforward Neural NetWBANN) is able to solve linear
ODEs [2]. Lagaris et al. (1998) solve initial dmoundary value problems, which has a
trial solution, including two parts, which satisfieonditions with ANNs solution [3].

Malek and Beidokthi present a hybrid method basedgtimization techniques and
ANNSs so as to solve both first and high order O)#s Raja improve stochastic
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computational methods as ANNs and optimization oagh such as Simulated
Annealing (SA), Pattern Search (PS), Genetic Athars (GAs), Active-set Algorithm
(ASA) and their hybrid methods in order to solveuBdary Value Problems (BVPSs) of
second order Pantography Functional Differentialdmpns (PFDES) [5]. Raja et al.
develop stochastic techniques for the solution -ofirRensional Bratu problem with
Feedforward Neural Networks [6]. For the networkirting, they utilize global
technique as Particle Swarm Optimization (PSO)targkt faster convergence they use
Sequential Quadratic Programming (SQP) and thdirihyapproaches. Raja presents a
study about the numerical treatment for the Trossmtoblem [7]. For this purpose, he
utilizes NNs optimized with optimization techniquas PSO, ASA and their hybrid
methods. Raja et al. propose a computationalliggelce method based on NNs and
SQP for the solution of fractional order nonlinEaccati Differential Equations [8].

Apart from of these studies, we put into practioe of the derivative-free population
based global optimization method as Particle Sw@mptimization (PSO) to train a
Recurrent Neural Network (RNN) for solving DirichBoundary Problems of Ordinary
Differential Equations, in this work. In contrast studies in the literature, the main
reason for using RNN in this study is that RNNsi@eoh more accurate results when
making predictions with nonlinear chaotic time esrias emphasied in the study of
Brezak et al. (2012) and the study of Saini, Pagint Khadtare (2016) [9,10].

In the sequel, we proceed to summarize brieflynla¢hematical model of the problem
utilized in this work for obtaining the Recurrenéidtal Network solution of a Dirichlet

Boundary Problem. The next section clarifies hawttansform a DBVP to an

optimization problem. The third section covers timaitations of this study and the

experimental studies to compare the mentioned mdsthpplied to some different types
of second order ODEs with Dirichlet Boundary Coiudlis. The final section presents
the findings of the study and some future work$whie conclusion we reach.

2. Mathematical Modeling

In this section, we describe how to transform DBM&s ODEs to an optimization
problem along with the cost function depending orRecurrent Neural Network
solution. Let us consider the problem given in ED. in which the functiorf is

continuous in[a, b], so the ODE has a unique solution with the boundanditions.

Y'()=T(xy(x).Y(x), xe(ab)
Y@= A (1)
y(b)=B

The trial function as formed in Eg. (2) can be usesdolve the given problem in Eq. (1).
One can easily seen that the trial function satisfine boundary conditions of Eq. (1).

o -b) (% -a) ~
Yr (X, P) = s A- s B+(xj—a)(xj—b)Net(xj,p) (2)
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where the functiohet depending on the arbitrary neural net paramqmeis{ﬁz,c?),fz,ﬁ]
as given in Eq. (3) and the inpy denotes the simple RNN solution of Eq. (1). The

inputs of RNN x; for j=12,...,N are determined by discretization of the interval

[a,b] where N is the total number of discretization nodes. @heetization nodes are
only used to train the RNN whose architecture vegias in Fig. 1.

Net(x,(0), B) = > 0(z) ®3)

where mis the total number of neurons in RNN depictedio E, and the output of the
 th

i~ neuron isz(t)=ox(t)+Qz({t-1)+ 4 at iterationtfor i=12...,m In this
study, the activation functioy in Eq. (3) is selected among of hyperbolic tangent
Rectified Linear Unit (ReLU), Parametric ReLU (P8l Leaky RelLU, Exponential
Linear Unit (ELU) and Self-Gated Activation Functio(SWISH) functions used
commonly in RNNs to avoid the vanishing gradiemlppem. The definition of the
aforementioned activation functions are listed abl€ 1.

Hidden Layer

o)) Activation Function
z1(t) = wrxa(t) + Q. — 1)+
z1 1X1( ) 121(1‘ ) _3; g(zl)
\)3’\/
Input &
X @ {2
N 2(t) = waxa(t) + Q.za(t — 1) + Ba v Output
Zy > 8(2) 5 Net(x;. p)
\s
: P o
; Qm
Bias 0(t) = wmxm(t) + Qn-zm(t — 1) + Bing (g,

Figure 1. Architecture of simple RNN.
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Table 1. The list of activation function used irsthtudy.

Activation
Function Definition
tanh ? e _1
Z) =
g e +1
RelLU 9(2 = max(, 2)
Leaky ReLU Z if z>0
9(2 = .
001z, otherwise
PRelLU z, ifz>0
92 = __whereae (01)
az, otherwise
ELU Z, if x>0
a@=4_/, . wherea> 0
a(e —1), otherwise
SWISH

0@ =z0(2)=2 1_2
1+e

If unknown parameters of recurrent neural netwawserny in Fig. 1 are specified as a
cost function which is given in Eq. (4) our problé&mns into an optimization problem.

L& [y oy (.0 )|
E—NE{T f(XjIyT(Xj!p)! axj ]} (4)

J

First and second derivatives of the trial functioiq. (4) are required to calculate the
cost function, and they can be defined as givebqn(5) and Eq. (6) respectively.

oy (0. P) _ A-B +(2x (t)—a—b)Net(x, (t), p)

ax; (t) a-b ]
ONet(x. (t), p
+l50-afx (t)—b)%
A%y (%, (1), P) _ )  Net(0.8)
W_zNet(xj (t), p) + 2(2x, (t) —a—b) o )

o°Net(x; (t), p)

x. () —a)x. (t) - b) !

MCICRC CTURL o

oNet(x (t), p : O°Net(x, (t), p 2q(z
et(x; (t) |o)=0[i do(z) and e(;<,() p):aid %(z)
ox; (1) dx; (t) ox; (t) dx; (t)

definition of the functiong regarding with the selected activation functiorRNN are

listed in Table 1.

where

at iterationt. The
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Finally, Dirichlet Boundary Problem for ODEs is rniefiormed to an optimization
problem as given in Eq. (7).

Problem :argmin{E} (7)

peRA™

For solving the problem given in Eq. (7), derivatibased optimization methods like
Gradient Descent are often used. However, mositr&f, the mentioned optimization
methods fall into the trap at local optimum withawgnverging to global optimum.
Moreover, the derivative based methods requireatoutate the partial derivatives of

the cost functionk = E(o?,a”),ﬁ,/?) where @,®,Q, f € R"are the unknown parameters

of the network such thanis the number of neurons in the neural networkeré&fore,

as the number of neurons in the neural networkeases, the method requires more
calculations. To handle the problem of fallingoirthe local minima and to reduce the
workload needed to solve the problem as given in(BEg we used a variant of Particle
Swarm Optimization (PSO) introduced by Kennedy &bérhart (1995), in this study
[11]. Because, when the number of neurons in REINhcreasing, the number of
unknown parameters of the optimization problem @s® increased, and it becomes
more difficult to solve the problem. In additidhe cross-validation approach has been
used to validate the method. With cross-validaporcess, one can check whether the
proposed model converges to the solution, or naryetime with various population
distribution initially.

3. Experiments

In this section, we present the numerical soluti@igaining from RNNs, of both of
linear and nonlinear types of Dirichlet Boundarylftems for ODEs. In all of the
experiments, we use the step size as h = 0.02 d@tdiming stage of the network. After
training the RNN, the network is tested with inpgé&nerated using half of the step size

used in the training stage ags The network includes 5 neurons with single hidde

layer only, and the maximum number of epochs iscsetl as 3.000 for stopping criteria
of training. The lower and upper bound values athearbitrary parameter of the
networks are -10 and 10 respectively.

The consideration by means of performance analgsgiven via the Mean Squared
Errors (MSEs). We use cross validation for paramdtning for the arbitrary
parameters of RNN. For this, each method is exec@D times to obtain mean and
standard deviations of MSEs obtained in the trgirand testing phase independently.
We compare all of the obtained numerical solutiitl exact solutions regarding with
absolute errors using the RNN parameters prodieciowest cost value.

The proposed approach is coded in Python and ingilead on a Windows 64 bit
operating system with a 3.4Ghz Intel(R) Core (TWH2600 CPU and 16 Gb 800Mhz
DDR3 RAM.

Example 1. The second order homogenous linear differentiabggn with Dirichlet

Boundary Condition in Eq. (8) has the exact soluis y(x) = sin(x) —%cos(x) :
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1
y©O) ==, (8)

According to the mean of MSEs shown in Table 2, wReLU are used in RNN as
activation function, the best numerical solutions abtained. Therefore, the absolute
errors are listed in Table 3 with ReLU activatiamdtion. The plot of numerical
solution compared with exact solution of Eq. (8epicted in Fig. 2.(a). In addition,
Fig. 2. (b) shows the changes of the cost valué waspect to the iteration. The
decreasing cost when the iteration increasing atdil that the RNN trained by PSO
solves the DBVPs for ODEs. It also shows the spdednvergence of RNN regarding
with the activation functions, and both of Tablar®l Fig. 2. (b) also underline that the
worst results are occured with hyberbolic tangantfion.

Table 2. The obtained average of MSEs with standavihtions from the numerical
solutions for Eq. (8).

Activation Mean of MSEs on

Function Training Set Test Set

tanh 1.667x109 + 1.183x10° 1.696x10 + 1.212x10°
RelLU 1.480x1d + 1.406 x1¢ 1.480x10 + 1.402x10
Leaky ReLU 1.700x1¢' + 1.212x10¢ 1.719x10" + 1.237x1¢
PReLU 1.994x18 + 1.636x10" 1.994x10 + 1.653x1(
ELU 1.794x1(¢ + 1.535%x1¢ 1.824x10" + 1.556x1¢
SWISH 3.265x10 + 3.200x10" 3.381x10" + 3.355x1(¢f

Table 3. The absolute errors on some quadraturgspioi the both of training and test
sets for Eq. (8) by using ReLU activation function.

E=|y(xk)— yT(xk)| E:|y(xk)_ yT(Xkl

k Xy for Training Set k Xy for Test Set
1 0.00 0.000 1 0.00 0.000

2 0.02 1.072x18 7 0.11 4.387x10
3 0.04 2.041x18 12 0.21 5.981x108
4 0.06 2.907x16 17 0.31 5.682x18
5 0.08 3.675x10 22 041 3.890x19
6 0.10 4.346x16 27 0.51 1.026x18
11  0.20 6.356x10 32 0.61 2.483x109
21 0.40 4.879x16 37 071 6.220x108
31 0.60 1.176x10 42 0.81 9.779x18
41 0.80 8.448x19 48 0.91 1.084x18
51 1.00 1.381x18 53 1.01 1.306x18
61 1.20 1.473x18 58 1.11 1.417x18
71 140 9.576x108 63 1.21 1.392x16
79 1.56 7.403x10 79 151 3.494x18
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Neural Net Solution optimised by PSO

0.012 ¢

tanh
= ELU
0.01+ | SWISH
[ RelLU
| PReLU
0.008 —H Leaky ReLU

05

0.006 -

Best Cost

0.004 -

O Numerical solution for training set
|- Numerical solution for test set
Exact Solution

0.002 |

0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 0
X Epoch

(@) (b)

Figure 2.(a) The graph of the numerical and exact solutionapf(k1) (b) Best of cost
values according to activation functions for 100@ys.

Example 2.Let us consider the nonlinear differential equatiath Dirichlet Boundary

Condition given in Eq. (9). The the exact solutadrthe given problem ig/(x) :il.
X+

y'=y —yy, xel12]
1

y(l) :_El (9)

Best results are obtained with SWISH function gsiated in Table 4. Thus, Table 5
gives the absolute errors when using SWISH. Tlaetesolution and the best of RNN
solution are compared in Fig. 3.(a). Moreover, Big(b) shows the changes of the cost
value relative to the iteration according to PS0also shows the speed of convergence
of RNN depending on the activation functions, arabl€ 4 and Fig. 3. (b) emphasize
that the worst results are occured with hyberb@lngent as same with linear case.

Table 4. The obtained average of MSEs with standawiations from the numerical
solutions for Eq. (9).

Activation Mean of MSEs on

Function Training Set Test Set

tanh 5.426x10 + 1.537x1d 5.495«<10° + 1.010< 10%
RelLU 1.155x10 + 2.609x10 1.14210° + 2.600< 10°
Leaky ReLU  2.075x10 + 4.491x10° 2.041x10° + 4.438< 10°
PReLU 1.224x10 + 1.897x10 1.213%10° + 1.868< 10°
ELU 1.084x10 + 1.647x10 1.141x10° + 1.928x 10°
SWISH 1.003x10 + 1.505x1CF 1.010x10° + 1.518< 10°
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Table 5. The absolute errors on some quadraturgspioi the both of training and test
sets for Eq. (9) by using SWISH activation function

E =]y(%.)- v (%) E =]y(%)-yr (%)

k X for Training Set k X for Test Set
1 1.00 0.000 1 1.00 0.000
2 1.02 1.737x10 7 111 6.155x10
3 1.04 3.172x19 12 1.21 6.209x10
4 1.06 4.327x19 17 1.31 3.224x19
5 1.08 5.226x10 22 141 1.106x19
6 1.10 5.889x10 27 151 5.456x10
11  1.20 6.344x10 32 1.61 8.798x10
21 1.40 6.945x10 37 171 1.034x18
31 1.60 8.574x10 42 1.81 9.518x10
41 1.80 9.749x19 47 191 5.891x10
51 2.00 0.000 53 2.00 0.000

Neural Net Solution optimised by PSO

| ©  Numerical solution for training set |
==== Numerical soluticn for test set
Exact Solution

0.012 ¢

001k |

0.008 1

Best Cost
o
2
8
&

0.004 -

0.002 |

tanh
ELU
SWISH
RelLU

PReLU

Leaky RelLU

Epoch

(b)

Figure 3.(a) The graph of the numerical and exact solutionaf(k2) (b) Best of cost
values according to activation functions for 100@ys.

4. Conclusions

In this work, a simple recurrent neural networkrtea by Partical Swarm Optimization

is constructed for solving ODEs with Dirichlet Balary Conditions. According to this

study, it is showed that the recurrent neural ngte/@an be a good alternative when
trying to obtain fast solution of various challemgi mostly nonlinear, problems

Because, ottneenetwork is trained with some

inputs, it gives nearly optimal solution at anyrgadf problem domain unlike traditional

methods. It is not required to retrain the nenevork after the first construction.

modelled by differential equations.

Futhermore, six different activation functions areed in the network model. The

convergence to the solution is obtained with alkrem.

In the linear case, the best

results are obtained from ReLU activation functjanrsd the SWISH is more successful

among others in the nonlinear case. However,dbe$t convergence is observed with
the ReLU activation function, according to Mean &g Errors. In both cases, the
slowest convergence was observed with the hyberbatigent function.
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As a future work, the more complex neural netwondels, providing feedback among

neurons, used in Deep Learning such as Reservéicloo State Networks can be used
to optimize results. Moreover, some heuristicstaateeuristics as global optimization

methods, and the hybridization of them can be tsédin the neural networks to solve
Dirichlet Boundary Problems.

It must be emphasized that, most of problems aree nmomplex in real worlds
application, so they are modelled with delay ddferal equations, partial differential
equations or integro-differential equations. Tiene the model should be extended to
be experienced on them.
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