
Araştırma Makalesi BAUN Fen Bil. Enst. Dergisi, 20(3) Özel Sayı, 143-153, (2018)

DOI: 10.25092/baunfbed.483922 J. BAUN Inst. Sci. Technol., 20(3) Special Issue, 143-153, (2018)

143

Simple recurrent neural networks for the numerical
solutions of ODEs with Dirichlet boundary

conditions

Korhan GÜNEL 1,*, Gülsüm İŞMAN 2, Merve KOCAKULA 2

1Aydin Adnan Menderes University, Faculty of Arts and Sciences,
Department of Mathematics, Aydin.

2Aydin Adnan Menderes University, Graduate School of Natural Sciences,
Department of Mathematics, Aydin.

Geliş Tarihi (Recived Date): 16.08.2018

Kabul Tarihi (Accepted Date): 16.11.2018

Abstract

In this study, we consider Dirichlet Boundary Value Problems (DBVPs) for Ordinary
Differential Equations (ODEs) to illustrate the general procedure of obtaining
numerical solutions using simple Recurrent Neural Networks (RNNs). Different types
of both linear and nonlinear activation functions are used in the neural network. The
network is trained by Particle Swarm Optimization (PSO) method, and cross validation
approach is performed to tune the arbitrary parameters of neural nets. The exact
solutions and the obtained neural net solutions, regarding with the types of activation
functions, are compared to determine the efficiency of using RNNs in solving the
problem. In all cases, the exact solutions are confronted with those obtained from
RNNs in the context of absolute errors and average mean squared errors (MSEs) with
standard deviations.

Keywords: Recurrent neural networks, particle swarm optimization, ordinary
differential equations, Dirichlet boundary value problem.

* Korhan GÜNEL, kgunel@adu.edu.tr, http://orcid.org/0000-0002-5260-1858
 Gülsüm İŞMAN, gulsumisman@gmail.com, http://orcid.org/0000-0002-0563-5086
 Merve KOCAKULA, kocakulamerve@gmail.com, http://orcid.org/0000-0001-9091-9050

GÜNEL K., İŞMAN G., KOCAKULA M.

144

Dirichlet sınır değer koşullarına sahip adi diferansiyel
denklemlerin nümerik çözümleri için basit tekrarlayan sinir ağları

Özet

Bu çalışmada, basit tekrarlayan yapay sinir ağları (RNN’ler) kullanılarak nümerik
çözümlerin elde edilmesine yönelik süreci genel olarak açıklamak adına, Adi
Diferansiyel Denklemler (ODE) için Dirichlet Sınır Değer Problemleri (DBVP) ele
alınmıştır. Yapay sinir ağında doğrusal ve doğrusal olmayan türlerde çeşitli aktivasyon
fonksiyonları kullanılmıştır. Ağ, Parçacık Sürü Optimizasyonu (PSO) yöntemiyle
eğitilmiştir ve ağın keyfi parametrelerinin ayarlanabilmesi için çarpaz doğrulama
yaklaşımı kullanılmıştır. Problemin çözümünde RNN kullanımının etkinliğini
belirlemek için, gerçek çözümler ile aktivasyon fonksiyonunun türüne bağlı olarak elde
edilen sinir ağı çözümleri karşılaştırılmıştır. Tüm durumlarda gerçek çözümler ile
RNN’den elde edilen sonuçlar, mutlak hatalar, ortalama karesel hataların ortalaması
ve standart sapma bağlamında karşılaştırılmıştır.

Anahtar kelimeler: Tekrarlayan sinir ağları, parçacık sürü optimizasyonu, adi
diferansiyel denklemler, Dirichlet sınır değer problemi.

1. Introduction

Description of the systems are substantial step for the solution of daily life problems,
and the modelling of the complex systems is mostly come true by the means of stating
differential equations. To obtain the numerical solutions of differential equations using
traditional methods such as Shooting Method, Runge-Kutta based methods, Multi-step
methods, and Finite Difference Method, firstly, the continuous domain is discretized by
welcoming some cumulative errors. Furthermore, the numerical solutions are available
only at discretization nodes in the problem domain.

Neural Networks (NNs) have been introduced as an alternative approach to overcome
these bottlenecks [1-5]. NNs are superior to classical numerical methods by means of
training with the discretization nodes and providing the approximate solutions at any
point of continuous search space. NNs are mostly trained by derivative based
optimization methods such as Gradient Descent, Scaled Conjugate Gradient and
Levenberg-Marquardt optimizers. However, the training NNs can occur by dissimilar
ways such as derivative free or heuristic optimization methods. With this direction,
some of the works that can be considered milestone research in literature is summarized
in the following.

The first study is presented by Lee and Kang (1990) including utilizing Hopfield Neural
Network models for solving the finite difference equation [1]. Meade and Fernandez
(1994) demonstrate that Feedforward Neural Network (FFNN) is able to solve linear
ODEs [2]. Lagaris et al. (1998) solve initial and boundary value problems, which has a
trial solution, including two parts, which satisfies conditions with ANNs solution [3].

Malek and Beidokthi present a hybrid method based on optimization techniques and
ANNs so as to solve both first and high order ODEs [4]. Raja improve stochastic

BAUN Fen Bil. Enst. Dergisi, 20(3) Özel Sayı, 143-153, (2018)

 145

computational methods as ANNs and optimization methods such as Simulated
Annealing (SA), Pattern Search (PS), Genetic Algorithms (GAs), Active-set Algorithm
(ASA) and their hybrid methods in order to solve Boundary Value Problems (BVPs) of
second order Pantography Functional Differential Equations (PFDEs) [5]. Raja et al.
develop stochastic techniques for the solution of 2-dimensional Bratu problem with
Feedforward Neural Networks [6]. For the network training, they utilize global
technique as Particle Swarm Optimization (PSO) and to get faster convergence they use
Sequential Quadratic Programming (SQP) and their hybrid approaches. Raja presents a
study about the numerical treatment for the Troesch's problem [7]. For this purpose, he
utilizes NNs optimized with optimization techniques as PSO, ASA and their hybrid
methods. Raja et al. propose a computational intelligence method based on NNs and
SQP for the solution of fractional order nonlinear Riccati Differential Equations [8].

Apart from of these studies, we put into practice one of the derivative-free population
based global optimization method as Particle Swarm Optimization (PSO) to train a
Recurrent Neural Network (RNN) for solving Dirichlet Boundary Problems of Ordinary
Differential Equations, in this work. In contrast to studies in the literature, the main
reason for using RNN in this study is that RNNs achieve more accurate results when
making predictions with nonlinear chaotic time series as emphasied in the study of
Brezak et al. (2012) and the study of Saini, Parkhe and Khadtare (2016) [9,10].

In the sequel, we proceed to summarize briefly the mathematical model of the problem
utilized in this work for obtaining the Recurrent Neural Network solution of a Dirichlet
Boundary Problem. The next section clarifies how to transform a DBVP to an
optimization problem. The third section covers the limitations of this study and the
experimental studies to compare the mentioned methods applied to some different types
of second order ODEs with Dirichlet Boundary Conditions. The final section presents
the findings of the study and some future works with the conclusion we reach.

2. Mathematical Modeling

In this section, we describe how to transform DBVPs for ODEs to an optimization
problem along with the cost function depending on a Recurrent Neural Network
solution. Let us consider the problem given in Eq. (1) in which the functionf is

continuous in []ba, , so the ODE has a unique solution with the boundary conditions.





=
=

∈=

Bby

Aay

baxxyxyxfxy

)(

,)(

),()),('),(,()(''

 (1)

The trial function as formed in Eq. (2) can be used to solve the given problem in Eq. (1).
One can easily seen that the trial function satisfies the boundary conditions of Eq. (1).
 () () ()()),(Net),(pxbxaxB

ba

ax
A

ba

bx
pxy jjj

jj
jT

�� −−+−
−−−

−= (2)

GÜNEL K., İŞMAN G., KOCAKULA M.

146

where the functionNet depending on the arbitrary neural net parameters []βωα ��

���

,,, Ω=p

as given in Eq. (3) and the input jx denotes the simple RNN solution of Eq. (1). The

inputs of RNN jx for Nj ,,2,1 …= are determined by discretization of the interval

[]ba, where N is the total number of discretization nodes. The dicretization nodes are
only used to train the RNN whose architecture is given as in Fig. 1.

()∑
=

=

m

i
iij zgptx

1

)),((Net α
�

 (3)

where m is the total number of neurons in RNN depicted in Fig. 1, and the output of the
i th neuron is ijijii tztxtz βω +−Ω+=)1()()(at iteration t for .,,2,1 mi …= In this

study, the activation function g in Eq. (3) is selected among of hyperbolic tangent,
Rectified Linear Unit (ReLU), Parametric ReLU (PreLU), Leaky ReLU, Exponential
Linear Unit (ELU) and Self-Gated Activation Function (SWISH) functions used
commonly in RNNs to avoid the vanishing gradient problem. The definition of the
aforementioned activation functions are listed in Table 1.

Figure 1. Architecture of simple RNN.

BAUN Fen Bil. Enst. Dergisi, 20(3) Özel Sayı, 143-153, (2018)

 147

Table 1. The list of activation function used in this study.

Activation
Function Definition
tanh

1

1
)

2

2

+

−
=

z

z

e

e
g(z

ReLU),0max() zg(z =
Leaky ReLU


 >=

otherwise,01.0

0 if,
)

z

zz
g(z

PReLU


 >=

otherwise,

0 if,
)

az

zz
g(z where ()1,0∈a

ELU

()


−
>=

otherwise,1

0 if,
) zea

xz
g(z where 0≥a

SWISH
ze

zzzg(z
−+

==
1

1
.)(.) σ

If unknown parameters of recurrent neural network given in Fig. 1 are specified as a
cost function which is given in Eq. (4) our problem turns into an optimization problem.

∑
= 














∂
∂−∂

∂= N

j j

jT
jTj

j

jT

x

pxy
pxyxf

x

pxy

N
E

1

2

2

2),(
),,(,

),(1
�

�

�

 (4)

First and second derivatives of the trial function in Eq. (4) are required to calculate the
cost function, and they can be defined as given in Eq. (5) and Eq. (6) respectively.

()
()()

)(

)),((Net
)()(

)),((Net)(2
)(

)),((

tx

ptx
btxatx

ptxbatx
ba

BA

tx

ptxy

j

j
jj

jj
j

jT

∂
∂

−−+

−−+
−
−=

∂
∂

�

�

�

 (5)

()
()()

)(

)),((Net
)()(

)(

)),((Net
)(22)),((Net2

)(

)),((

2

2

2

2

tx

ptx
btxatx

tx

ptx
batxptx

tx

ptxy

j

j
jj

j

j
jj

j

jT

∂
∂−−+

∂
∂−−+=∂

∂

�

�

�

�

 (6)

where
()

)()(

)),((Net

tdx

zdg

tx

ptx

j

i
i

j

j α=
∂

∂ �

 and
()

)()(

)),((Net
2

2

2

2

tdx

zgd

tx

ptx

j

i
i

j

j
α=

∂
∂ �

 at iteration t . The

definition of the function g regarding with the selected activation function in RNN are
listed in Table 1.

GÜNEL K., İŞMAN G., KOCAKULA M.

148

Finally, Dirichlet Boundary Problem for ODEs is transformed to an optimization
problem as given in Eq. (7).

Problem : { }E

mRp 4

minarg
∈

�

 (7)

For solving the problem given in Eq. (7), derivative based optimization methods like
Gradient Descent are often used. However, most of time, the mentioned optimization
methods fall into the trap at local optimum without converging to global optimum.
Moreover, the derivative based methods require to calculate the partial derivatives of

the cost function ()βωα ��

��

,,, Ω= EE where mR∈Ω βωα ��

��

,,, are the unknown parameters
of the network such that m is the number of neurons in the neural network. Therefore,
as the number of neurons in the neural network increases, the method requires more
calculations. To handle the problem of falling into the local minima and to reduce the
workload needed to solve the problem as given in Eq. (7), we used a variant of Particle
Swarm Optimization (PSO) introduced by Kennedy and Eberhart (1995), in this study
[11]. Because, when the number of neurons in RNN is increasing, the number of
unknown parameters of the optimization problem are also increased, and it becomes
more difficult to solve the problem. In addition, the cross-validation approach has been
used to validate the method. With cross-validation process, one can check whether the
proposed model converges to the solution, or not, every time with various population
distribution initially.

3. Experiments

In this section, we present the numerical solutions, obtaining from RNNs, of both of
linear and nonlinear types of Dirichlet Boundary Problems for ODEs. In all of the
experiments, we use the step size as h = 0.02 at the training stage of the network. After
training the RNN, the network is tested with inputs generated using half of the step size

used in the training stage as
2

h
. The network includes 5 neurons with single hidden

layer only, and the maximum number of epochs is selected as 3.000 for stopping criteria
of training. The lower and upper bound values of each arbitrary parameter of the
networks are -10 and 10 respectively.

The consideration by means of performance analysis is given via the Mean Squared
Errors (MSEs). We use cross validation for parameter tuning for the arbitrary
parameters of RNN. For this, each method is executed 10 times to obtain mean and
standard deviations of MSEs obtained in the training and testing phase independently.
We compare all of the obtained numerical solutions with exact solutions regarding with
absolute errors using the RNN parameters produces the lowest cost value.

The proposed approach is coded in Python and implemented on a Windows 64 bit
operating system with a 3.4Ghz Intel(R) Core (TM) i7-2600 CPU and 16 Gb 800Mhz
DDR3 RAM.

Example 1. The second order homogenous linear differential equation with Dirichlet

Boundary Condition in Eq. (8) has the exact solution as)cos(
2

1
)sin()(xxxy −= .

BAUN Fen Bil. Enst. Dergisi, 20(3) Özel Sayı, 143-153, (2018)

 149











=



−=




∈=+

1
2

,
2

1
)0(

2
,0,0''

π

π

y

y

xyy

 (8)

According to the mean of MSEs shown in Table 2, when ReLU are used in RNN as
activation function, the best numerical solutions are obtained. Therefore, the absolute
errors are listed in Table 3 with ReLU activation function. The plot of numerical
solution compared with exact solution of Eq. (8) is depicted in Fig. 2.(a). In addition,
Fig. 2. (b) shows the changes of the cost value with respect to the iteration. The
decreasing cost when the iteration increasing validates that the RNN trained by PSO
solves the DBVPs for ODEs. It also shows the speed of convergence of RNN regarding
with the activation functions, and both of Table 2 and Fig. 2. (b) also underline that the
worst results are occured with hyberbolic tangent function.

Table 2. The obtained average of MSEs with standard deviations from the numerical

solutions for Eq. (8).

Activation Mean of MSEs on
Function Training Set Test Set
tanh 1.667×10-3 ± 1.183×10-3 1.696×10-3 ± 1.212×10-3
ReLU 1.480×10-4 ± 1.406 ×10-4 1.480×10-4 ± 1.402×10-4
Leaky ReLU 1.700×10-4 ± 1.212×10-4 1.719×10-4 ± 1.237×10-4
PReLU 1.994×10-4 ± 1.636×10-4 1.994×10-4 ± 1.653×10-4
ELU 1.794×10-4 ± 1.535×10-4 1.824×10-4 ± 1.556×10-4
SWISH 3.265×10-4 ± 3.200×10-4 3.381×10-4 ± 3.355×10-4

Table 3. The absolute errors on some quadrature points in the both of training and test

sets for Eq. (8) by using ReLU activation function.

k kx
() ()kTk xyxyE −=

for Training Set

k kx
() ()kTk xyxyE −=

for Test Set
1 0.00 0.000 1 0.00 0.000
2 0.02 1.072×10-3 7 0.11 4.387×10-3
3 0.04 2.041×10-3 12 0.21 5.981×10-3
4 0.06 2.907×10-3 17 0.31 5.682×10-3
5 0.08 3.675×10-3 22 0.41 3.890×10-3
6 0.10 4.346×10-3 27 0.51 1.026×10-3

11 0.20 6.356×10-3 32 0.61 2.483×10-3
21 0.40 4.879×10-3 37 0.71 6.220×10-3
31 0.60 1.176×10-3 42 0.81 9.779×10-3
41 0.80 8.448×10-3 48 0.91 1.084×10-2
51 1.00 1.381×10-2 53 1.01 1.306×10-2
61 1.20 1.473×10-2 58 1.11 1.417×10-3
71 1.40 9.576×10-3 63 1.21 1.392×10-3
79 1.56 7.403×10-4 79 1.51 3.494×10-3

GÜNEL K., İŞMAN G., KOCAKULA M.

150

 (a) (b)

Figure 2. (a) The graph of the numerical and exact solution of Eq. (x1) (b) Best of cost

values according to activation functions for 100 epochs.

Example 2. Let us consider the nonlinear differential equation with Dirichlet Boundary

Condition given in Eq. (9). The the exact solution of the given problem is
1

1
)(
+

=
x

xy .

[]

()









=
−=

∈−=

3
1

2

,
2

1
)1(

2,1,''' 3

y

y

xyyyy

 (9)

Best results are obtained with SWISH function as depicted in Table 4. Thus, Table 5
gives the absolute errors when using SWISH. The exact solution and the best of RNN
solution are compared in Fig. 3.(a). Moreover, Fig. 3. (b) shows the changes of the cost
value relative to the iteration according to PSO. It also shows the speed of convergence
of RNN depending on the activation functions, and Table 4 and Fig. 3. (b) emphasize
that the worst results are occured with hyberbolic tangent as same with linear case.

Table 4. The obtained average of MSEs with standard deviations from the numerical

solutions for Eq. (9).

Activation Mean of MSEs on
Function Training Set Test Set
tanh 5.426×10-5 ± 1.537×10-4 5.495×10-5 ± 1.010× 10-4
ReLU 1.155×10-5 ± 2.609×10-5 1.142×10-5 ± 2.600× 10-5
Leaky ReLU 2.075×10-5 ± 4.491×10-5 2.041×10-5 ± 4.438× 10-5
PReLU 1.224×10-5 ± 1.897×10-5 1.213×10-5 ± 1.868× 10-5
ELU 1.084×10-5 ± 1.647×10-5 1.141×10-5 ± 1.928× 10-5
SWISH 1.003×10-5 ± 1.505×10-5 1.010×10-5 ± 1.518× 10-5

BAUN Fen Bil. Enst. Dergisi, 20(3) Özel Sayı, 143-153, (2018)

 151

Table 5. The absolute errors on some quadrature points in the both of training and test
sets for Eq. (9) by using SWISH activation function.

k kx
() ()kTk xyxyE −=

for Training Set

k kx
() ()kTk xyxyE −=

for Test Set
1 1.00 0.000 1 1.00 0.000
2 1.02 1.737×10-4 7 1.11 6.155×10-4
3 1.04 3.172×10-4 12 1.21 6.209×10-4
4 1.06 4.327×10-4 17 1.31 3.224×10-4
5 1.08 5.226×10-4 22 1.41 1.106×10-4
6 1.10 5.889×10-4 27 1.51 5.456×10-4

11 1.20 6.344×10-4 32 1.61 8.798×10-4
21 1.40 6.945×10-5 37 1.71 1.034×10-3
31 1.60 8.574×10-4 42 1.81 9.518×10-4
41 1.80 9.749×10-4 47 1.91 5.891×10-4
51 2.00 0.000 53 2.00 0.000

 (a) (b)

Figure 3. (a) The graph of the numerical and exact solution of Eq. (x2) (b) Best of cost

values according to activation functions for 100 epochs.

4. Conclusions

In this work, a simple recurrent neural network trained by Partical Swarm Optimization
is constructed for solving ODEs with Dirichlet Boundary Conditions. According to this
study, it is showed that the recurrent neural networks can be a good alternative when
trying to obtain fast solution of various challenging, mostly nonlinear, problems
modelled by differential equations. Because, once the network is trained with some
inputs, it gives nearly optimal solution at any point of problem domain unlike traditional
methods. It is not required to retrain the neural network after the first construction.

Futhermore, six different activation functions are used in the network model. The
convergence to the solution is obtained with all of them. In the linear case, the best
results are obtained from ReLU activation functions, and the SWISH is more successful
among others in the nonlinear case. However, the fastest convergence is observed with
the ReLU activation function, according to Mean Squared Errors. In both cases, the
slowest convergence was observed with the hyberbolic tangent function.

GÜNEL K., İŞMAN G., KOCAKULA M.

152

As a future work, the more complex neural network models, providing feedback among
neurons, used in Deep Learning such as Reservoir or Echo State Networks can be used
to optimize results. Moreover, some heuristics, meta-heuristics as global optimization
methods, and the hybridization of them can be used to train the neural networks to solve
Dirichlet Boundary Problems.

It must be emphasized that, most of problems are more complex in real worlds
application, so they are modelled with delay differential equations, partial differential
equations or integro-differential equations. Therefore, the model should be extended to
be experienced on them.

Acknowledgments

This study is an extended version of the conference paper presented in “International
Conference on Applied Mathematics in Engineering (ICAME 18)" Günel, İşman and
Kocakula, (2018). We would like to thank the anonymous reviewers for their helpful
comments to improve the paper.

References

[1] Lee, H., Neural algorithms for solving differential equations. Journal of

Computational Physics, 91, 1, 110-131, (1990).
[2] Meade, A. J. ve Fernandez, A. A., The numerical solution of linear ordinary

differential equations by feedforward neural networks. Mathematical and
Computer Modelling, 19, 12, 1 – 25, (1994).

[3] Lagaris, I. E., Likas, A. and Fotiadis, D. I., Artificial neural networks for solving
ordinary and partial differential equations. IEEE Transactions on Neural
Networks, 9, 5, 987-1000, (1998).

[4] Malek, A. and Beidokhti, S. R. Numerical solution for high order differential
equations using a hybrid neural network - Optimization method. Applied
Mathematics and Computation, 183, 1, 260-271, (2006).

[5] Raja, M. A., Numerical treatment for boundary value problems of Pantograph
functional differential equation using computational intelligence algorithms.
Applied Soft Computing, 24, 806-821, (2014).

[6] Raja, M. A., Ahmad, S., and Samar, R., Solution of the 2-dimensional Bratu
problem using neural network, swarm intelligence and sequential quadratic
programming. Neural Computing and Applications, 25, 7-8, 1723-1739,
(2014).

[7] Raja, M.A.Z., Stochastic numerical treatment for solving Troesch’s problem.
Information Sciences, 279, 860 – 873, (2014).

[8] Raja, M.A.Z., Manzar, M.A., Samar, R., An efficient computational intelligence
approach for solving fractional order riccati equations using ann and sqp.
Applied Mathematical Modelling, 39, 10, 3075 – 3093, (2015).

[9] Brezak, D., Bacek, T., Majetic, D., Kasac, J., and Novakovic, B., A
comparison of feed-forward and recurrent neural networks in time series
forecasting. 2012 IEEE Conference on Computational Intelligence for
Financial Engineering & Economics (CIFEr), New York, NY, 1 – 6, (2012).

BAUN Fen Bil. Enst. Dergisi, 20(3) Özel Sayı, 143-153, (2018)

 153

[10] Saini, S.S., Parkhe, O. and Khadtare, T.D., Analysis of Feedforward and
Recurrent Neural Network in Forecasting Foreign Exchange Rate. Imperial
Journal of Interdisciplinary Research (IJIR) , 2, 822 – 826, (2016).

[11] Kennedy, J. and Eberhart, R.C. Particle swarm optimization, Proceedings of the
IEEE International Conference on Neural Networks, 1942-1948, (1995).

