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Abstract 
 
In this study, we consider Dirichlet Boundary Value Problems (DBVPs) for Ordinary 
Differential Equations (ODEs) to illustrate the general procedure of obtaining 
numerical solutions using simple Recurrent Neural Networks (RNNs).  Different types 
of both linear and nonlinear activation functions are used in the neural network.  The 
network is trained by Particle Swarm Optimization (PSO) method, and cross validation 
approach is performed to tune the arbitrary parameters of neural nets.  The exact 
solutions and the obtained neural net solutions, regarding with the types of activation 
functions, are compared to determine the efficiency of using RNNs in solving the 
problem.  In all cases, the exact solutions are confronted with those obtained from 
RNNs in the context of absolute errors and average mean squared errors (MSEs) with 
standard deviations. 
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Dirichlet sınır değer koşullarına sahip adi diferansiyel 
denklemlerin nümerik çözümleri için basit tekrarlayan sinir ağları  
 
 
Özet 
 
Bu çalışmada, basit tekrarlayan yapay sinir ağları (RNN’ler) kullanılarak nümerik 
çözümlerin elde edilmesine yönelik süreci genel olarak açıklamak adına, Adi 
Diferansiyel Denklemler (ODE) için Dirichlet Sınır Değer Problemleri (DBVP) ele 
alınmıştır. Yapay sinir ağında doğrusal ve doğrusal olmayan türlerde çeşitli aktivasyon 
fonksiyonları kullanılmıştır.  Ağ, Parçacık Sürü Optimizasyonu (PSO) yöntemiyle 
eğitilmiştir ve ağın keyfi parametrelerinin ayarlanabilmesi için çarpaz doğrulama 
yaklaşımı kullanılmıştır.  Problemin çözümünde RNN kullanımının etkinliğini 
belirlemek için, gerçek çözümler ile aktivasyon fonksiyonunun türüne bağlı olarak elde 
edilen sinir ağı çözümleri karşılaştırılmıştır.  Tüm durumlarda gerçek çözümler ile 
RNN’den elde edilen sonuçlar, mutlak hatalar, ortalama karesel hataların ortalaması 
ve standart sapma bağlamında karşılaştırılmıştır.   
 
Anahtar kelimeler: Tekrarlayan sinir ağları, parçacık sürü optimizasyonu, adi 
diferansiyel denklemler, Dirichlet sınır değer problemi. 
 
 
1.  Introduction 
 
Description of the systems are substantial step for the solution of daily life problems, 
and the modelling of the complex systems is mostly come true by the means of stating 
differential equations.  To obtain the numerical solutions of differential equations using 
traditional methods such as Shooting Method, Runge-Kutta based methods, Multi-step 
methods, and Finite Difference Method, firstly, the continuous domain is discretized by 
welcoming some cumulative errors.  Furthermore, the numerical solutions are available 
only at discretization nodes in the problem domain.   
 
Neural Networks (NNs) have been introduced as an alternative approach to overcome 
these bottlenecks [1-5].  NNs are superior to classical numerical methods by means of 
training with the discretization nodes and providing the approximate solutions at any 
point of continuous search space.  NNs are mostly trained by derivative based 
optimization methods such as Gradient Descent, Scaled Conjugate Gradient and 
Levenberg-Marquardt optimizers.  However, the training NNs can occur by dissimilar 
ways such as derivative free or heuristic optimization methods.  With this direction, 
some of the works that can be considered milestone research in literature is summarized 
in the following.  
 
The first study is presented by Lee and Kang (1990) including utilizing Hopfield Neural 
Network models for solving the finite difference equation [1].  Meade and Fernandez 
(1994) demonstrate that Feedforward Neural Network (FFNN) is able to solve linear 
ODEs [2].  Lagaris et al. (1998) solve initial and boundary value problems, which has a 
trial solution, including two parts, which satisfies conditions with ANNs solution [3].  
 
Malek and Beidokthi present a hybrid method based on optimization techniques and 
ANNs so as to solve both first and high order ODEs [4].  Raja improve stochastic 
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computational methods as ANNs and optimization methods such as Simulated 
Annealing (SA), Pattern Search (PS), Genetic Algorithms (GAs), Active-set Algorithm 
(ASA) and their hybrid methods in order to solve Boundary Value Problems (BVPs) of 
second order Pantography Functional Differential Equations (PFDEs) [5].  Raja et al. 
develop stochastic techniques for the solution of 2-dimensional Bratu problem with 
Feedforward Neural Networks [6].  For the network training, they utilize global 
technique as Particle Swarm Optimization (PSO) and to get faster convergence they use 
Sequential Quadratic Programming (SQP) and their hybrid approaches.  Raja presents a 
study about the numerical treatment for the Troesch's problem [7].  For this purpose, he 
utilizes NNs optimized with optimization techniques as PSO, ASA and their hybrid 
methods.  Raja et al. propose a computational intelligence method based on NNs and 
SQP for the solution of fractional order nonlinear Riccati Differential Equations [8].  
 
Apart from of these studies, we put into practice one of the derivative-free population 
based global optimization method as Particle Swarm Optimization (PSO) to train a 
Recurrent Neural Network (RNN) for solving Dirichlet Boundary Problems of Ordinary 
Differential Equations, in this work.  In contrast to studies in the literature, the main 
reason for using RNN in this study is that RNNs achieve more accurate results when 
making predictions with nonlinear chaotic time series as emphasied in the study of 
Brezak et al. (2012) and the study of Saini, Parkhe and Khadtare (2016) [9,10].  
 
In the sequel, we proceed to summarize briefly the mathematical model of the problem 
utilized in this work for obtaining the Recurrent Neural Network solution of a Dirichlet 
Boundary Problem.  The next section clarifies how to transform a DBVP to an 
optimization problem.  The third section covers the limitations of this study and the 
experimental studies to compare the mentioned methods applied to some different types 
of second order ODEs with Dirichlet Boundary Conditions.  The final section presents 
the findings of the study and some future works with the conclusion we reach.  
 
 
2.  Mathematical Modeling 
 
In this section, we describe how to transform DBVPs for ODEs to an optimization 
problem along with the cost function depending on a Recurrent Neural Network 
solution.  Let us consider the problem given in Eq. (1) in which the functionf  is 

continuous in [ ]ba, , so the ODE has a unique solution with the boundary conditions.  
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The trial function as formed in Eq. (2) can be used to solve the given problem in Eq. (1).  
One can easily seen that the trial function satisfies the boundary conditions of Eq. (1).  
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where the functionNet depending on the arbitrary neural net parameters [ ]βωα ��

���

,,, Ω=p  

as given in Eq. (3) and the input jx  denotes the simple RNN solution of Eq. (1).  The 

inputs of RNN jx  for Nj ,,2,1 …=  are determined by discretization of the interval 

[ ]ba,  where N  is the total number of discretization nodes.  The dicretization nodes are 
only used to train the RNN whose architecture is given as in Fig. 1.   
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where m is the total number of neurons in RNN depicted in Fig. 1, and the output of the 
i th neuron is ijijii tztxtz βω +−Ω+= )1()()(  at iteration t for .,,2,1 mi …=   In this 

study, the activation function g  in Eq. (3) is selected among of hyperbolic tangent, 
Rectified Linear Unit (ReLU), Parametric ReLU (PreLU), Leaky ReLU, Exponential 
Linear Unit (ELU) and Self-Gated Activation Function (SWISH) functions used 
commonly in RNNs to avoid the vanishing gradient problem.  The definition of the 
aforementioned activation functions are listed in Table 1.  

 

 
 

Figure 1. Architecture of simple RNN. 
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Table 1. The list of activation function used in this study.  
 

Activation 
Function Definition 
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If unknown parameters of recurrent neural network given in Fig. 1 are specified as a 
cost function which is given in Eq. (4) our problem turns into an optimization problem.  
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First and second derivatives of the trial function in Eq. (4) are required to calculate the 
cost function, and they can be defined as given in Eq. (5) and Eq. (6) respectively.  
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 at iteration t .  The 

definition of the function g regarding with the selected activation function in RNN are 
listed in Table 1.   
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Finally, Dirichlet Boundary Problem for ODEs is transformed to an optimization 
problem as given in Eq. (7).  
 
Problem : { }E

mRp 4

minarg
∈

�

 (7) 

 

For solving the problem given in Eq. (7), derivative based optimization methods like 
Gradient Descent are often used.  However, most of time, the mentioned optimization 
methods fall into the trap at local optimum without converging to global optimum.  
Moreover, the derivative based methods require to calculate the  partial derivatives of 

the cost function ( )βωα ��

��

,,, Ω= EE  where mR∈Ω βωα ��

��

,,, are the unknown parameters 
of the network such that m is the number of neurons in the neural network.  Therefore,  
as the number of neurons in the neural network increases, the method requires more 
calculations.  To handle the problem of falling into the local minima and to reduce the 
workload needed to solve the problem as given in Eq. (7), we used a variant of Particle 
Swarm Optimization (PSO) introduced by Kennedy and Eberhart (1995), in this study 
[11].  Because, when the number of neurons in RNN is increasing, the number of 
unknown parameters of the optimization problem are also increased, and it becomes 
more difficult to solve the problem.  In addition, the cross-validation approach has been 
used to validate the method.  With cross-validation process, one can check whether the 
proposed model converges to the solution, or not, every time with various population 
distribution initially.  
 
 
3.  Experiments 
 
In this section, we present the numerical solutions, obtaining from RNNs, of both of 
linear and nonlinear types of Dirichlet Boundary Problems for ODEs.  In all of the 
experiments, we use the step size as h = 0.02 at the training stage of the network.  After 
training the RNN, the network is tested with inputs generated using half of the step size 

used in the training stage as 
2

h
.  The network includes 5 neurons with single hidden 

layer only, and the maximum number of epochs is selected as 3.000 for stopping criteria 
of training.  The lower and upper bound values of each arbitrary parameter of the 
networks are -10 and 10 respectively.   
 
The consideration by means of performance analysis is given via the Mean Squared 
Errors (MSEs).  We use cross validation for parameter tuning for the arbitrary 
parameters of RNN.  For this, each method is executed 10 times to obtain mean and 
standard deviations of MSEs obtained in the training and testing phase independently.  
We compare all of the obtained numerical solutions with exact solutions regarding with 
absolute errors using the RNN parameters produces the lowest cost value.  
 
The proposed approach is coded in Python and implemented on a Windows 64 bit 
operating system with a 3.4Ghz Intel(R) Core (TM) i7-2600 CPU and 16 Gb 800Mhz 
DDR3 RAM.   
 
Example 1. The second order homogenous linear differential equation with Dirichlet 

Boundary Condition in Eq. (8) has the exact solution as )cos(
2

1
)sin()( xxxy −= .   
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According to the mean of MSEs shown in Table 2, when ReLU are used in RNN as 
activation function, the best numerical solutions are obtained.  Therefore, the absolute 
errors are listed in Table 3 with ReLU activation function.  The plot of numerical 
solution compared with exact solution of Eq. (8) is depicted in Fig. 2.(a).  In addition, 
Fig. 2. (b) shows the changes of the cost value with respect to the iteration.  The 
decreasing cost when the iteration increasing validates that the RNN trained by PSO 
solves the DBVPs for ODEs.  It also shows the speed of convergence of RNN regarding 
with the activation functions, and both of Table 2 and Fig. 2. (b) also underline that the 
worst results are occured with hyberbolic tangent function.  

 
Table 2. The obtained average of MSEs with standard deviations from the numerical 

solutions for Eq. (8).  
 

Activation Mean of MSEs on 
Function Training Set Test Set 
tanh 1.667×10-3 ± 1.183×10-3  1.696×10-3 ± 1.212×10-3 
ReLU 1.480×10-4 ± 1.406 ×10-4 1.480×10-4 ± 1.402×10-4 
Leaky ReLU 1.700×10-4 ± 1.212×10-4 1.719×10-4 ± 1.237×10-4 
PReLU 1.994×10-4 ± 1.636×10-4 1.994×10-4 ± 1.653×10-4 
ELU 1.794×10-4 ± 1.535×10-4 1.824×10-4 ± 1.556×10-4 
SWISH 3.265×10-4 ± 3.200×10-4 3.381×10-4 ± 3.355×10-4 

 
Table 3. The absolute errors on some quadrature points in the both of training and test 

sets for Eq. (8) by using ReLU activation function.  
 

k  kx  
( ) ( )kTk xyxyE −=  

for Training Set 

 

k  kx  
( ) ( )kTk xyxyE −=  

for Test Set 
1 0.00 0.000  1 0.00 0.000 
2 0.02 1.072×10-3  7 0.11 4.387×10-3 
3 0.04 2.041×10-3  12 0.21 5.981×10-3 
4 0.06 2.907×10-3  17 0.31 5.682×10-3 
5 0.08 3.675×10-3  22 0.41 3.890×10-3 
6 0.10 4.346×10-3  27 0.51 1.026×10-3 

11 0.20 6.356×10-3  32 0.61 2.483×10-3 
21 0.40 4.879×10-3  37 0.71 6.220×10-3 
31 0.60 1.176×10-3  42 0.81 9.779×10-3 
41 0.80 8.448×10-3  48 0.91 1.084×10-2 
51 1.00 1.381×10-2  53 1.01 1.306×10-2 
61 1.20 1.473×10-2  58 1.11 1.417×10-3 
71 1.40 9.576×10-3  63 1.21 1.392×10-3 
79 1.56 7.403×10-4  79 1.51 3.494×10-3 
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 (a) (b) 

 
Figure 2. (a) The graph of the numerical and exact solution of Eq. (x1) (b) Best of cost 

values according to activation functions for 100 epochs.  
 

Example 2. Let us consider the nonlinear differential equation with Dirichlet Boundary 

Condition given in Eq. (9).  The the exact solution of the given problem is 
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Best results are obtained with SWISH function as depicted in Table 4.  Thus, Table 5 
gives the absolute errors when using SWISH.  The exact solution and the best of RNN 
solution are compared in Fig. 3.(a).  Moreover, Fig. 3. (b) shows the changes of the cost 
value relative to the iteration according to PSO.  It also shows the speed of convergence 
of RNN depending on the activation functions, and Table 4 and Fig. 3. (b) emphasize 
that the worst results are occured with hyberbolic tangent as same with linear case.  

 
Table 4. The obtained average of MSEs with standard deviations from the numerical 

solutions for Eq. (9).  
 

Activation Mean of MSEs on 
Function Training Set Test Set 
tanh 5.426×10-5 ± 1.537×10-4  5.495×10-5 ± 1.010× 10-4 
ReLU 1.155×10-5 ± 2.609×10-5 1.142×10-5 ± 2.600× 10-5 
Leaky ReLU 2.075×10-5 ± 4.491×10-5 2.041×10-5 ± 4.438× 10-5 
PReLU 1.224×10-5 ± 1.897×10-5 1.213×10-5 ± 1.868× 10-5 
ELU 1.084×10-5 ± 1.647×10-5 1.141×10-5 ± 1.928× 10-5 
SWISH 1.003×10-5 ± 1.505×10-5 1.010×10-5 ± 1.518× 10-5 
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Table 5. The absolute errors on some quadrature points in the both of training and test 
sets for Eq. (9) by using SWISH activation function.  

 

k  kx  
( ) ( )kTk xyxyE −=  

for Training Set 

 

k  kx  
( ) ( )kTk xyxyE −=  

for Test Set 
1 1.00 0.000  1 1.00 0.000 
2 1.02 1.737×10-4  7 1.11 6.155×10-4 
3 1.04 3.172×10-4  12 1.21 6.209×10-4 
4 1.06 4.327×10-4  17 1.31 3.224×10-4 
5 1.08 5.226×10-4  22 1.41 1.106×10-4 
6 1.10 5.889×10-4  27 1.51 5.456×10-4 

11 1.20 6.344×10-4  32 1.61 8.798×10-4 
21 1.40 6.945×10-5  37 1.71 1.034×10-3 
31 1.60 8.574×10-4  42 1.81 9.518×10-4 
41 1.80 9.749×10-4  47 1.91 5.891×10-4 
51 2.00 0.000  53 2.00 0.000 

 

 
 (a) (b) 

 
Figure 3. (a) The graph of the numerical and exact solution of Eq. (x2) (b) Best of cost 

values according to activation functions for 100 epochs.  
 
4. Conclusions 
 
In this work, a simple recurrent neural network trained by Partical Swarm Optimization 
is constructed for solving ODEs with Dirichlet Boundary Conditions.  According to this 
study, it is showed that the recurrent neural networks can be a good alternative when 
trying to obtain fast solution of various challenging, mostly nonlinear, problems 
modelled by differential equations.  Because, once the network is trained with some 
inputs, it gives nearly optimal solution at any point of problem domain unlike traditional 
methods.  It is not required to retrain the neural network after the first construction.  
 
Futhermore, six different activation functions are used in the network model.  The 
convergence to the solution is obtained with all of them.  In the linear case, the best 
results are obtained from ReLU activation functions, and the SWISH is more successful 
among others in the nonlinear case.  However, the fastest convergence is observed with 
the ReLU activation function, according to Mean Squared Errors.  In both cases, the 
slowest convergence was observed with the hyberbolic tangent function.  
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As a future work, the more complex neural network models, providing feedback among 
neurons, used in Deep Learning such as Reservoir or Echo State Networks can be used 
to optimize results.  Moreover, some heuristics, meta-heuristics as global optimization 
methods, and the hybridization of them can be used to train the neural networks to solve 
Dirichlet Boundary Problems.   
 
It must be emphasized that, most of problems are more complex in real worlds 
application, so they are modelled with delay differential equations, partial differential 
equations or integro-differential equations.  Therefore, the model should be extended to 
be experienced on them.  
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