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Abstract We discuss the problem of finding approximate solutions of the equation  

0)( xf  (1) 

In some cases it is possible to find the exact roots of the equation (1) for example when 
)(xf is a  quadratic on cubic polynomial otherwise, in general, is interested in finding 

approximate solutions using some numerical methods. Here, we will discuss a  method 

called fixed point iteration method and a  particular case of this method called Newton’s 

method 
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1. INTRODUCTION 

In this section we consider methods for determining the solution to an equation expressed, for 

some functions g .in the form 

xxg )(  (2) 

A solution to such an equation is said to be a  fixed point of the function g . Let’s we found a 

fixed point for any given g. Then every root finding problem could also be solved for example. 

The root finding problem 0)( xf  has solutions that correspond precisely to the fixed points of 

xxg )(  when )()( xfxxg  . The first task, then, is to decide when a function will have a 

fixed point and how the fixed points can be determined. (In numerical analysis, "determined" 

generally means approximated to a sufficient degree of accuracy.) 

 

EXAMPLE 1. 

(a) The function g ( x ) = x , 0 1 x  has a fixed point at each x  in  1,0 . 

(b) The function g  ( x ) = sinx  has exactly two fixed points in  1,0 . x  = 0 and x  

= 1. (see figure 1.1) 
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Figure 1.1. 

The following theorem gives sufficient conditions for the existence and uniqueness of a  fixed 

point. 

Theorem 1.1. 

If g   ba,  and  baxg ,)(  . then g  has a fixed point in  ba, . Further, suppose g  ( x ) 

exists on  ba,  and then a positive constant k  < 1 exists with  

(1.1) 1)(  kxg  for all x  ),( ba . 

Then g has a unique fixed point p in  ba, . (see figure 1.1) 

  



 

25 
MJEN  Manas Journal of Engineering © 2013 

 

 

 

 y  )(xy   

 

 b  

 

 

)(pgp   

 

 a   )(xgy   

 

0 

 a  p  b  x  

 

Figure 1.1. 

Proof: if )(ag = a  or bbg )( , the existence of a  fixed point is obvious. Suppose not; then it 

must be true that )(ag > a  and bbg )( . Decline xxgxh  )()( . Then his continuous on 

],[ ba  and  

0)()(,0)()(  bbgbhaagah  

The intermediate value theorem implies that there exists ),( bap  for which 0)( ph  thus, 

0)(  ppg  and p is a fixed point of g. 

Suppose in addition that inequality (1.1) holds and that p  and q  are both fixed points in ],[ ba  

with p  .q  by the mean value theorem a number   exists between p  and q . And hence in 

],[ ba with. 

qp   = )()( qgpg   = )( fg   qp  qpk  < qp   

Which is a contradiction this contradiction must come from the only supposition p q .hence 

p  = q  and the fixed point in ],[ ba  is unique 

 

EXAMPLE 2. 

( a ) Let )(xg = (
2x -1) /3 on [-1, 1] using the extreme value theorem, it is easy to show that the 

absolute minimum or g  occurs at x  = 0 and 
3

1
)0( g . Similarly. The absolute maximum of g 

occurs at x  = 1 and has the value g  1 = 0.moreover. g  is continuous and  

)(xg   = 
3

2

3

2


x  for all  1,1x . 

So g  satisfies the hypotheses of theorem 1.1 and has a  unique fixed in [-1, 1].  

In this example the unique fixed point p  in the interval [-1, 1] can be determined exactly. If  

)(pgP   = 
3

12 p
, then 0132  pp  

Which by the quadratic Formula implies that? 

2

133
p . 
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Figure 1.2. 

 

That g also has a unique fixed point p  = ( 3 + )13( / 2 for interval [3,4] forever 5)4( g  and 

sog :1
3

1
)4(   g  does not satisfy their hypotheses of theorem 1.1 this shows that the 

hypotheses of theorem 1.1 sufficient guarantee a  unique fixed point, but are not necessary. (see 

figure 1.2). 

)(xG = 
x3 . since ]1.0[.03ln3)( onxg x   , the function this decreasing [0,1] hence g  (1) 

= .10)0(1)(
3

1
 xforgxg  this for x [0,1] )(xg   1,0  therefore, g  has a  fixed 

point in [0,1] since 

g  (0) = - in 3 = -1.098612289 

)(xf  1 on [0, 1] theorem 1.1 cannot be used determinant unequation forever g  is decreasing 

so it is clear that the fixed point must the unique (see figure 1.3) 
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Figure 1.3. 

 

Approximate point of a  function g ,we choose an initial information p  and sequence 
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nnp  by letting  1 nn pqp  h  n  1  if the for p  and g  is continuous then by 
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Theorem 1.2 

)()(lim)(limlim 11 pgpgpgpp nnn    

n   n   n   

and a solution to )(xgx  is obtained this technique is called fixed – point or functional 

iteration the procedure is detailed in algorithm 1.2 and described in figure 1.4 
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FIXED – POINT ALGORITHM 1 

To find a  solution to )(pgp   given an initial approximation :0p INPUT initial 

approximation ;0p tolerance TOL; maximum number of iterations no: OUTPUT approximate 

solution p  or message failure. 

Step 1 set i = 1. 

Step 2 white i   N0 

Step 3 set gp   .0p  ( compare p.) 

Step 4 if TOLpp  0  then 
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OUTPUT (P), (Procedure completed successfully) 

STOP. 

Step 5 set i = i + 1. 

Step 6 set 0p = p. (Update 0p ) 

Step 7 OUTPUT (Method failed after 
0N  iterations

00 NN  ; 

(Procedure completed unsuccessfully.) 

STOP. 

To illustrate the technique of functional iteration consider the following example. 

 

 

EXAMPLE 3. 

a) Let us take the problem given where )2(
7

1
)( 3  xxg . Then ]1,0[]1,0[: g  and 

7

3
)(, xg  for all ]1,0[x . Home by the previous theorem sequence nP  defined by the process 

)2(
7

1 3

1  nn PP  converges to a root of 0273  xx  

b) Consider Rf ]2,0[:  defined by 5

1

)1()( xxf  . Observe that f  maps [0, 2] onto 

itself. Moreover 1
5

1
)(, xf  for ]2,0[x . By the previous theorem the sequence ( nP ) 

defined by 
5/1

1 )1( nn PP   converges to a root of 012  xx in the interval [0,2] 

In practice, it is often difficult to check the condition ]),[],([ babaf  given in the previous 

theorem. We now present a variant of theorem. 

Theorem 1.2. (Fixed point theorem) let  bag ,  and suppose that    baxg ,  for all x  in  

 ba, . further, 

Suppose g   exists on  ba,  with  

  kxg  < 1 for all  bax ,  

If 0p  is any number in  ba,  then the sequence defined by 

 1 nn pgp  .1n  

Converges to the unique fixed point p  in  ba,  

Proof by theorem 1.1 a unique fixed point exist in  ba,  since g  maps  ba,  into itself the 

sequence 


0}{ nnp  is defined for all 0n  and  bapn ,  for all n. Using inequality and the 

mean value theorem. 

      .1 11 ppkppgpgpgpp nnnn    

Where  ba,  applying inequality )3.1(  inductively gives: 

........ 02

2

1 ppkppkppkpp n

nnn    

Since ,1k  

0limlim 0  ppkpp n

n  

n  n  



 

29 
MJEN  Manas Journal of Engineering © 2013 

 

and 


0}{ nnp  converges to p . 

Corollary 1.3 If g  satisfies the hypotheses of theorem 1.2 a  bound for the error involve in using 

np  to apporoximate p is given by. 

 00 ,max pbapkpp n

n   for all n .1  

Proof from inequality, 

 ,,max 000 pbapkppkpp nn

n   

Since  .,bap  

Corollary 1.4 If g satisfies the hypotheses of theorem 1.2, then 

10
1

pp
k

k
pp

n

n 


  for all 1n  

Proof for 1n  the procedure used in the proof of theorem 1.2 implies that 

    01111 .... ppkppkpgpgpp nnnnnnn    

Thus, for m > 1n  

nnmmmnm ppppppp   111 ...  

nnmmmm pppppp   1211 ....  

0101

2

01

1 ... ppkppkppk nmm  
 

=   01

2 1....1 ppkkkk nmn  
 

By theorem 1.2, lim. ppm  so 

m  

01

0

01
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lim pp
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k
ppkpppp

n
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pn

nmn k 


 




 

m  

Both corollaries relate the rate of convergence to the bound k on the first derivate it is clear that 

the rate of convergence depends on the factor  kk n 1  and that the smaller k  can be made the 

faster the convergence the convergence may be very slow if k  is close to 1.In the following 

example the fixed-point methods in example 3 are reconsidered in light of the results described in 

theorem 1.2. 

 

EXAMPLE 4.  

(a) When     1,104 1

23

1  xgxxxxg  xx 83 2  . Then is no interval  ba,  containing 

p  for which   11  xg  though theorem (1.2) does not guarantee that the method must fail for 

this choice of g , there is no reason to expect convergence. 

(b) With      2/1

2 4/10 xxxg  , we can see that 2p  does not map [1,5] into [1,2] and the 

sequence 


0}{ nnp  is not defined with p =1.5 moreover there is no interval containing such that 

  ,12  xg  since   4.32  pg  

(c) for the function     2/13

3 10
2

1
xxg    
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    010
4

3 2/132

3 


xxxg  on [1,2], 

So g  is strictly decreasing on [1,2] however,   ,12.223 g  so inequality (1.2) does not hold on 

[1,2].A closer examination of the sequence 


00}{ np  starting with 5.10 p  will show   03  xg  

and g  is strictly decreasing but additionally, 

      5.115.128.11 333  gxgg  

For all  5.1,1x  this shows that 3g  maps the interval [1,1.5] into itself. Since it is also true that 

    66.05.133  gxg  on this interval, theorem 1.2 configures the convergence which we 

were already aware  

(c) for   ,
4

10
2/1

4 
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x
xg  for all [1.2] 

The bound on the magnitude  xg4
  is much smaller than the bound on the magnitude of  xg3

  

which explains the more rapid convergence using 4g  the other part of example 3 can be handled 

in a similar manner. 

 

REMARK: If g is invertible then P is a fixed point of g  if and only if q is a fixed point 

of 
1g , in view of this fact, sometimes we can apply the fixed point iteration method for 

1g  

instead of g .For understanding, consider 213)(  xxg then 3)(, xg  for all x . So the fixed 

point iteration method may not work. However, 7
3

1
);(1  xxg  and in this case 

3

1
)()( ,1  xg  

for all x . 
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