Fixed Point Iteration Method

Mehmet Karakaş
Sakarya University Vocational School of Sakarya 54100, Sakarya / TURKEY

Received:01.05.2013; Reviewed:10.06.2013; Accepted:23.09.2013

Abstract

We discuss the problem of finding approximate solutions of the equation $$
\begin{equation*} f(x)=0 \tag{1} \end{equation*}
$$

In some cases it is possible to find the exact roots of the equation (1) for example when $f(x)$ is a quadratic on cubic polynomial otherwise, in general, is interested in finding approximate solutions using some numerical methods. Here, we will discuss a method called fixed point iteration method and a particular case of this method called Newton's method

Keywords:

1. INTRODUCTION

In this section we consider methods for determining the solution to an equation expressed, for some functions g.in the form

$$
g(x)=x
$$

A solution to such an equation is said to be a fixed point of the function g. Let's we found a fixed point for any given g. Then every root finding problem could also be solved for example. The root finding problem $f(x)=0$ has solutions that correspond precisely to the fixed points of $g(x)=x$ when $g(x)=x-f(x)$. The first task, then, is to decide when a function will have a fixed point and how the fixed points can be determined. (In numerical analysis, "determined" generally means approximated to a sufficient degree of accuracy.)

EXAMPLE 1.

(a) The function $g(x)=x, 0 \leq x \leq 1$ has a fixed point at each x in $[0,1]$.
(b) The function $g(x)=x-\sin \pi$ has exactly two fixed points in $[0,1] . x=0$ and x $=1$. (see figure 1.1)
$g(x)$

Figure 1.1.
The following theorem gives sufficient conditions for the existence and uniqueness of a fixed point.

Theorem 1.1.

If $g \in[a, b]$ and $g(x) \in[a, b]$. then g has a fixed point in $[a, b]$. Further, suppose $g^{\prime}(x)$ exists on $[a, b]$ and then a positive constant $k<1$ exists with

$$
\begin{equation*}
\left|g^{\prime}(x)\right| \leq k<1 \quad \text { for all } x \in(a, b) \tag{1.1}
\end{equation*}
$$

Then g has a unique fixed point p in $[a, b]$. (see figure 1.1)

Figure 1.1.
Proof: if $g(a)=a$ or $g(b)=b$, the existence of a fixed point is obvious. Suppose not; then it must be true that $g(a)>a$ and $g(b)<b$. Decline $h(x)=g(x)-x$. Then his continuous on [$a, b]$ and
$h(a)=g(a)-a>0, h(b)=g(b)-b<0$
The intermediate value theorem implies that there exists $p \in(a, b)$ for which $h(p)=0$ thus, $g(p)-p=0$ and p is a fixed point of g .
Suppose in addition that inequality (1.1) holds and that p and q are both fixed points in $[a, b]$ with $p \neq q$. by the mean value theorem a number ξ exists between p and q. And hence in $[a, b]$ with.
$|p-q|=|g(p)-g(q)|=\left|g^{\prime}(f)\right||p-q| \leq k|p-q|<|p-q|$
Which is a contradiction this contradiction must come from the only supposition $p \neq q$.hence $p=q$ and the fixed point in $[a, b]$ is unique

EXAMPLE 2.

(a) Let $g(x)=\left(x^{2}-1\right) / 3$ on $[-1,1]$ using the extreme value theorem, it is easy to show that the absolute minimum or g occurs at $x=0$ and $g(0)=-\frac{1}{3}$. Similarly. The absolute maximum of g occurs at $x= \pm 1$ and has the value $\mathrm{g}(\pm 1)=0$.moreover. g is continuous and
$\left|g^{\prime}(x)\right|=\left|\frac{2 x}{3}\right| \leq \frac{2}{3} \quad$ for all $x \in[-1,1]$.
So g satisfies the hypotheses of theorem 1.1 and has a unique fixed in $[-1,1]$.
In this example the unique fixed point p in the interval $[-1,1]$ can be determined exactly. If
$P=g(p)=\frac{p^{2}-1}{3}$, then $p^{2}-3_{p}-1=0$
Which by the quadratic Formula implies that?
$p=\frac{3-\sqrt{13}}{2}$.

Figure 1.2.
That g also has a unique fixed point $p=(3+\sqrt{(13)} / 2$ for interval $[3,4]$ forever $g(4)=5$ and $g^{\prime}(4)=\frac{1}{3}>1$: so g does not satisfy their hypotheses of theorem 1.1 this shows that the hypotheses of theorem 1.1 sufficient guarantee a unique fixed point, but are not necessary. (see figure 1.2).
$G(x)=3^{-x}$. since $g^{\prime}(x)=-3^{-x} \ln 3<0=o n[.0 .1]$, the function this decreasing [0,1] hence g (1) $=\frac{1}{3} \leq g(x) \leq 1=g(0)$ for $0 \leq x \leq 1$. this for $x \in[0,1] g(x) \in[0,1]$ therefore, g has a fixed point in $[0,1]$ since
$g^{\prime}(0)=-$ in $3=-1.098612289$
$f(x) \not \leq 1$ on $[0,1]$ theorem 1.1 cannot be used determinant unequation forever g is decreasing so it is clear that the fixed point must the unique (see figure 1.3)

Figure 1.3.
Approximate point of a function g, we choose an initial information p and sequence $\left\{p_{n}\right\}^{1}{ }_{n}=0$ by letting $p_{n}=q\left(p_{n-1}\right) h n \geq 1$ if the for p and g is continuous then by

Theorem 1.2

$p=\lim p_{n}=\lim g\left(p_{n-1}\right)=g\left(\lim p_{n-1}\right)=g(p)$
$\mathrm{n} \rightarrow \infty$
$\mathrm{n} \rightarrow \infty$
$\mathrm{n} \rightarrow \infty$
and a solution to $x=g(x)$ is obtained this technique is called fixed - point or functional iteration the procedure is detailed in algorithm 1.2 and described in figure 1.4

Figure 1.4

Figure 1.5

FIXED - POINT ALGORITHM 1

To find a solution to $p=g(p)$ given an initial approximation p_{0} : INPUT initial approximation p_{0}; tolerance TOL; maximum number of iterations no: OUTPUT approximate solution p or message failure.
Step 1 set $\mathrm{i}=1$.
Step 2 white $\mathrm{i} \leq \mathrm{N}_{0}$
Step 3 set $p=g\left(p_{0}\right)$. (compare p .)
Step 4 if $\left|p-p_{0}\right|<T O L$ then

OUTPUT (P), (Procedure completed successfully)
STOP.
Step 5 set $\mathrm{i}=\mathrm{i}+1$.
Step 6 set $p_{0}=\mathrm{p}$. (Update $\left.p_{0}\right)$
Step 7 OUTPUT (Method failed after N_{0} iterations $N_{0}=N_{0}$;
(Procedure completed unsuccessfully.)
STOP.
To illustrate the technique of functional iteration consider the following example.

EXAMPLE 3.

a) Let us take the problem given where $g(x)=\frac{1}{7}\left(x^{3}+2\right)$. Then $g:[0,1] \rightarrow[0,1]$ and $\left|g^{\prime}(x)\right|<\frac{3}{7}$ for all $x \in[0,1]$. Home by the previous theorem sequence P_{n} defined by the process $P_{n+1}=\frac{1}{7}\left(P_{n}^{3}+2\right)$ converges to a root of $x^{3}-7 x+2=0$
b) Consider $f:[0,2] \rightarrow R$ defined by $f(x)=(1+x)^{\frac{1}{5}}$. Observe that f maps $[0,2]$ onto itself. Moreover $\left|f^{\prime}(x)\right| \leq \frac{1}{5}<1$ for $x \in[0,2]$. By the previous theorem the sequence $\left(P_{n}\right)$ defined by $P_{n+1}=\left(1+P_{n}\right)^{1 / 5}$ converges to a root of $x^{2}-x-1=0$ in the interval [0,2]
In practice, it is often difficult to check the condition $f([a, b] \leq[a, b])$ given in the previous theorem. We now present a variant of theorem.
Theorem 1.2. (Fixed point theorem) let $g \in[a, b]$ and suppose that $g(x) \in[a, b]$ for all x in $[a, b]$. further,
Suppose g^{\prime} exists on $[a, b]$ with
$\left|g^{\prime}(x)\right| \leq k<1 \quad$ for all $x \in(a, b)$
If p_{0} is any number in $[a, b]$ then the sequence defined by

$$
p_{n}=g\left(p_{n}-1\right) \quad n \geq 1
$$

Converges to the unique fixed point p in $[a, b]$
Proof by theorem 1.1 a unique fixed point exist in $[a, b]$ since g maps $[a, b]$ into itself the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ is defined for all $n \geq 0$ and $p_{n} \in[a, b]$ for all n. Using inequality and the mean value theorem.
$\left|p_{n}-p\right|=\left|g\left(p_{n}-1\right)-g(p)\right|=\left|g^{\prime}(\xi)\right|\left|p_{n-1}-p\right| \leq k\left|p_{n-1}-p\right|$.
Where $\xi \in(a, b)$ applying inequality (1.3) inductively gives:
$\left|p_{n}-p\right| \leq k\left|p_{n-1}-p\right| \leq k^{2}\left|p_{n-2}-p\right| \leq \ldots \ldots . \leq k^{n}\left|p_{0}-p\right|$.
Since $k<1$,
$\lim \left|p_{n}-p\right| \leq \lim k^{n}\left|p_{0}-p\right|=0$
$n \rightarrow \infty \quad n \rightarrow \infty$
and $\left\{p_{n}\right\}_{n=0}^{\infty}$ converges to p.
Corollary 1.3 If g satisfies the hypotheses of theorem $1.2 a$ bound for the error involve in using p_{n} to apporoximate p is given by.
$\left|p_{n}-p\right| \leq k^{n} \max \left\{p_{0}-a, b-p_{0}\right\} \quad$ for all $n \geq 1$.
Proof from inequality,
$\left|p_{n}-p\right| \leq k^{n}\left|p_{0}-p\right| \leq k^{n} \max \left\{p_{0}-a, b-p_{0}\right\}$,
Since $p \in[a, b]$.
Corollary 1.4 If g satisfies the hypotheses of theorem 1.2 , then
$\left|p_{n}-p\right| \leq \frac{k^{n}}{1-k}\left|p_{0}-p_{1}\right|$ for all $n \geq 1$
Proof for $n \geq 1$ the procedure used in the proof of theorem 1.2 implies that

$$
\left|p_{n+1}-p_{n}\right|=\left|g\left(p_{n}\right)-g\left(p_{n-1}\right)\right| \leq k\left|p_{n}-p_{n-1}\right| \leq \ldots \leq k_{n}\left|p_{1}-p_{0}\right|
$$

Thus, for $m>n \geq 1$
$\left|p_{m}-p_{n}\right|=\left|p_{m}-p_{m-1}+p_{m-1}-\ldots+p_{n+1}-p_{n}\right|$
$\leq\left|p_{m}-p_{m-1}\right|+\left|p_{m-1}-p_{m-2}\right|+\ldots+\left|p_{n+1}-p_{n}\right|$
$\leq k^{m-1}\left|p_{1}-p_{0}\right|+k^{m-2}\left|p_{1}-p_{0}\right|+\ldots+k^{n}\left|p_{1}-p_{0}\right|$
$=k^{n}\left(1+k+k^{2}+\ldots .+k^{m-n-} 1\right)\left|p_{1}-p_{0}\right|$
By theorem 1.2, lim. $p_{m}=p$ so

$$
m \rightarrow \infty
$$

$\left|p-p_{n}\right|=\lim \left|p_{m}-p_{n}\right| \leq k^{n}\left|p_{1}-p_{0}\right| \sum_{p=0}^{\infty} k^{p}=\frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right|$
$m \rightarrow \infty$
Both corollaries relate the rate of convergence to the bound k on the first derivate it is clear that the rate of convergence depends on the factor $k^{n}(1-k)$ and that the smaller k can be made the faster the convergence the convergence may be very slow if k is close to 1.In the following example the fixed-point methods in example 3 are reconsidered in light of the results described in theorem 1.2.

EXAMPLE 4.

(a) When $g_{1}(x)=x-x^{3}-4 x^{2}+10, g_{1}^{\prime}(x)=13 x^{2}-8 x$. Then is no interval $[a, b]$ containing p for which $\left|g_{1}^{\prime}(x)\right|<1$ though theorem (1.2) does not guarantee that the method must fail for this choice of g, there is no reason to expect convergence.
(b) With $g_{2}(x)=[(10 / x)-4 x]^{1 / 2}$, we can see that p_{2} does not map [1,5] into [1,2] and the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ is not defined with $p=1.5$ moreover there is no interval containing such that $\left|g_{2}^{\prime}(x)\right|<1, \quad$ since $\left|g_{2}^{\prime}(p)\right| \approx 3.4$
(c) for the function $g_{3}(x)=\frac{1}{2}\left(10-x^{3}\right)^{1 / 2}$
$g_{3}(x)=-\frac{3}{4} x^{2}\left(10-x^{3}\right)^{-1 / 2}<0 \quad$ on $[1,2]$,
So g is strictly decreasing on $[1,2]$ however, $\left|g_{3}^{\prime}(2)\right| \approx 2.12$, so inequality (1.2) does not hold on $[1,2]$. A closer examination of the sequence $\left\{p_{0}\right\}_{n=0}^{\infty}$ starting with $p_{0}=1.5$ will show $g_{3}^{\prime}(x)<0$ and g is strictly decreasing but additionally,
$1<1.28 \approx g_{3}(1.5) \leq g_{3}(x) \leq g_{3}(1)=1.5$
For all $x \in[1,1.5]$ this shows that g_{3} maps the interval $[1,1.5]$ into itself. Since it is also true that $\left|g_{3}^{\prime}(x)\right| \leq\left|g_{3}^{\prime}(1.5)\right| \approx 0.66$ on this interval, theorem 1.2 configures the convergence which we were already aware
(c) for $g_{4}(x)=\left(\frac{10}{4+x}\right)^{1 / 2}$,
$\left|g_{4}^{\prime}(x)\right|=\left|\frac{-5}{\sqrt{10}(4+x)^{3 / 2}}\right|<\frac{5}{\sqrt{10}(5)^{3 / 2}}<0.15 \quad$ for all [1.2]
The bound on the magnitude $g_{4}^{\prime}(x)$ is much smaller than the bound on the magnitude of $g_{3}^{\prime}(x)$ which explains the more rapid convergence using g_{4} the other part of example 3 can be handled in a similar manner.

REMARK: If g is invertible then P is a fixed point of g if and only if q is a fixed point of g^{-1}, in view of this fact, sometimes we can apply the fixed point iteration method for g^{-1} instead of g.For understanding, consider $g(x)=3 x-21$ then $\left|g^{\prime}(x)\right|=3$ for all x. So the fixed point iteration method may not work. However, $g^{-1}(x) ;=\frac{1}{3} x+7$ and in this case $\left|\left(g^{-1}\right)^{\prime}(x)\right|=\frac{1}{3}$ for all x.

REFERANCES

[1] Aho A.V., Hopcroft J.E. and Ullman J.D. (1974) The desing and analysis of computer algoritdms addıson Wesley.reading mass. 470 pp . Qa76.6.A. 36
[2] Ames W.F (1977) Numerial methods for partial differential equations (second edition).Academic pres. New York: 365 pp. QA374 A46
[3] Bailey N.I.J (1967) The mathematical approach to bıology and medicine john wiley\&sons london: 296 pp . QH324 B28
[4] Bailey N.T.J (1957) The mathematical theory of epidemics c.griffin.london: 194 pp. RA652.B3
[5] Bailey P.B., Shampine L.F and Waltman P.E. (1968) Nonlinear two-point boyndary talue problems academic pres New York:171 pp. QA372 B27
[6] Bartle R (1976) the elements of real analsysis (second edition) John wiley\&sons New York: 480 pp. QA300.B29
[7] Bekker R.G. (1969) Introduction to terrain vehicle systems. University of Michigan pres An Arbor.Mich: 846 pp. TL243.B39
[8] Barnadelli H. (1941) "Population Waves" journal of the Burma Research society: 31, 118
[9] Birkhoff G. and C.De Boor (1964) "Error bounds for spline interpolation" Journal of mathematics and mechanics 13.827-836
[10] Birkhoff G. and Lynch R.E. (1984) Numerical solution of elliptic problems SIAM publications Philadelphia. Pa: 320 pp. QA374.B57
[11] Birkhoff G. and Rota G. (1978) Ordinary differential equations.john wiley\&sons New York: 342 pp. QA372.B58
[12] Bracewel R. (1978) The fourier transform and its application (second edition). McGaw Hill.New York: 444 pp. QA403.5.B7
[13] Brent R. (1973) Algorithms for munimuzation without derivatives. prentice-hall. Englewood cliffs.n.j. 195 pp. QA403.5.B7
[14] Brigham E.O. (1974) The fast fourier transform prentice-hall.englewood cliffs.NJ; 252 pp. QA403.B74
[15] Brogan W.L. (1982) Modern control theory prentice-hall.englewood cliffs.N.J; 393 pp . QA402.3.B76
[16] Brown K.M. (1969) "A quadratically convergent Newton-like method based upon Gaussian elimination" SIAM journal on numerical analysis 6.no 4.560-569.
[17] Broyden C.G. (1965)"A class of methods for solving nonlinear simultaneous equations."mathematics of computation.19.577-593
[18] Belirsch R (1964) "Bemerkungen zur romberg-integration" numerische mathematik 6.6.16
[19] Fehlberg E. (1964) "New high-order Runge-Kutta formulas with step-size control for systems of first-and second-order differential equations" Zeitschrift für angewandte mathematic and mechanic. 44.17-29.
[20] Fehlberg E. (1966) "New high-order Runge-Kutta formulas with an arbitrarily small truncation error" Zeitschrift für angewandte mathematic and mechanic. 46.1-16.
[21] Fehlberg E. (1970) "Klassche Runge-kutta formeln vierter und niedrierer ordnung mit schrittweiten-kontrolle und ihre anwendung auf warmeleitungsprobleme" Computing 6.61-71.
[22] Fix G. (1975) "A survey of numerical methods for selected problems in continuum mechanics"procedings of a conference on numerical methods of ocean circulation national academy of sciences durham N.H.october 17.20. 1972, 268-283
[23] Forsythe G.E., Malcolm M.A. and Moler C.A. (1977) Computer methods for mathematical comtations.Prentice-hall.englewood cliffs NJ: 259 pp. QA297.F568.
[24] Forsythe G.E. and Moler C.B. (1967) Computer solution of linear algebraic systems.prentice-hall.Englewood cliffs.NJ; 148 pp. QA297.F57
[25] Fulks W. (1978) Advanced calculus (third edition). john wiley\&sons. New York; 731 pp. QA303 F568
[26] Garcia C.B. and Gould F.J. (1980) "Relations between several path-following algorithms and local and global Newton methods" SIAM Review; 22, No.3, 263-274.
[27] Gear C.W. (1971) Numarical initial-value problems in ordinary differential equations.pretice-hall, Englewood cliffs, N.J: 253 pp. QA372.G4
[28] Gear C.W. (1981) "Numerical solution of ordinary differential equations: Is there anything left to do?" SIAM review; 23 No.1, 10-24
[29] George J.A. (1973) "Nested dissection of a regular finite-element mesh" SIAM journal on numerical analysis 10 , No.2, 345-362
[30] George J.A. and Liu J.H. (1981) Computer solution of large sparse positive difinite systems. prentice-hall englewood cliffs NJ; 324 pp. QA188.G46
[31] Gladwell I. and Wait R. (1979) A survey of numerical methods for partial differential equations. oxford university pres; 424 pp . QA377.S96
[32] Golub G.H. and Van Loan C.F. (1963) Matrix computations john Hopkins university press Baltimore; 476 pp. QA188.G65
[33] Gragg W.B. (1965) "On extrapolation algorithms for ordinary initial-value problems" SIAM Journal on numerical analysis, 2, 284-403.
[34] Hageman L.A. and Young D.M. (1981) Applied iterative methods. Acedemic pres. New York; 386 pp. QA297.8.H34
[35] Hamming R.W. (1973) Numerical methods for scientists and engineers (second edition). McGraw-hill, New York; 721 pp. QA297.H28
[36] Hatcher T.R. (1982) "An error bound for certain successive overrelaxation schems" SIAM journal on numerical analysis.19. No.5.930-941.
[37] Henrici P. (1962) Discrete variable methods in ordinary differential equations john Wiley\&sons New York; 407 pp. QA372.H48
[38] Householder A.S. (1970) The numerical treatment of a single nonlinear equation McGraw-Hill, New York; 216 pp. QA218.H68
[39] Watkins D.S. (1982) "Understanding the QR algorithm" SIAM review. 24. No.4, 427-44
[40] Wendroff B. (1966) Theoretical numerical analysis academic pres New York; 2 pp.QA297.W43
[41] Wilkinson J.H. (1963) Rounding errors in algebraic processes H.M. stationery Office london; 161 pp . QA76.5.W53
[42] Wilkinson J.H. and Reinsch V. (1971) Hanbook for automatic computation. Volume linear algebra. springer-verlag. Berlin;439 pp. QA251.W67
[43] Wilkinson J.H. (1965) The algebraic eigenvalue problem. clarendon pres.oxford; 64 pp.QA218.W5
[44] Winograd S. (1978) "On computing the discrete fourier transform" mathematics computation, 32, 175-199
[45] Young D.M. and Gregory R.T. (1972) A survey of numerical mathematics vol. addisonwesley; reading.mass, 533 pp. QA297.Y63.
[46] Young D.M. (1971) Iterative solution of large linear systems. academic pres, New York; 5 pp. QA195.Y68
[47] Ypma T.J. (1983) "Finding a multiple zero by transformation and Newton -like methods SIAM Review, 25, No.3, 365-378
[48] Zienkiewicz O. (1977) The finite-element method in engineering science. McGraw-hill london; 787 pp.TA640.2.Z5.

