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Abstract

Surfaces in 4-dimensional Euclidean space are #reerplization of classical surfaces.
They are important for construct geometric modelsoffaces taking projections of
lower dimensional cases. The Grassmann image daces are also important for
theoretical physics. In the present study we canstdnsor product surfaces in 4-
dimensional Euclidean spad®’. We give necessary and sufficient conditionsgosdr
product surfaces whose Grassmann images lay oprttict of two spheres.
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R de tensor carpim yiizeylerinin Grassmann gorritiiler

Ozet

4-boyutlu OKlid uzayindaki yiizeyler klasik ylzegldsir genellgtiriimesidir. Daha
disik boyutlu durumlarda ylzeylerin izdimiG alinarak ylzeylerin geometrik
modellemesi de 6nemlidir. Ayrica yuzeylerin Graggmgoruntileri teorik fizikte de
onem taimaktadir. Bu calimada 4- boyutlu Oklid uzayinda tensor carpim yierayih
Grassmann goruntileri ele alinghr. Tensor carpim yilzeylerinin  Grassmann
gorantisunun iki kiirenin carpimi olmasi icin gevekyeterartlar verilmistir.
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1. Introduction

Let M and N be two differentiable manifolds and
f:M—>E"h:N—>E"
two immersions. The tensor product map is defined b

(f ®h)(p.q) = f(p)®h(q).

Necessary and sufficient conditions fof ® h) to be an immersion were obtained in

[7]. Further, tensor products of spherical and eguant immersions were studied in [6]
by F. Decruyenaere, F. Dillen, L. Verstraelen arMdithai. For many immersions f, h
which are not transversal, the tensor prodydt®h)is still worthwhile to be

investigated and in many cases still produces amersion. Tensor product surfaces of
Euclidean plane curves were studied in [4] andbjpihe lon Mihai and B. Rouxel see
also [8] and [2].

Let be M" a regular submanifold iR™* given with the isometric immersion
f:DcR">M"cR™,

one can take some unit normal vector n(x) at eagfit xe M" and make it a begin at a
fixed point o inRR™®. When x varies inM", the end point of n(x) describes some
submanifold in the spheree S™*. This submanifold is called trspherical image of
the M". Instead ofn, one can take the normal spabk of dimension d. SinceN,

depends on x, then it is possible to say tNatis a space function om". Draw a d-

dimensional space N through the fixed point &jih® such that N is parallel t&\, .
Consequently, N belongs to set of all d-dimensigfahes which pass through the fixed
point 0 in R™*. The set of all d-dimensional planes that passutin the origin
0e R™ compose &rassman manifol@(n,n+d).

Consequently, the d-dimensional plane in EuclidgaaceR™" which passes through
the fixed point o0 inR™ is called the point in a Grassmann manifold. Deraopoint in
G(n,n+d) by p. Now, one consider the correspondencex — p. Since the image of

Y is located in a Grassmann manifaB{n,n+d),¥ is naturally called &rassmann
mapping(in analogy to spherical and the imagém ") is called theGrassmann image

of the submanifoldv". Other names such g@eneralized imager tangentially image
are used [1]. This paper is organized as followsséction 2 we give some basic
concepts of the Grassmann manif@d24). Using the Plucker relations it can be seen

that the Grassmann manifol(2,4) is isometric to product manifold of two unit spler
s? and s2 (as a smooth manifold). In Section 3 we consiter Grassmann image of
surfaceM? in R*. We also give the parametrization of the imagehef Grassmann
mapping
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¥:M2 G (24)

for a given surfaceM? in R*. In the final section we obtained some originalits of
the tensor product surfac&. Furthermore, we give the necessary and sufficient
conditions for the product surfaces whose Grassrimaages lay on the product of two
spheres.

2. Grassmann manifold G(2,4)

Let x be Cartesian coordinates Rf. The 2 dimensional plane N can be represented by

a pair £, n of mutually orthogonal unit vectors in this plari@onsider the ordinary
bivector

p=<SAn (1)
with Pliicker coordinates

S S

P =
mon,

, By =—P;.1<si<j<4 (2)

where & andz, are components of andr, respectively.

There are six Pllcker coordinatgs,,, ps, Pu, Pos Posr Psg)- It IS €asy to check thap,

stay unchanged under a rotation of the bdsig; in N. The set of Pliicker coordinates
(Pi2s Puss Pua» Poss Poas P2s) fOrms the radius vector p of the correspondingnpaif a

manifold G (24) embedded in 6-dimensional Euclidean sp&e The coordinates of
the point p ofG (2,4) satisfy the two equation®I{icker relation¥ (see [3]);

(F1) (p,p)=> p% =1 3)

i<j
(F2) Pi2Pss + PigPos t+ PraPas = 0. (4)
Consider a bivector
g=7A0L (5)

defined by the planeN* complementary to p, such tkay,z,0 form a positive
oriented basis irR*. Sg the scalar produ¢p. d) = 0. Consequently, the componerds
of the g can be represented in termsppf Namely,

65



DEMIJRBAS E., ARSLAN K.

Qo = Pay

Oz =—Pos

Qs : P23 (6)
Oz3 = Pus

020 = —Pis

Gss = Pr2

(See, [1]). The end point of the vector p with cam@nts (p.,, Pis P Posr Pos Pas)

attached to the origin determined the pointRh Various points obtained in that way
and the coordinates of which satisfy (3) and (4 lacated in some algebrdiour-
dimensional submanifoldn R®. That submanifold is the Grassmann manifold
G (2,4)immersed inR°®.

Denote byp,,, Pis, Pu» Pos Pos Pas the Cartesian coordinates Rf from the gradients of
the Plucker relations one can determine two nowh#ie submanifolds (24):

1
EgradFl :(p12! Piss Pias Pass Paas p34): p

1
E grasz = ( Paar= P24y Pozs Prar— P p12) =0

Since/p,q)=0, these normals are mutually orthogonal and unigcabse
(p,p)=(q,q)=1. Equation (3) means tha®(24) located in the 5-dimensional unit

sphere S°, also ¢ is the normal tcS°.The metric of G(24)is induced by the
embedding inR® (See, [1]).

From the Plicker relations (3) and (4) we can baethe Grassmann manifold(2,4)
is isometric to product manifold of two unit sphe® and S? (as a smooth manifold),
i.e., G(24) = S?x S.. The unit normal vectors of the unit sph&8gand S? as

&=Piut P Th =P Psy
&= Piat Pazs 7, = Pz~ Paz (7)
$3= Pt Paas M5 = Pra— Pog

and using the Plucker relations we get
3 3

Z‘fiz = Zniz =1
1 1

One can consider a standard immersion of the pto§e S; < R%;
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X2+ X % =1

(8)
XX X =1
Consequently this product can be parametrizedaridlhowing way;
X, =COU,, X, = COSU,
X, =siny, sinu,, X, = sinu, sinu, 9)

X, =Sinu, CoU,, X, = Sinu, cosu,

(see [3]). Hence, for a spherical surface SRihthe position vectolx, x,,x,) can be
considered as a normal vector of the surface. Towere

& =cody,, 7, = COSU,
&, =sinu, sinu,, 7, = sinu, sinu, (10)
&, =siny, cosy,, 77, = Sinu, Cosu,

holds.

3. Grassmann image of a surface
Let M2 R* be a regular curve given with a regular patch
x:DcR* >R

The tangent spaceM2of M? at point x(u,v) is spanned by the vectors

OX oX
== x =—, 11
=20 %= (11)

Using the Gram Schmidt orthonormalization procesthé vectorsx,, X, we obtain the
following orthonormal vectors

X
e =—"—
Jou
=——7=(91:% — 912%,)
% \/g_n\/a llxv 12Xu

where g; denotes the metric tensor bf* and g = det(g; ).

[ERN

Let N be a plane parallel tt?\*of M2 If the normal planeN* is spanned by the
orthonormal vectorsy,n, then the bivector p is of the forp=n An,.
Sincen,(u,v),n,(u,v) are vector functions of u and v then the imaga Grassmann

mapping
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Y:M" > G(24); x(u,v)— Y(x(u,v)) = p(u,v)

is in general some two dimensional surfa@ewhich is located in the submanifold
G (24) . The unit bivector

q=" JAEXV (12)

is the complement of pFurther, the normal space of the Grassmann subabanif
G (24) (of the surfacem?) at point p is spanned by

X AX,

g=—"+—=",p=n_AN,. (13)
\/a 2
So, the image of the Grassmann mappihgM > > G @& the parametrization
Pr2 U,
Prs — Oy
_ _ Pra | Y3
x(u,v) > Y(x(u,v)) = p(u,v) = = : (24)
p23 ql4
P24 — O3
p34 q12
3. Results

In the following section, we will consider the tensproduct immersions, actually
surfaces inR*, which are obtained from two Euclidean plane carvé/e recall
definitions and results of [7]. Lat : R— R? andc, :R— R® be two Euclidean curves.
Put ¢ (u) = (A(u),é6(u)) and c,(v) =(a(v),5(v)) then their tensor product surface is
given by patch

x=¢®c,:R* >R

(15)
x(u,v) = (@(V)A(u), BV AU),a(V)é(u), BV)6(u))

(see [8] and [6]). If we takec, as an unit plane circle centered at 0 and
C, (V) = (a(v), B(v)) is an Euclidean plane curve. Then the surfacehgagcomes

M 22 x(u,V) = (ex(V) cosu, S(V) cosu, ex(V) sinu, (V) sinu). (16)

The tangent space o * is spanned by
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X, = (—asinu,—gsinu,a cosu, Scodl),
X, = (a’coqu, f'coqu,a’sinu, 4'sinu).

Hence the coefficients of first fundamental forntloé surface are

G =(X, %) ="+
912=<)$’X/> =0 J17
922:<)§n)§/> =(@)*+(BY".

We obtain the following result.

Proposition 1.Let M? be tensor product surface given with the paramagtdn (16).
Then the Grassmann imagfeof M? has the parametrization

(aff’' —a'f) cosusinu
BB

—a'fsinu-a'fcos u (18)
—af'sinfu-a'fcos u

acx
(a'f —af")cosusinu

1
p(U,V) :Z

where 2* = g,,0,, — 95, is the Riemannian metric an 2.

Proof. This components}; of the bivectorq :% can be represented in terms of

By by
"—a'B)cosusin
0a2=p34=(aﬂ 0!,3/1 s
__p, =22
ql3 24 ﬂu
—affsinfu-a'fcosu
O = P2z = b 1 b (19)
—a'Bsinfu-a’fcosu
Oz = P = L p) b
oy =B
q24_ p13 l
af —a'f)cosusinu
Oss = p12=( s ,8/)1

So, substituting (18) into (14) we obtain (17).
As a consequence of Proposition 1 we obtain tHeviahg result.
Theorem 2.Let M? be a tensor product surface given with the panapagion (16). If

the Grassmann imagé’ has the parametrization (16) then the surfliceis a Clifford
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torus in R*.

Proof. Using (7) with (19) one can get

&= p12+p34:0’

&= p13+p42:ﬁ,3+0!0t’

_(@prap)

$3= Pt P= 2

and
Th= P Psu= (a'ﬂ—aﬂgsm(—ZU)

ad'+ BB
7= Pia— Py = A’B’B

_ (@/p-ap)cos(2u)

3= Prg— Poz= 2
For simplicity, if we take

pp - ad =g,
ac' + BB =0
—(aB+ap)=0,
oAf—aff =9

then

51: P, + p34=0
&= Pzt Pgp=

$3= Pt P =

RN N B

and

@sin2u)
A

)

M7= Piz— Psr= z

cos{2u)
N3=Piu— Po3= (pT

Th=Po— Psyu=

holds. For the values

¢ =constant and = 0we obtain a circle org;. So we get

af-af =c
aa'+ pp' =0.
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(20)

(21)

(22)

(23)

(24)

(25)
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Consequently these equalities show that the pleunrae c, (v) = (a(v), A(V)) is a circle
given with the parametrization

a(V)=r CO{(:Z)’

pW)=r sin((r:;/).

Hence the tensor product surfade€ becomes a Clifford torus.
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