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Abstract 
 
Surfaces in 4-dimensional Euclidean space are the generalization of classical surfaces. 
They are important for construct geometric model of surfaces taking projections of 
lower dimensional cases. The Grassmann image of surfaces are also important for 
theoretical physics. In the present study we consider tensor product surfaces in 4-
dimensional Euclidean space 4R . We give necessary and sufficient conditions for tensor 
product surfaces whose Grassmann images lay on the product of two spheres. 
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R4 de tensör çarpım yüzeylerinin Grassmann görüntüleri 
 
 
Özet 
 
4-boyutlu Öklid uzayındaki yüzeyler klasik yüzeylerin bir genelleştirilmesidir. Daha 
düşük boyutlu durumlarda yüzeylerin izdüşümü alınarak yüzeylerin geometrik 
modellemesi de önemlidir. Ayrıca yüzeylerin Grassmann görüntüleri teorik fizikte de 
önem taşımaktadır. Bu çalışmada 4- boyutlu Öklid uzayında tensör çarpım yüzeylerinin 
Grassmann görüntüleri ele alınmıştır. Tensör çarpım yüzeylerinin Grassmann 
görüntüsünün iki kürenin çarpımı olması için gerek ve yeter şartlar verilmiştir. 
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1. Introduction 
 
Let M and N be two differentiable manifolds and 
 

nm ENhEMf →→ :,:  
 
two immersions. The tensor product map is defined by 
 

).()(),)(( qhpfqphf ⊗=⊗  
 
Necessary and sufficient conditions for )( hf ⊗  to be an immersion were obtained in 
[7]. Further, tensor products of spherical and equivariant immersions were studied in [6] 
by F. Decruyenaere, F. Dillen, L. Verstraelen and I Mihai. For many immersions f, h 
which are not transversal, the tensor product )( hf ⊗ is still worthwhile to be 
investigated and in many cases still produces an immersion. Tensor product surfaces of 
Euclidean plane curves were studied in [4] and [5] by the Ion Mihai and B. Rouxel see 
also [8] and [2]. 
 
Let be nM  a regular submanifold in dnR +  given with the isometric immersion  
 

,: dnnn RMRDf +⊂→⊂  
 
one can take some unit normal vector n(x) at each point nMx∈  and make it a begin at a 
fixed point o in dnR + . When x varies in nM , the end point of n(x) describes some 
submanifold in the sphere 1−+∈ dnSx . This submanifold is called the spherical image of 
the nM . Instead of xn  one can take the normal space xN of dimension d. Since xN  

depends on x, then it is possible to say that xN  is a space function on nM . Draw a d-

dimensional space N through the fixed point o in dnR +  such that N is parallel to xN . 

Consequently, N belongs to set of all d-dimensional planes which pass through the fixed 
point o in dnR + . The set of all d-dimensional planes that pass through the origin 

dnRo +∈  compose a Grassman manifold ),( dnnG + . 
 
Consequently, the d-dimensional plane in Euclidean space dnR +  which passes through 
the fixed point o in dnR +  is called the point in a Grassmann manifold. Denote a point in 

),( dnnG +  by p. Now, one consider the correspondence .: px→Ψ  Since the image of 
Ψ is located in a Grassmann manifold ),( dnnG + ,Ψ  is naturally called a Grassmann 
mapping (in analogy to spherical and the image )( nMΨ  is called the Grassmann image 
of the submanifold .nM  Other names such as generalized image or tangentially image 
are used [1]. This paper is organized as follows: In section 2 we give some basic 
concepts of the Grassmann manifold ).4,2(G  Using the Plücker relations it can be seen 
that the Grassmann manifold )4,2(G  is isometric to product manifold of two unit sphere 

2
1S  and 2

2S  (as a smooth manifold). In Section 3 we consider the Grassmann image of 

surface 2M  in 4R . We also give the parametrization of the image of the Grassmann 
mapping 
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)4,2(: 2 GM →Ψ  
 
for a given surface 2M  in 4R . In the final section we obtained some original results of 
the tensor product surfaces 4R . Furthermore, we give the necessary and sufficient 
conditions for the product surfaces whose Grassmann images lay on the product of two 
spheres. 
 
 
2.  Grassmann manifold G(2,4) 
 
Let ix  be Cartesian coordinates in 4R . The 2 dimensional plane N can be represented by 

a pair ξ , η  of mutually orthogonal unit vectors in this plane. Consider the ordinary 
bivector  
 

ηξ ∧=p                  (1) 
 
with Plücker coordinates  
 

jiij
ji

ji

ij ppp −== ,ηη
ξξ

, 41 ≤<≤ ji                                    (2)      

                   
where iξ  and iη  are components of ξ  and η  respectively.  

 
There are six Plücker coordinates ).,,,,,( 342423141312 pppppp  It is easy to check that ijp  

stay unchanged under a rotation of the basis ξ , η  in N. The set of Plücker coordinates 
),,,,,( 342423141312 pppppp  forms the radius vector p of the corresponding point of a 

manifold )4,2(G  embedded in 6-dimensional Euclidean space 6R . The coordinates of 
the point p of )4,2(G  satisfy the two equations (Plücker relations) (see [3]);  
 
(F1) 1, 2

==∑
ji

ijppp
≺

                                                    (3)     

                                                                    
(F2) .0231424133412 =++ pppppp                                        (4)       

                  
Consider a bivector  
 

υτ ∧=q                                                                                (5) 
 
defined by the plane ⊥N  complementary to p, such that υτηξ ,,,  form a positive 

oriented basis in 4R . So the scalar product .0, =qp  Consequently, the components ijq  

of the q can be represented in terms of .ijp  Namely, 
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1234

1324

1423

2314

2413

3412

pq

pq

pq

pq

pq

pq

=

−=

=

=

−=

=

                                                                             (6) 

 
(See, [1]). The end point of the vector p with components ),,,,,( 342423141312 pppppp  

attached to the origin determined the point in 6R . Various points obtained in that way 
and the coordinates of which satisfy (3) and (4) are located in some algebraic four-
dimensional submanifold in 6R . That submanifold is the Grassmann manifold 

)4,2(G immersed in 6R . 
 
Denote by 342423141312 ,,,,, pppppp  the Cartesian coordinates in 6R  from the gradients of 

the Plücker relations one can determine two normal of the submanifold )4,2(G : 
 

( )
.),,,,,(

2

1

,,,,,
2

1

1213142324342

3424231413121

qppppppgradF

pppppppgradF

=−−=

==

 

 
Since 0, =qp , these normals are mutually orthogonal and unit, because 

.1,, == qqpp  Equation (3) means that )4,2(G  located in the 5-dimensional unit 

sphere ,5S  also q is the normal to .5S The metric of )4,2(G is induced by the 

embedding in 6R  (See, [1]).  
 
From the Plücker relations (3) and (4) we can see that the Grassmann manifold )4,2(G  

is isometric to product manifold of two unit spheres 2
1S  and 2

2S  (as a smooth manifold), 

i.e., .)4,2( 2
2

2
1 SSG ×≡  The unit normal vectors of the unit sphere 2

1S and 2
2S  as 

 

,

,

,

23143

42132

34121

pp

pp

pp

+=

+=

+=

ξ
ξ
ξ

           

23143

42132

34121

pp

pp

pp

−=

−=

−=

η
η
η

                             (7)          

       
and using the Plücker relations we get 
 

1
3

1

2
3

1

2
==∑∑ ii ηξ  

 
One can consider a standard immersion of the product ;62

2
2
1 RSS ⊂×  
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.1

1
2

6
2

5
2

4

2
3

2
2

2
1

=++

=++

xxx

xxx
                                                              (8) 

 
Consequently this product can be parametrized in the following way; 
 

,cossin

,sinsin

,cos

213

212

11

uux

uux

ux

=

=

=

436

435

34

cossin

sinsin

cos

uux

uux

ux

=

=

=

                                  (9) 

 
(see [3]). Hence, for a spherical surface S in 3R  the position vector ),,( 321 xxx  can be 

considered as a normal vector of the surface. Therefore 
 

,cossin

,sinsin

,cos

213

212

11

uu

uu

u

=

=

=

ξ
ξ
ξ

433

432

31

cossin

sinsin

cos

uu

uu

u

=

=

=

η
η
η

                            (10)  

 
holds. 
 
 
3.  Grassmann image of a surface 
 
Let 42 RM ⊂  be a regular curve given with a regular patch 
 

.: 42 RRDx →⊂  
 
The tangent space 2MTx of 2M  at point ),( vux  is spanned by the vectors 

 

,
u

x
xu ∂

∂= .
v

x
xv ∂

∂=                                                           (11) 

 
Using the Gram Schmidt orthonormalization process to the vectors vu xx , we obtain the 

following orthonormal vectors  
 

)(
1

1211

11

2

11

1

uv

u

xgxg
gg

e

g

x
e

−=

=

 

 
where ijg  denotes the metric tensor of 2M  and ).det( ijgg =  

 
Let N be a plane parallel to xN of .2M  If the normal plane xN  is spanned by the 
orthonormal vectors 21,nn  then the bivector p is of the form .21 nnp ∧=  
Since ),(),,( 21 vunvun  are vector functions of u and v then the image of a Grassmann 
mapping 
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),()),((),();4,2(: vupvuxvuxGM n =ΨΨ ��  

 
is in general some two dimensional surface 2Γ  which is located in the submanifold 

)4,2(G . The unit bivector 
 

g

xx
q vu ∧=                                                                        (12) 

 
is the complement of p. Further, the normal space of the Grassmann submanifold 

)4,2(G  (of the surface 2M ) at point p is spanned by 
 

., 21 nnp
g

xx
q vu ∧=

∧
=                                            (13) 

 
So, the image of the Grassmann mapping )4,2(: 2 GM →Ψ  has the parametrization 
 

.),()),((),(

12

13

14

23

34

34

34

24

23

14

13

12



















−

−
=



















==Ψ

q

q

q

q

q

q

p

p

p

p

p

p

vupvuxvux �           (14) 

 
 
3.  Results 
 
In the following section, we will consider the tensor product immersions, actually 
surfaces in 4R , which are obtained from two Euclidean plane curves. We recall 
definitions and results of [7]. Let 2

1 : RRc →  and 2
2 : RRc →  be two Euclidean curves. 

Put ))(),(()(1 uuuc δλ=  and ))(),(()(2 vvvc βα=  then their tensor product surface is 
given by patch  
 

))()(),()(),()(),()((),(

;: 42
21

uvuvuvuvvux

RRccx

δβδαλβλα=
→⊗=

                                                         (15) 

 
(see [8] and [6]). If we take 1c  as an unit plane circle centered at 0 and 

))(),(()(2 vvvc βα=  is an Euclidean plane curve. Then the surface patch becomes 
 

).sin)(,sin)(,cos)(,cos)((),(:2 uvuvuvuvvuxM βαβα=                          (16) 
 
The tangent space of 2M  is spanned by  
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).sin,sin,cos,cos(

),cos,cos,sin,sin(

uuuux

uuuux

v

u

βαβα
βαβα
′′′′=

−−=
 

 
Hence the coefficients of first fundamental form of the surface are 
 

.)()(,

0,

,

22
22

12

22
11

βα

βα

′+′==

==
+==

vv

vu

uu

xxg

xxg

xxg

                                                (17) 

 
We obtain the following result. 
 
Proposition 1. Let 2M  be tensor product surface given with the parametrization (16). 
Then the Grassmann image2Γ  of 2M  has the parametrization   
 



















′−′
′

′−′−
′−′−

′
′−′

=

uu

uu

uu

uu

vup

sincos)(

cossin

cossin

sincos)(

1
),(

22

22

βαβα
αα

βαβα
βαβα

ββ
βαβα

λ
                            (18)          

 
where 2

122211
2 ggg −=λ  is the Riemannian metric on .2M  

 

Proof. This components ijq  of the bivector 
λ

vu xx
q

∧
=  can be represented in terms of 

ijp  by 

 

λ
βαβα

λ
ββ

λ
βαβα

λ
βαβα

λ
αα

λ
βαβα

uu
pq

pq

uu
pq

uu
pq

pq

uu
pq

sincos)(

cossin

cossin

sincos)(

1234

1324

22

1423

22

2314

2413

3412

′−′==

′−=−=

′−′−==

′−′−==

′−=−=

′−′==

                                (19) 

 
So, substituting (18) into (14) we obtain (17).  
 
As a consequence of Proposition 1 we obtain the following result.  
 
Theorem 2. Let 2M  be a tensor product surface given with the parametrization (16). If 
the Grassmann image 2Γ  has the parametrization (16) then the surface 2M  is a Clifford 
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torus in 4R . 
 
Proof. Using (7) with (19) one can get  
 

,
)(

,

,0

23143

42132

34121

λ
βαβαξ

λ
ααββξ

ξ

′+′−=+=

′−′=+=

=+=

pp

pp

pp

                                        (20) 

 
and 
 

λ
βαβαη

λ
ββααη
λ
βαβαη

)2cos()(

)2sin()(

23143

42132

34121

u
pp

pp

u
pp

−′−′=−=

′+′=−=

−′−′=−=

                                       (21) 

 
For simplicity, if we take  
 

φβαβα
θβαβα

δββαα
ϕααββ

=′−′
=′+′−

=′+′
=′−′

,)(

,

                                                          (22)                  

    
then 
 

λ
θξ
λ
φξ

ξ

=+=

=+=

=+=

23143

42132

34121 0

pp

pp

pp

                                                                                                           

(23) 

 
and 
 

 

λ
ϕη
λ
δη

λ
ϕη

)2cos(

)2sin(

23143

42132

34121

u
pp

pp

u
pp

−
=−=

=−=

−
=−=

                                                                                                  (24)

          

holds. For the values  
=φ constant and 0=δ we obtain a circle on 22S . So we get 

 

.0=′+′
=′−′

ββαα
βαβα c

                                                                  (25) 
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Consequently these equalities show that the planar curve ))(),(()(2 vvvc βα=  is a circle 
given with the parametrization  
 

( ) .sin

,cos)(

2

2




=




=

r

cv
rv

r

cv
rv

β

α
 

 
Hence the tensor product surface 2M  becomes a Clifford torus. 
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