Paracompactness in Multiset Topological Spaces

Kadirhan POLAT

Ağrı İbrahim Çeçen Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, 04100, Ağrı kadirhanpolat@agri.edu.tr

Abstract

In this paper, we introduce the concept of paracompactness in multiset topological spaces. We give some useful results in m-paracompact m-topological spaces.

Keywords: multiset, m-topological spaces, paracompactness, m-paracompact m-topological spaces.

1. Introduction

Multi-set theory was introduced by Cerf et al. (1971) and then Peterson (1976), Yager (1986) and Jena (2001) made contribution to the theory further. Blizzard (1991) brought multi-set theory a new perspective and formalized the theory. Girish and Jacob (2012), introduced m-topology for multi-sets. El-Sheikh et al. (2015) introduced separation axioms for multi-set topological spaces. Tantawy et al. (2015) studied the concept of connectedness for multi-set topological spaces. Mahanta and Samanta (2017) studied the concept of compactness for multi-set topological spaces.

2. Preliminaries

We give some basic definitions (Girish and Jacob, 2012; Sobhy et al., 2015; Mahanta and Samanta, 2017).

Definition 1. Let $C_M : X \to \mathbb{N}$ a function where *X* is a set and \mathbb{N} the set of non-negative integers.

 $M \coloneqq \{C_M(x)/x : x \in X, C_M(x) > 0\}$

is called a multiset (or mset) drawn from X.

Revised: 14.09.2018

Accepted:25.09.2018

Corresponding author: Kadirhan Polat, PhD

Agri Ibrahim Cecen University, Faculty of Science and Letters,

E-mail: kadirhanpolat@agri.edu.tr

A mset *M* drawn from a set *X* is said to be an empty mset, denoted by ϕ , if $C_M(x) = 0$ for every *x* in *X*.

Notation 1. It is denoted by $x \in {}^n M$ the fact that M is a mset drawn for a set X and x appears n times in M.

Definition 2. The support set of a mset *M* drawn from a set *X*, denoted by M^* , is defined by $\{x \in X : C_M(x) > 0\}.$

Notation 2. $[M]_x$ denotes that *x* belongs to the M^* , and $|[M]_x|$ denotes the appearing number of *x* in *M*.

Definition 3. The set

 $[X]^m \coloneqq \{M : M \text{ is a mset drawn from } X \text{ and } \forall x \in X, C_M(x) \le m\}$ is called the multiset (or muct) space

is called the multiset (or mset) space.

Definition 4. Let $M, N \in [X]^m$.

1. M = N if, for every x in X, $C_M(x) = C_N(x)$ (mset equality condition), 2. $M \subseteq N$ if, for every x in X, $C_M(x) \leq C_N(x)$

2. $M \subseteq N$ if, for every x in X, $C_M(x) \leq C_N(x)$ (submset condition),

3. $M \cup N$ is defined by $C_{M \cup N}(x) \coloneqq \max\{C_M(x), C_N(x)\}$ for every x in X (mset union), 4. $M \cap N$ is defined by $C_{M \cap N}(x) \coloneqq \min\{C_M(x), C_N(x)\}$ for every x in X (mset intersection),

5. $M \bigoplus N$ is defined by $C_{M \bigoplus N}(x) := \min\{m, C_M(x) + C_N(x)\}$ for every x in X (mset addition)

6. $M \bigoplus N$ is defined by $C_{M \bigoplus N}(x) := \max\{0, C_M(x) - C_N(x)\}$ for every x in X (mset subtraction).

Definition 5. Let $M \in [X]^m$. The (absolute) complement of M is the mset M^c where $C_{M^c}(x) := m - C_M(x)$ for every x in X.

Definition 6. Let $M \in [X]^m$. The power mset of M denoted by P(M) is defined by

Received: 05.08.2018

Department of Mathematics, Agrı, Turkey

Cite this article as: K. Polat, Paracompactness in Multiset Topological Spaces, Eastern Anatolian Journal of Science, Vol. 4, Issue 2, 6-9, 2018.

$$C_{P(M)}(N) \coloneqq \begin{cases} 1 & N = \phi \\ \prod_{\chi \in N^*} \left(\frac{|[M]_{\chi}|}{|[N]_{\chi}|} \right) & N \neq \phi \end{cases}$$

where N is a submset of M.

The power set of a mset M, denoted by $P^*(M)$ is the support set of the power mset P(M).

Definition 7. Let $M \subseteq [X]^m$, that is, \mathcal{M} be a collection of msets in $[X]^m$, and $M^* = \{M^* : M \in \mathcal{M}\}$.

1. $\bigcup \mathcal{M}$ is defined by $C_{\bigcup \mathcal{M}}(x) \coloneqq \max\{C_M(x) : M \in \mathcal{M}\}$ for every x in X (generalized mset union), 2. $\cap \mathcal{M}$ is defined by $C_{\cap \mathcal{M}}(x) \coloneqq \min\{C_M(x) : M \in \mathcal{M}\}$ for every x in X (generalized mset intersection),

3. $\bigoplus \mathcal{M}$ is defined by $C_{\bigoplus \mathcal{M}}(x) := \min\{m, \sum_{M \in \mathcal{M}} C_M(x)\}$ for every x in X (generalized mset addition).

Definition 8. Let $M \in [X]^m$ and $\tau \subseteq P^*(M)$. τ is called a multiset topology (or m-topology) on M, an ordered pair (M, τ) a multiset topological space (or m-topological space) if τ satisfies the following conditions:

1. $\emptyset, M \in \tau$,

2. For every $\mathcal{G} \subseteq \tau$, $\bigcup \mathcal{G} \in \tau$,

3. For every finite $\mathcal{G} \subseteq \tau$, $\cap \mathcal{G} \in \tau$.

Let (M, τ) be a m-topological space. Each mset $G \in \tau$ is called an open mset of M.

Definition 9. Let $M \in [X]^m$, (M, τ) be a mtopological space. A submost N of M with mtopology

 $\tau_N \coloneqq \{N \cap U : U \in \tau\}$ is called a subspace of *M*.

Definition 10. Let $M \in [X]^m$ and (M, τ) be a mtopological space. A submset $N \subseteq M$ is called a closed submset if $M \bigoplus N$ is an open mset.

Theorem 1. Let $M \in [X]^m$ and (M, τ) be a m-topological space. The followings hold:

1. The msets M, \emptyset are closed msets.

2. The intersection of arbitrarly many closed submsets of M is a closed mset.

3. The union of finitely many closed submsets of M is a closed mset.

Definition 11. Let $M \in [X]^m$ and (M, τ) be a mtopological space. A neighborhood of a mset $A \subseteq$ M is a submset N of M such that there exists an open mset U such that $A \subseteq U \subseteq N$. A neighborhood of an element $x \in^k M$ is a submset N of M such that there exists an open mset U such that $x \in^k U \subseteq N$.

Also, a neighborhood is called an open neighborhood if it belongs to τ .

Definition 12. Let $M \in [X]^m$, $A \subseteq M$ and (M, τ) be a m-topological space.

1. The interior of A, denoted by Int(A), is defined by

 $C_{Int(A)}(x) \coloneqq \max\{C_G(x) : G \text{ is open mset and } G \subseteq A\} \text{ for every } x \in X,$

or equivalently, $C_{Int(A)}(x)$

-C

 $\coloneqq C_{\bigcup \{C_G(x):G \text{ is open mset and } G \subseteq A\}} \text{ for every } x \in X,$ 2. The closure of *A*, denoted by Cl(A), is defined by

$$C_{Cl(A)}(x) \coloneqq \min\{C_K(x) \\ : K \text{ is closed mset and } A \\ \subseteq K\} \text{ for every } x \in X,$$

or equivalently,

$$C_{Cl(A)}(x)$$

 $:= C_{\bigcap\{C_K(x):K \text{ is closed mset and } A \subseteq K\}} \text{ for every } x \in X,$ 3. An element of $k/x \in M$ is called a limit point of an mset A if every neighborhood of k/x intersects A in some point with non-zero multiplicity other than k/x itself. We denote the mset of all limit points of A by A'.

Theorem 2. Let $M \in [X]^m$, $A \subseteq M$, $x \in^k M$ and (M, τ) be a m-topological space. Then $x \in^k Cl(A)$ if and only if every open mset U containing k/x intersects A.

Theorem 3. Let $M \in [X]^m$, $A, B \subseteq M$ and (M, τ) be a m-topological space. Then the following properties hold: $\forall x \in X$,

1. $C_A(x) \leq C_B(x) \Rightarrow C_{Int(A)}(x) \leq C_{Int(B)}(x),$ 2. $C_A(x) \leq C_B(x) \Rightarrow C_{Cl(A)}(x) \leq C_{Cl(B)}(x),$ 3. $C_{Int(A\cap B)}(x) = \min\{C_{Int(A)}(x), C_{Int(B)}(x)\},$ 4. $C_{Cl(A\cup B)}(x) = \max\{C_{Cl(A)}(x), C_{Cl(B)}(x)\}.$

Definition 13. Let $M \in [X]^m$. A collection $C \subseteq P^*(M)$ is said to cover M, or to be a cover of M if, $\forall x \in X$,

$$C_M(x) \leq C_{\cup \mathcal{C}}(x).$$

Definition 14. Let $M \in [X]^m$, \mathcal{C} be a cover of M. A subcollection \mathcal{C}^* of \mathcal{C} is called a subcover of \mathcal{C} for M that covers M if it is a cover of M.

Definition 15. Let $M \in [X]^m$, \mathcal{C} be a cover of M and τ a multiset topology on M. A cover \mathcal{C} is called an open cover of M if $\mathcal{C} \subseteq \tau$.

Definition 16. Let $M \in [X]^m$ and (M, τ) be a mtopological space. Then M is called m-compact if, for every open cover \mathcal{U} of M, there exists a finite subcover \mathcal{V} of \mathcal{U} for M.

Definition 17. Let $M \in [X]^m$ and (M, τ) be a m-topological space.

1. (M, τ) is called m- T_1 space if, for every $x_1 \in {}^{k_1}M, x_2 \in {}^{k_2}M$ such that $x_1 \neq x_2$, there exists open sets G, H such that $x_1 \in {}^{k_1}G \not\ni {}^{k_2}x_2$ and $x_1 \notin {}^{k_1}H \ni {}^{k_2}x_2$.

2. (M, τ) is called m- T_2 space or Hausdorff space if, for every $x_1 \in {}^{k_1}M, x_2 \in {}^{k_2}M$ such that $x_1 \neq x_2$, there exists open sets *G*, *H* such that $x_1 \in {}^{k_1}G$, $x_2 \in {}^{k_2}H$ and $G \cap H = \emptyset$.

3. (M, τ) is called m-regular space if, for every $x \in {}^{k} M$ and every closed mset *F* such that $x \notin {}^{k} F$, there exists open sets *G*, *H* such that $F \subseteq G$, $x \in {}^{k} H$ and $G \cap H = \emptyset$.

4. (M, τ) is called m- T_3 space if it is m-regular and m- T_1 space.

5. (M, τ) is called m-normal space if, for every pair of disjoint closed msets F_1 , F_2 , there exists open sets G, H such that $F_1 \subseteq G$, $F_2 \subseteq H$ and $G \cap H = \emptyset$.

6. (M, τ) is called m- T_4 space if it is m-normal and m- T_1 space.

3. M-Paracompact Multiset Topologies

Definition 18. Let $M \in [X]^m$, \mathcal{W} be a cover of M. A cover \mathcal{T} of M is called a refinement of \mathcal{W} if, for every mset T in \mathcal{T} , there exists some mset W in \mathcal{W} such that

 $C_T(x) \leq C_W(x), \forall x \in X.$

 \mathcal{T} is called an open refinement of \mathcal{W} if $\mathcal{T} \subseteq \tau$. We call \mathcal{T} a closed refinement of \mathcal{W} if \mathcal{T} is a collection of closed msets.

Definition 19. Let $M \in [X]^m$ and (M, τ) be a mtopological space. A collection $\mathcal{W} \subseteq P^*(M)$ is called locally finite if each $k/x \in M$ has an U open neighborhood (which intersects only finitely many msets in \mathcal{W}) such that, for every mset V in only a finite subcollection \mathcal{V} of \mathcal{W} ,

$$\mathcal{C}_{U\cap V}(y) > 0, \exists y \in X.$$

Proposition 1. Let $M \in [X]^m$, (M, τ) be a mtopological space and $\mathcal{W} \subseteq P^*(M)$. If \mathcal{W} is locally finite, then

 $\bigcup Cl(\mathcal{W}) = Cl(\bigcup \mathcal{W})$ where $Cl(\mathcal{W}) \coloneqq \{Cl(\mathcal{W}) : \mathcal{W} \in \mathcal{W}\}.$

Proof. Let $M \in [X]^m$ be a mset, (M, τ) a mtopological space and $\mathcal{W} \subseteq P^*(M)$ locally finite. From Definition 7(1), for each $W \in \mathcal{W}$, $C_W(x) \leq$ $C_{\cup W}(x), \forall x \in X$. Then, from Definition 3(2), for each $W \in W$, we have $C_{Cl(W)}(x) \leq C_{\cup Cl(W)}(x)$, $\forall x \in X$. Then $\max\{C_{Cl(W)} : W \in W\}$ is not greater than $C_{Cl(\cup W)}$ for every $x \in X$. Thus, from Definition 7(1) and Definition 4(2), $\bigcup Cl(W) \subseteq$ $Cl(\cup W)$.

Conversely, assume $x \in^k Cl(\bigcup W)$. Then, from the definition of multiset, $C_{Cl(\bigcup W)}(x) = k$. Since W is locally finite, we find an open mset U of k/xsuch that for every mset T in only a finite subcollection T of W, there exists some $y \in X$ such that $C_{U\cap T}(y) > 0$. Assume $C_{\bigcup Cl(W)}(x) < k$ which implies $x \notin^k \bigcup Cl(W)$. Then, from Definition 7(1), for every $W \in W$, $C_{Cl(W)}(x) < k$ and so $x \notin^k Cl(W)$. Set $V \coloneqq U \ominus \bigcup Cl(T)$ where $Cl(T) \coloneqq \{Cl(T) : T \in T\}$. From Definition 12(2) and Theorem 1(2), $\bigcup Cl(T)$ is a closed mset. Therefore, V is an open neighborhood of k/x since $V = U \ominus \bigcup Cl(T) = U \cap (\bigcup Cl(T))^c$.

On the other hand, the intersection of *V* with each mset *W* in *W* is an empty mset. Therefore *V* does not intersect $\bigcup W$, contrary to $x \in^k Cl(\bigcup W)$. Then we have reached this contradiction because of the assumption that $x \notin^k Cl(\bigcup W)$. So $x \in^k \bigcup Cl(W)$. Thus $Cl(\bigcup W) \subseteq \bigcup Cl(W)$.

Definition 20. Let $M \in [X]^m$ and (M, τ) be a mtopological space. *M* is called m-paracompact if every open cover of *M* has a locally finite refinement that covers *M*.

Proposition 2. Let $M \in [X]^m$, \mathcal{W} , \mathcal{T} be covers of M. If \mathcal{T} is a subcover of \mathcal{W} then \mathcal{T} is also a refinement of \mathcal{W} .

Proof. Let $M \in [X]^m$, \mathcal{W} be a cover of M and \mathcal{T} a subcover of \mathcal{W} . Then, $\mathcal{T} \subseteq \mathcal{W}$, that is, every mset T in \mathcal{T} is also in \mathcal{W} . If we take the mset W as T, then we say that for every mset $T \in \mathcal{T}$, there exists $W \in \mathcal{W}$ such that $T \subseteq W$. Thus, \mathcal{T} is a refinement of \mathcal{W} .

Conclusion 1. Let $M \in [X]^m$ and (M, τ) be a m-topological space. If *M* is m-compact then *M* is also m-paracompact.

Theorem 4. Let $M \in [X]^m$, $A \subseteq M$ and (M, τ) be a m-paracompact m-topological space. If A is closed then A is m-paracompact as a subspace of M.

Proof. $M \in [X]^m$ be a mset, (M, τ) be a m-topological space, $A \subseteq M$ and \mathcal{U} be an open cover

of *A*. Since *A* is a subspace of *M*, from Definition 9, for every $U \in U$, there exists a τ -open mset V_U such that $U = V_U \cap A$. Let \mathcal{V} be a collection which consists of the mset A^c and these msets V_U .

 \mathcal{V} is an open cover of M since these msets V_U are τ -open msets and A is an τ -closed mset. Then \mathcal{V} has a locally finite refinement, we say \mathcal{W} , because M is m-paracompact. Let $a \in A$. Since \mathcal{W} is locally finite, $a \in X$ has an open neighborhood G whose intersection with each msets W in only a finite subcollection S of \mathcal{W} is non-empty, that is, there exists an open neighborhood G of $a \in X$ such that $G \cap W \neq \emptyset$ for every msets W in only a finite subcollection S of \mathcal{W} .

Set $W_A := \{W \cap A : W \in \mathcal{W}, W \cap A \neq \emptyset\}$ and $S_A := \{W \cap A : W \in S, W \cap A \neq \emptyset\}$. Then there exists an open neighborhood *G* of $a \in A$ such that $G \cap W \neq \emptyset$ for every msets *W* in only the finite subcollection S_A of W_A and so W_A is locally finite. Since W is a refinement of V, for every mset $W \in$ W, there exists some mset *V* in V such that $W \subseteq$ *V*, that is, $C_W(x) \leq C_V(x)$ for every $x \in X$. In the case $V = V_U$, we have that $W \cap A \subseteq V_U \cap A =$ $U \in \mathcal{U}$. In the case $V = A^c$, since $W \subseteq A^c$, for any $U \in \mathcal{U}, W \cap A = \emptyset \subseteq U$. So, W_A is a locally finite refinement of \mathcal{U} . Thus, *A* is m-paracompact as a subspace of *M*.

Theorem 5. Let $M \in [X]^m$ and (M, τ) be a m-topological space. If M is m-paracompact Hausdorff then M is m-normal.

Proof. Let $M \in [X]^m$ and (M, τ) be a mtopological space. Let $x \in M$ and F be a closed mset such that $x \notin^k F$, Since M is Hausdorff, for every $y \in^m F$, there exists an open neighborhood U_{y} such that $x \notin Cl(U_{y})$. Let \mathcal{U} be a collection of open mset F^c and these open msets U_{γ} . Then \mathcal{U} is an open cover of M. Let \mathcal{W} is a locally finite refinement of \mathcal{U} . Let \mathcal{W}' be a collection of msets $W \in \mathcal{W}$ such that $W \cap F \neq \emptyset$. Therefore, \mathcal{W}' covers F. Set $V \coloneqq \bigcup \mathcal{W}' \supseteq F$. Since \mathcal{W} is a refinement of \mathcal{U} , for every $W \in \mathcal{W}'$, there exists $y \in F$ such that $W \subseteq U_{y}$ and so $Cl(W) \subseteq Cl(U_{y})$. Then, for every $W \in \mathcal{W}'$, $x \notin Cl(W)$. Therefore, $x \notin \bigcup Cl(\mathcal{W}')$ where $Cl(\mathcal{W}') \coloneqq \{Cl(\mathcal{W}) : \mathcal{W} \in \mathcal{W}\}$ \mathcal{W}' . Since \mathcal{W} is locally finite, from Proposition 1, $x \notin \bigcup Cl(\mathcal{W}') = Cl(\bigcup \mathcal{W}') = Cl(V)$. Thus, M is regular.

Let A, B be disjoint closed msubsets of M. Then, for every $y \in^m F$, there exists an open neighborhood U_y such that $A \cap Cl(U_y) = \emptyset$. Let \mathcal{U} EAJS, Vol. IV, Issue II

be a collection of open mset F^c and these open msets U_y . Then \mathcal{U} covers M. Let \mathcal{W} is a locally finite refinement of \mathcal{U} . Let \mathcal{W}' be a collection of msets $W \in \mathcal{W}$ such that $W \cap F \neq \emptyset$. Therefore, \mathcal{W}' covers F. Set $V := \bigcup \mathcal{W}' \supseteq F$. Since \mathcal{W} is a refinement of \mathcal{U} , for every $W \in \mathcal{W}'$, there exists $y \in F$ such that $W \subseteq U_y$ and so $Cl(W) \subseteq Cl(U_y)$. Then, for every $W \in \mathcal{W}'$, $A \cap Cl(W) = \emptyset$. Therefore, $\emptyset = A \cap (\bigcup Cl(\mathcal{W})) = A \cap$ $Cl(\bigcup \mathcal{W}) = A \cap Cl(V)$ where $Cl(\mathcal{W}') :=$ $\{Cl(W) : W \in \mathcal{W}'\}$. Hence, M is m-normal.

4. References

- Blizard, W.D., 1991, The development of multiset theory. Modern logic, 1 (4), 319–352.
- Cerf, V., Fernandez, E., Gostelow, K. and Volausky, S., 1971, Formal control and low properties of a model of computation. Technical report, Computer Science Department, University of California, Los Angeles, CA.
- El-Sheikh, S., Omar, R. and Raafat, M., 2015, Separation axioms on multiset topological space. Journal of New Theory, 7, 11–21.
- Girish, K.P. and Jacob, J.S., 2012, On multiset topologies. Theory and Applications of Mathematics & Computer Science, 2 (1), 37–52.
- Girish K.P. and Jacob, J.S., 2012, Multiset topologies induced by multiset relations. Information Sciences, 188, 298–313.
- Jena, S.P., Ghosh, S.K. and Tripathy, B.K., 2001, On the theory of bags and lists. Information Sciences, 132 (1-4), 241–254.
- Mahanta, S. and Samanta S.K., 2017, Compactness in multiset topology. International Journal of Mathematics Trends and Technology, 47 (4), 275–282.
- Peterson, J.L., 1976, Computation sequence sets. Journal of Computer and System Sciences, 13 (1), 1–24.
- Tantawy, O.A., Mustafa, H.I. and Wahbi, F.A., 2015, Connectedness on multi generalized topological spaces. Australian Journal of Basic and Applied Sciences, 9 (23), 745– 754.
- Yager, R.R., 1986, On the theory of bags. International Journal of General System, 13 (1), 23–37.