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Abstract

In this paper, we investigate some new sequenceespahich arise from the notation of
generalized de la Vallée-Poussin means and intredhe spaces of strongly invariant
summable sequences which happen to be completenqgverad spaces under certain
conditions.

Keywords: o- convergence, absolutely lambda- invariant, sttgntambda invariant
summability.

Bazi yeni dizi uzaylar tzerine

Ozet

Bu makalede, geneligriimi s de la Vallée-Poussin ortalamalarindan ortaya cikeazi yeni
dizi uzaylari incelenmive belirli kgullar altinda tam paranormlu uzay olan kuvvetli
J-degismez toplanabilir dizi uzaylari tanitilgtir.

Anahtar kelimeler: - yakinsama, mutlak lambda- gdemez, gicli lambda dgmez
toplanabilirlik.

1. Introduction

Let w be the set of all sequences real or complex gndlenote the Banach space of

bounded sequences={x,}

~, normed bny” = sup.,

x|. Let D be the shift operator on
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w, that is, Dx= {x},_, D°x= {x},_, and so on. It may be recalled that [see Banach
[1]] Banach limit L is a nonnegative linear functional dn, such thatL is invariant
under the shift operator (that isl. DX )J=x (Vxe(_ ) and that L(e)=1 where
e={1,1,...}. Asequencexe (_ is called almost convergent (see, [5]), if all Baln limits

of x coincide. Let€ denote the set of all almost convergent sequehoesntz [5] proved
that

A . 1 & ) ) .
c=<x:lim— . exists uniformly inn
{ lim m+1§ X y }

Several authors including Duran [2], Lorentz [S]né& [6], Nanda[12], [9] and Savas [17]
have studied almost convergent sequences.

Let o be a one-to-one mapping of the set of positivegets into itself. A continuous linear
functional ¢ on | is said to be an invariant mean owa mean if and only if

1. ¢>0 when the sequencg=(x,) has x,>0 forall n.
2. ¢(e)=1,wheree=(1,1,..) and

3. ¢(X,m)=0(x forall xel,.

For a certain kinds of mapping every invariant mearp extends the limit functional on
spacec, in the sense thap(x) = lim x for all xe c. ConsequentlyccV, whereV_ is
the bounded sequences all of whasemeans are equal, ( see, [19]).

If x=(x),setTx=(Tx) :( >g,(k)) it can be shown that (see, Schaefer [19]) that
\A :{xa |, :limt, (X) = Leuniformly in m for some Eo — lim }: (1.2)
k

where

b ()= X +TX 4.+ TOX and t, =0,
k+1 '

We say that a bounded sequence (x,) is o -convergent if and only ifxe V, such that
o¥(n)=n forall n>0, k>1.

Just as the concept of almost convergence leadafigtto the concept of strong almost
convergenceg - convergence leads naturally to the concept ohstio -convergence. A
sequencex = (x, ) Is said to be stronglyr -convergent (see Mursaleen [10]) if there exists a

number L such that
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1 [
2™ L‘ 0 (1.2)

as k— oo uniformly in m. We write [V,] as the set of all strong - convergent
sequences. When (1.2) holds we wit¢] -lim x= (. Taking o(m) = m+1, we obtain
[V.1=[d so strongo - convergence generalizes the concept of strongstloonvergence.

Note that
V]cV cl.
o -convergent sequences are studied by Savas (163]4nd others.

The summability methods of real or complex sequermeinfinite matrices are of three
types [see, Maddox [7], p.185] ordinary, absoluté strong. In the same vein, it is expected
that the concept of invariant convergence must gise to three types of summability
methods-invariant, absolutely invariant and strgnigivariant. The invariant summable
sequences have been discussed by Schafer [19pare athers. More recently Mursaleen
[11] have considered absolute invariant convergamd absolute invariant summable
sequences. Also the strongly invariant summableesmes was studied by Saraswat and
Gupta[18]. The strongly summable sequences hava bg&tematically investigated by
Hamilton and Hill [3], Kuttner [4] and some othefBhe spaces of strongly summable
sequences were introduced and studied by Madd&j.[[t,is naturel to ask that how we can
define a new sequence spaces by ugibh@)— summable sequences. In this paper, we will
give answer of this question and study the spakcssangly (1,0)—- summable sequences,
which naturally come up for investigation and whiefil fill up a gap in the existing
literature.

Let 1=(4,) be anon-decreasing sequence of positive numéetsg to o such that
Aoy A +1,4, =1

The generalized de la Valée-Poussin mean of a seque is defined by

-1
tn(X _ﬂ, Zxk

n keln

where |, =[n-4,+1,n], for n=1,2,.... A sequencex=(x) is said to be(V,1)
-summable to a numbelr, if t (X) > L as n— .

Let A=(a,) be an infinite matrix of nonnegative real numbarsl p=(p) be a
sequence such thap, > 0. (These assumptions are made throughout.) We wike
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(A} it A=) a,x%|™ converges for eacim. We write

du(9= =Y A, (3= &0k |

m I€|m

where

1
a(n k,m =72 EROIE

m Ielm

If 4,=mm=1,2,3,...
du(9= =T A o (3= X &0k |

and

1
ankm=L¥a,

m ielm
reduces to

()= A, (9= aAnk m] o

m+14=5

where

1
ainkm=——»>» a, .
( m m+1iz o Ok

m

We now define

[ Aoy P ={x: dy(¥ — O uniformly in 1 -
[AW,), p:| ={x: d,,( x- 1§ > 0 for somel uniformly inr}

and

[Auoy P]. ={x:sgptm (x) <oo}
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The sets[A, ) Plo, [A.. Pl @and[A, . pl,, will be respectively called the spaces of
strongly (4,0) -summable to zero, stronglyl,c) -summable and stronglyAi,o) -
bounded sequences. £, =m,m=1,2,3,..., the above spaces reduces to the following
sequence spaces.

[A, p], ={x:t,,(X¥— O uniformly in r} ;
[A,. p| ={x:1,,(x— 1§ > 0 for somel uniformly irr}

and

[A,. B, ={x:sgptm ) <oo}

If x is strongly (4,0)- summable tol we write x, > I[A, ,,, pl . A pair (A, p) will be
called strongly /1 - invariant regular if

X —>1=x —>I[A,, dl

In the next Theorem, we have suitable conditiomgte above sets to be complete linear
topological spaces.

2. The main results

We first establish a number of useful propositions.

Proposition 2.1If pe(,,then[A, ., plo» [A.) Pl @nd[A,,,, pl., are linear spaces
over C.

Proof. We consider only{A, .., pl. If H =supp, and K =max(1,2* ), we have [see,
Maddox [6, p. 346].

Ja + b = K(a/™ +b™) (2.1)
and for 4 e C,
2| < max (1] ) (2.2)

Suppose thats, —I[A ), Pl, Y, = I[A,,), Pl and 4,u e C. Then we have

dpp(AX+uy=-(Al+ul) e = KK (%= 19+ KK 4, (¥ 18
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where K, =sug4/* and K,=sudyl™ , and this implies that
/1x+yy—>(/1l+yl )[Au,a)’ pl. This completes the proof.

We have

Proposition 2.2 [A, ,, PIc[ A,y A.., if
HA”:srl:pz a(n,k,m <o (2.3)

Proof. Assume thatx, —I[A,,,, p] and (2.3) holds. Now by the inequality2.1),

dmn(x) = tmn(X_ le+ Ie(4) (24)
< Kd(x- 19+ K a( n k n] [P

< Kd,,(x— 19+ K(sup [ )" a(n,k, m

Therefore xe[A, ), pl., and this completes the proof.

Remark 2.3Some known sequence spaces are obtained by spiagali and therefore
some of the results proved here extend the correbpg results obtained for the special
cases.

Proposition 2.4Let pe(, then[A, ,, pl, and [A,,, pl., (inf p,>0) are linear
topological spaces paranormed ly defined by

1/M

g(x) = smunp{ Ay n (X)]

where M = max(1H =sum, ) If (2.3) holds, then[A,, p] has the same paranorm.
Proof. Clearly g(0)=0 and g(x) = g(- X . Since M =1, by Minkowski's inequality it

follows that g is subadditive. We now show that the scalar miidagion is continuous. It
follows from the inequality(2.2) that

g(A%) §sup|ﬁ.|pk/M g (x).

Therefore x>0 = Ax—>0 (for fixed 4). Now let 1 >0 and x be fixed. Given
£>0 3N such that
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dpn(A¥) <e/2(VnVm> N). (2.5)
Since d ,(x) exists for allm, we write

dpa(¥) = K(M,(1= m= N

and

5 _ e 1/pk
2K(m))

Then [4| <5,

d,, (A%) <%(vn1§ m< N). (2.6)
It follows from (2.5) and (2.6) that
A — 0= Ax— 0( xfixed)

This proves the assertion abofiyy, , pl, If inf p,=6>0 and 0<|| <1, then
VXE[AM), ...

g" (A <[4 g (%,

Therefore[A,, pl,, has the paranorng. If (2.3) holds it is clear from Proposition 2.2 that
g(x) exists for eachxe[A, ), p. This completes the proof.

Remark 2.51t is evident thatg is not a norm in general. But ifp, = p Vk,then clearly
g isanormforl< p<« anda p- normfor 0<p<1.

Proposition 2.6 [A;, pl, and [A,,, pl.. are complete with respect to their paranorm
topologies[ A, Pl is complete if(2.3) holds and

> a(n, k, m— 0 uniformly in n (2.7)
k

Proof. Let {xi} be a Cauchy sequence [, ), pl,- Then there exists a sequenke
such thatg(x - X -0 (i > ). Since g is subadditive it follows thake[ A, f,. The
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completness of A, ), pl, can be similarly obtained. We now conside, ,,, pl. If
(2.3) holds and{x'} is a Cauchy sequence [®, p], Then there existsc such that

g(x-X—0 . If (2.7) holds then from inequality(2.4) it is clear that
(Ao PI=[ A,y Ho- This completes the proof.

Combining the above facts we obtain the main result

Theorem 2.7 Let pe(,.Then[A,,, pl, and[A,,, pl., (inf p,>0) are complete
linear topological spaces paranormed lay. If (2.3) and (2.7) hold then[A, ,,, p] has

the same property. If furthep, = p for all k, they are Banach spaces fo< p <o and
p—normed spaces fob < p <1.
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