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Abstract 
 
In this paper, we investigate some new sequence spaces which arise from the notation of 
generalized de la Vallée-Poussin means and introduce the spaces of strongly λ- invariant 
summable sequences which happen to be complete paranormed spaces under certain 
conditions. 
 
Keywords: σ- convergence, absolutely lambda- invariant, strongly lambda invariant 
summability. 
 
 

Bazı yeni dizi uzayları üzerine 
 
 
Özet 
 
Bu makalede, genelleştirilmi ş de la Vallée-Poussin ortalamalarından ortaya çıkan bazı yeni 
dizi uzayları incelenmiş ve belirli koşullar altında tam paranormlu uzay olan kuvvetli 
λ-değişmez toplanabilir dizi uzayları tanıtılmıştır. 
 
Anahtar kelimeler: σ- yakınsama, mutlak lambda- değişmez, güçlü lambda değişmez 
toplanabilirlik. 
 
 
1. Introduction 

 
Let w  be the set of all sequences real or complex and ∞�  denote the Banach space of 

bounded sequences { } =0
= k k

x x
∞

 normed by 0= sup kkx x≥ . Let D  be the shift operator on 
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w, that is, =Dx  { } =1k k
x
∞

, 2 =D x  { } =2k k
x
∞

 and so on. It may be recalled that [see Banach 

[1]] Banach limit L  is a nonnegative linear functional on ∞�  such that L  is invariant 

under the shift operator (that is, ( ) = ( )L Dx L x x ∞∀ ∈� ) and that ( ) = 1L e  where 

= {1,1,...}e . A sequence x ∞∈�  is called almost convergent (see, [5]), if all Banach limits 

of x  coincide. Let ĉ  denote the set of all almost convergent sequences. Lorentz [5] proved 
that  
 

=0

1
ˆ = : lim   exists uniformly in .

1

m

n i
m

i

c x x n
m +

→∞

  + ∑  

 
Several authors including Duran [2], Lorentz [5], King [6], Nanda[12], [9] and Savas [17] 
have studied almost convergent sequences. 
 
Let σ  be a one-to-one mapping of the set of positive integers into itself. A continuous linear 
functional ϕ  on l∞  is said to be an invariant mean or a σ - mean if and only if   

 
    1.  0ϕ ≥  when the sequence = ( )nx x  has 0nx ≥  for all n .  

    2.  ( ) = 1eϕ , where = (1,1, )e …  and  

    3.  ( )( ) = ( )nx xσϕ ϕ  for all x l∞∈ .  

 
For a certain kinds of mapping σ  every invariant mean ϕ  extends the limit functional on 

space c , in the sense that ( ) = limx xϕ  for all x c∈ . Consequently, c Vσ⊂  where Vσ  is 

the bounded sequences all of whose σ -means are equal, ( see, [19]).  
 

If = ( )kx x , set ( ) ( )( )= =k kTx Tx xσ  it can be shown that (see, Schaefer [19]) that  

 

( ){ }= : = u = limlim km
k

V x l t x Le niformly in m for some L xσ σ∞∈ −       (1.1) 

 
where  
 

1,( ) = a = 0.
1

k
m m m

km m

x Tx T x
t x nd t

k −

+ + +

+

…

 

 
We say that a bounded sequence = ( )kx x  is σ -convergent if and only if x Vσ∈  such that 

( )k n nσ ≠  for all 0n≥ , 1k ≥ . 
 

Just as the concept of almost convergence lead naturally to the concept of strong almost 
convergence, σ - convergence leads naturally to the concept of strong σ -convergence. A 
sequence = ( )kx x  is said to be strongly σ -convergent (see Mursaleen [10]) if there exists a 

number L  such that  
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( )
=1

1
0

k

i m
i

x L
k σ

− →∑           (1.2) 

 
as k →∞  uniformly in m . We write [ ]Vσ  as the set of all strong σ - convergent 

sequences. When (1.2) holds we write [ ] lim =V xσ − � . Taking ( ) = 1m mσ + , we obtain 

ˆ[ ] = [ ]V cσ  so strong σ - convergence generalizes the concept of strong almost convergence.  

 
Note that  
 
[ ] .V V lσ σ ∞⊂ ⊂  

 
σ -convergent sequences are studied by Savas ( [13]-[16]) and others. 
 
The summability methods of real or complex sequences by infinite matrices are of three 
types [see, Maddox [7], p.185] ordinary, absolute and strong. In the same vein, it is expected 
that the concept of invariant convergence must give rise to three types of summability 
methods-invariant, absolutely invariant and strongly invariant. The invariant summable 
sequences have been discussed by Schafer [19] and some others. More recently Mursaleen 
[11] have considered absolute invariant convergent and absolute invariant summable 
sequences. Also the strongly invariant summable sequences was studied by Saraswat and 
Gupta[18]. The strongly summable sequences have been systematically investigated by 
Hamilton and Hill [3], Kuttner [4] and some others. The spaces of strongly summable 
sequences were introduced and studied by Maddox [7, 8]. It is naturel to ask that how we can 
define a new sequence spaces by using ( , )λ σ −  summable sequences. In this paper, we will 
give answer of this question and study the spaces of strongly ( , )λ σ −  summable sequences, 
which naturally come up for investigation and which will fill up a gap in the existing 
literature. 
 
Let = ( )nλ λ  be a non-decreasing sequence of positive numbers tending to ∞  such that  

 

1 11, = 1.n nλ λ λ+ ≤ +  

 
The generalized de la Valèe-Poussin mean of a sequence x  is defined by  
 

1
( ) =n k

k In n

t x x
λ ∈

∑  

 
where = [ 1, ]n nI n nλ− + , for = 1,2,...n . A sequence = ( )kx x  is said to be ( , )V λ
-summable to a number L , if ( ) .nt x L as n→ →∞  
 
Let = ( )nkA a  be an infinite matrix of nonnegative real numbers and = ( )kp p  be a 

sequence such that > 0kp . (These assumptions are made throughout.) We write =Ax  
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{ }( )nA x  if ( ) =
pk

n nk kk
A x a x∑  converges for each n . We write  

 

( )

1
( ) = ( ) = ( , , )

pk
mn n ki

i I km m

d x A x a n k m x
σλ ∈

∑ ∑  

 
where 
 

( ),

1
( , , ) = .i kn

i Im m

a n k m aσλ ∈

∑  

 
If = , = 1,2,3,....m m mλ   
 

( )

1
( ) = ( ) = ( , , )

pk
mn i kn

i I km m

d x A x a n k m xσλ ∈

∑ ∑  

 
and  
 

( )

1
( , , ) = n i

i Im m

a n k m a
σλ ∈

∑  

 
reduces to  
 

( )
=0

1
( ) = ( ) = ( , , )

1

m
pk

mn n ki
i k

t x A x a n k m x
m σ+
∑ ∑  

 
where  

( ),
=0

1
( , , ) = .

1

m

n i k
i

a n k m a
m σ+
∑  

 
We now define 

 

 { }( , ) 0
, = : ( ) 0 uniformly in ;mnA p x d x nλ σ  →   

 { }( , ) , = : ( ) 0 for some  uniformly in mnA p x d x le l nλ σ  − →   

 
and 
 { }( , ), = :sup ( ) < .mn

n

A p x t xλ σ ∞
  ∞   

 
 



BAUN Fen Bil. Enst. Dergisi, 20(3) Özel Sayı, 154-162, (2018) 

158 

The sets ( , ) 0[ , ]A pλ σ , ( , )[ , ]A pλ σ  and ( , )[ , ]A pλ σ ∞  will be respectively called the spaces of 

strongly ( , )λ σ  -summable to zero, strongly ( , )λ σ  -summable and strongly ( , )λ σ - 

bounded sequences. If = , = 1,2,3,....m m mλ , the above spaces reduces to the following 
sequence spaces.  
 

 [ ] { }0
, = : ( ) 0 uniformly in ;mnA p x t x nσ →  

 [ ] { }, = : ( ) 0 for some  uniformly in mnA p x t x le l nσ − →  

 
and 

[ ] { }, = :sup ( ) < .mn
n

A p x t xσ ∞
∞  

 
If x  is strongly ( , )λ σ - summable to l  we write ( , )[ , ]kx l A pλ σ→ . A pair ( , )A p  will be 

called strongly λ - invariant regular if  
 

( , )[ , ].k kx l x l A pλ σ→ ⇒ →  

 
In the next Theorem, we have suitable conditions for the above sets to be complete linear 
topological spaces. 

 
 

2. The main results 
 
We first establish a number of useful propositions. 
 
Proposition 2.1 If p ∞∈� , then ( , ) 0[ , ]A pλ σ , ( , )[ , ]A pλ σ  and ( , )[ , ]A pλ σ ∞  are linear spaces 

over .C   
 
Proof. We consider only ( , )[ , ]A pλ σ . If = sup kH p  and 1= max(1,2 )HK − , we have [see, 

Maddox [6, p. 346].  
 

( )
p pk pkk

k k k ka b K a b+ +�           (2.1) 

 
and for ,λ∈C   
 

max(1, ).
p Hkλ λ�           (2.2) 

 
Suppose that kx  ( , )[ , ]l A pλ σ→ , ( , )[ , ]ky l A pλ σ→  and , .λ µ ∈C  Then we have  

 

1 2( ( ) ) ( ) ( )mn mn mnd x y l l e KK d x le KK d y l eλ µ λ µ ′ ′+ − + − + −�  
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where 1 = sup
pkK λ  and 2 = sup

pkK µ , and this implies that 

( ) ( , )[ , ].x y l l A pλ σλ µ λ µ+ → +  This completes the proof.  

 
We have 
 
Proposition 2.2 ( , ) ( , )[ , ] [ , ]A p A pλ σ λ σ ∞⊂ , if  

 

( )= sup , , < .
m k

A a n k m ∞∑           (2.3) 

  
Proof. Assume that kx  ( , )[ , ]l A pλ σ→  and ( )2.3  holds. Now by the inequality ( )2.1 ,  

 
( ) = ( )(4)mn mnd x t x le le− +             (2.4) 

     ( )( ) , ,
pk

mn
k

Kd x le K a n k m l− + ∑�  

     ( )( ) (sup ) , , .
pk

mn
k

Kd x le K l a n k m− + ∑�  

 
Therefore ( , )[ , ]x A pλ σ ∞∈  and this completes the proof.  

 
Remark 2.3 Some known sequence spaces are obtained by specializing A  and therefore 
some of the results proved here extend the corresponding results obtained for the special 
cases.  
 
Proposition 2.4 Let p ∞∈�  then ( , ) 0[ , ]A pλ σ  and ( , )[ , ]A pλ σ ∞

 ( inf > 0)kp  are linear 

topological spaces paranormed by g  defined by  
 

1/

,
,

( ) = sup ( )
M

m n
m n

g x d x    

 
where = max(1, = sup ).kM H p  If (2.3) holds, then [ , ]A pλ  has the same paranorm.  

 
Proof. Clearly (0) = 0g  and ( ) = ( )g x g x− . Since 1M � , by Minkowski’s inequality it 
follows that g  is subadditive. We now show that the scalar multiplication is continuous. It 
follows from the inequality (2.2) that  
 

/
( ) sup ( ).

p Mkg x g xλ λ�  

 
Therefore 0x→  0xλ⇒ →  (for fixed λ ). Now let 0λ→  and x  be fixed. Given 

> 0ε  N∃  such that  
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( ), ( ) < / 2 , > .m nd x n m Nλ ε ∀ ∀           (2.5) 

 
Since , ( )m nd x  exists for all m, we write 

 

( ), ( ) = ( ), 1m nd x K m m N� �  

 
and  
 

1/

= .
2 ( )

pk

K m

εδ      

 
Then <λ δ ,  

( ), ( ) < ,1 .
2m nd x n m N
ελ ∀ � �           (2.6) 

 
It follows from (2.5) and (2.6) that  
 

( )0 0 fixedx xλ λ→ ⇒ →  

 
This proves the assertion about ( , ) 0[ , ] .A pλ σ  If inf = > 0kp θ  and 0 < <1λ , then 

( , )[ , ] ,x A pλ σ ∞∀ ∈   

 

( ) ( ).M Mg x g x
θλ λ�  

 
Therefore [ , ]A pλ ∞  has the paranorm .g  If (2.3) holds it is clear from Proposition 2.2 that 

( )g x  exists for each ( , )[ , ].x A pλ σ∈  This completes the proof.  

 
Remark 2.5 It is evident that g  is not a norm in general. But if  =kp p ,k∀ then clearly 

g  is a norm for 1 p ∞� �  and a p−  norm for 0 < < 1.p   
 
 
Proposition 2.6 0[ , ]A pλ  and ( , )[ , ]A pλ σ ∞  are complete with respect to their paranorm 

topologies ( , )[ , ]A pλ σ  is complete if (2.3) holds and  

 
( , , ) 0 uniformly in .

k

a n k m n→∑           (2.7) 

 
Proof.  Let { }ix  be a Cauchy sequence in ( , ) 0[ , ]A pλ σ . Then there exists a sequence x  

such that ( ) 0ig x x− →  ( )i →∞ . Since g  is subadditive it follows that 0[ , ]x A pλ∈ . The 
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completness of ( , )[ , ]A pλ σ ∞  can be similarly obtained. We now consider ( , )[ , ].A pλ σ  If 

(2.3)  holds and { }ix  is a Cauchy sequence in [ , ]A pλ , Then there exists x  such that 

( ) 0ig x x− → . If (2.7)  holds then from inequality (2.4)  it is clear that 

( , ) ( , ) 0[ , ] = [ , ]A p A pλ σ λ σ . This completes the proof.  

 
Combining the above facts we obtain the main result. 

 
Theorem 2.7  Let p ∞∈� . Then ( , ) 0[ , ]A pλ σ  and ( , )[ , ]A pλ σ ∞  ( )inf > 0kp  are complete 

linear topological spaces paranormed by g . If (2.3) and (2.7) hold then ( , )[ , ]A pλ σ  has 

the same property. If further =kp p for all k , they are Banach spaces for 1 <p ∞�  and 

p− normed spaces for 0 < < 1p .  
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