Available online: November 30, 2018

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 1, Pages 923-928 (2019) DO I: 10.31801/cfsuasmas.489727 ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr/index.php?series=A1

ON $r-$ DYNAMIC COLORING OF THE FAMILY OF BISTAR GRAPHS

G.NANDINI, M.VENKATACHALAM, AND S.GOWRI

ABSTRACT. An r -dynamic coloring of a graph G is a proper coloring c of the vertices such that $|c(N(v))| \geq min\{r, d(v)\}\text{, for each } v \in V(G)\text{. The } r$ dynamic chromatic number of a graph G is the minimum k such that G has an r-dynamic coloring with k colors. In this paper, we obtain the r-dynamic chromatic number of middle, total, central and line graph of Bistar graph.

1. INTRODUCTION

In this paper all graphs are loopless and connected. All undefined symbols and concepts may be looked up from $[1]$. The r-dynamic chromatic number was first introduced by Montgomery $[12]$. An r-dynamic coloring of a graph G is a map c from $V(G)$ to the set of colors such that (i) if $uv \in E(G)$, then $c(u) \neq c(v)$, and (ii) for each vertex $v \in V(G), |c(N(v))| \geq min\{r, d(v)\}\)$, where $N(v)$ denotes the set of vertices adjacent to $v, d(v)$ its degree and r is a positive integer. The first condition characterizes proper colorings, the adjacency condition and second condition is double-adjacency condition. The r-dynamic chromatic number of a graph G, written $\chi_r(G)$, is the minimum k such that G has an r-dynamic proper k -coloring. The 1-dynamic chromatic number of a graph G is equal to its chromatic number. The 2-dynamic chromatic number of a graph has been studied under the name dynamic chromatic number in [\[2,](#page-5-2) [3,](#page-5-3) [4,](#page-5-4) [6,](#page-5-5) [9\]](#page-5-6). There are many upper bounds and lower bounds for $\chi_d(G)$ in terms of graph parameters. For example, for a graph G with $\Delta(G) \geq 3$, Lai et al. [\[9\]](#page-5-6) proved that $\chi_d(G) \leq \Delta(G) + 1$. An upper bound for the dynamic chromatic number of a d-regular graph G in terms of $\chi(G)$ and the independence number of G, $\alpha(G)$, was introduced in [\[7\]](#page-5-7). In fact, it was proved that $\chi_d(G) \leq \chi(G) + 2\log_2 \alpha(G) + 3$. Taherkhani gave in [\[13\]](#page-5-8) an upper bound for

 c 2018 Ankara University Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

923

Received by the editors: February 14, 2018; Accepted: May 26, 2018.

²⁰¹⁰ Mathematics Subject Classification. 05C15.

Key words and phrases. r-dynamic coloring, bistar graph, middle graph, total graph, central graph and line graph .

Submitted via International Conference on Current Scenario in Pure and Applied Mathematics [ICCSPAM 2018].

 $\chi_2(G)$ in terms of the chromatic number, the maximum degree Δ and the minimum degree δ . i.e.,

$$
\chi_2(G) - \chi(G) \le \left[(\Delta e) / \delta \log \left(2e \left(\Delta^2 + 1 \right) \right) \right]
$$

Li et al. proved in [\[11\]](#page-5-9) that the computational complexity of $\chi_d(G)$ for a 3regular graph is an NP-complete problem. Furthermore, Liu and Zhou [\[10\]](#page-5-10) showed that to determine whether there exists a $3-d$ ynamic coloring, for a claw free graph with the maximum degree 3, is NP-complete.

In this paper, we study $\chi_r(G)$, we find the r-dynamic chromatic number of the middle, total, central and line graphs of the Bistar graph.

2. Preliminaries

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The middle graph [\[14\]](#page-5-11) of G, denoted by $M(G)$ is defined as follows. The vertex set of $M(G)$ is $V(G) \cup E(G)$. Two vertices x, y of $M(G)$ are adjacent in $M(G)$ in case one of the following holds: (i) x, y are in $E(G)$ and x, y are adjacent in G. (ii) x is in $V(G)$, y is in $E(G)$, and x, y are incident in G.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The total graph [\[14\]](#page-5-11) of G, denoted by $T(G)$ is defined in the following way. The vertex set of $T(G)$ is $V(G) \cup E(G)$. Two vertices x, y of $T(G)$ are adjacent in $T(G)$ in case one of the following holds: (i) x, y are in $V(G)$ and x is adjacent to y in G. (ii) x, y are in $E(G)$ and x, y are adjacent in G. (iii) x is in $V(G)$, y is in $E(G)$, and x, y are incident in G.

The central graph $[15]$ $C(G)$ of a graph G is obtained from G by adding an extra vertex on each edge of G , and then joining each pair of vertices of the original graph which were previously non-adjacent.

The line graph $[8]$ of G denoted by $L(G)$ is the graph whose vertex set is the edge set of G. Two vertices of $L(G)$ are adjacent whenever the corresponding edges of G are adjacent.

The Bistar graph [\[5\]](#page-5-14) $B_{m,n}$ is defined as the graph obtained from K_2 by joining m pendant edges to one end and n pendant edges to the other end of K_2 . Let

$$
V(B_{m,n}) = \{u, v\} \cup \{u_i : 1 \le i \le m\} \cup \{v_i : 1 \le i \le n\}
$$

and

$$
E(B_{m,n}) = \{e_i : 1 \le i \le m+n+1\},\
$$

where $e_i = uu_i \ (1 \leq i \leq m)$, $e_{m+1} = uv$, $e_{m+1+i} = vv_i \ (1 \leq i \leq n)$.

Theorem 2.1. Let $m, n \geq 2, m \leq n$, the r-dynamic chromatic number of the line graph of a Bistar graph is

$$
\chi_r(L(B_{m,n})) = \begin{cases} n+1, & 1 \le r \le \Delta - m \\ r+1, & \Delta - m + 1 \le r \le \Delta \end{cases}
$$

Proof. Let $V(L(B_{m,n})) = \{e_1, e_2, \ldots, e_{m+n+1}\}\.$ Note that $deg(e_i) = m \ (1 \leq i \leq n)$ m), $deg(e_{m+1}) = m + n$, $deg(e_{m+1+i}) = n$ $(1 \le i \le n)$.

By definition of the line graph, the vertices $\{e_i : (1 \le i \le m+1)\}\text{induce a clique}$ of order K_{m+1} in $L(B_{m,n})$. Also the vertices $\{e_i : (m+1 \leq i \leq m+n+1)\}\text{induce}$ a clique of order K_{n+1} in $L(B_{m,n})$. Thus, $\chi_r(L(B_{m,n})) \geq n+1$, for any r. Case 1: $1 \leq r \leq \Delta - m$

Consider the color function $c: V(L(B_{m,n})) \to \{c_1, c_2, \ldots, c_{n+1}\}\$ defined by $c(e_{i+m}) =$ c_i , $(1 \leq i \leq n+1)$ and $c(e_i) = c_{i+1}$, $(1 \leq i \leq m)$.

It is clear that c is a r dynamic coloring and hence $\chi_r(L(B_{m,n})) \leq n+1, (1 \leq r \leq \Delta - m)$. Case 2: $\Delta - m + 1 \leq r \leq \Delta$

Consider the color function $c: V(L(B_{m,n})) \to \{c_1, c_2, \ldots, c_{r+1}\}\$ defined by $c(e_{i+m}) =$ c_i , $(1 \leq i \leq n + 1)$. In order to maintain r-adjacency condition we need at least $r-n$ new colors to color the remaining vertices. Color the vertices $\{e_i : (1 \le i \le m)\}\$ consecutively with the colors $c_{n+2}, \ldots, c_{r+1}, c_i$. Hence, $\chi_r(L(B_{m,n})) \leq r+1$. It is clear that c is a r dynamic coloring and hence

$$
\chi_r(L(B_{m,n})) = \begin{cases} n+1, & 1 \le r \le \Delta - m \\ r+1, & \Delta - m + 1 \le r \le \Delta \end{cases}
$$

Theorem 2.2. Let $m, n \geq 2, m \leq n$, the r-dynamic chromatic number of the middle graph of a Bistar graph is

$$
\chi_r(M(B_{m,n})) = \begin{cases} n+2, & 1 \le r \le n+1 \\ r+1, & n+2 \le r \le \Delta \end{cases}
$$

Proof. Let $V(M(B_{m,n})) = \{u, v, g\} \cup \{u_i, e_i : (1 \leq i \leq m)\} \cup \{v_i, f_i : (1 \leq i \leq n)\}\,$, where e_i is the vertex corresponding to the edge uu_i , $(1 \le i \le m)$, f_i is the vertex corresponding to the edge vv_i , $(1 \leq i \leq n)$ and g is the vertex corresponding to the edge uv of $B_{m,n}$.

Note that $deg(e_i) = m + 1$, $deg(f_i) = n + 1$, $deg(g) = m + n + 2$, $deg(u_i) =$ $deg(v_i) = 1, deg(u) = m + 1, deg(v) = n + 1.$

By definition of the Middle graph, the vertices $\{g, v, f_i : (1 \le i \le n)\}\)$ induce a clique of order K_{n+2} in $M(B_{m,n})$. Thus, $\chi_r(M(B_{m,n})) \geq n+2$, for any r. Case 1: $1 \leq r \leq n + 1$

Consider the color function $c: V(M(B_{m,n})) \to \{c_1, c_2, \ldots, c_{n+2}\}\$ defined by $c(g)$ $c_1, c(v) = c(u) = c_2, c(f_i) = c_{i+2}, (1 \leq i \leq n), c(e_i) = c_{i+2}, (1 \leq i \leq m), c(v_i) = c_1,$ $(1 \leq i \leq n)$ and for $(1 \leq i \leq m)$

$$
c(u_i) = \begin{cases} c_{n+2}, & m < n \\ c_1, & m = n \end{cases}
$$

It is clear that c is a r dynamic coloring and hence $\chi_r(M(B_{m,n})) \leq n+2$. Case 2: $n+2 \leq r \leq \Delta$

Consider the color function $c: V(M(B_{m,n})) \to \{c_1, c_2, \ldots, c_{r+1}\}\$ defined by $c(g)$ = $c_1, c(v) = c_2, c(f_i) = c_{i+2}, (1 \leq i \leq n), c(u_i) = c_2, (1 \leq i \leq m).$

In order to maintain r-adjacency condition we need at least $r - n - 1$ new colors to color the remaining vertices. $c(v_i) = c(u) = c_{n+3}$. For $(1 \le i \le m)$, $c(e_i) = c_{i+2}$, if $c(u) = c_{r+1}$, otherwise color the vertices $\{e_i : (1 \le i \le m)\}\)$ consecutively with the colors $c_{n+4}, \ldots, c_{r+1}, c_{i+2}$. Hence, $\chi_r(M(B_{m,n})) \leq r+1$. It is clear that c is a r dynamic coloring and hence

$$
\chi_r(M(B_{m,n})) = \begin{cases} n+2, & 1 \le r \le n+1 \\ r+1, & n+2 \le r \le \Delta \end{cases}
$$

Theorem 2.3. Let $m, n \geq 2, m \leq n$, the r-dynamic chromatic number of the total graph of a Bistar graph is

$$
\chi_r(T(B_{m,n})) = \begin{cases} n+2, & 1 \le r \le n+1 \\ r+1, & n+2 \le r \le \Delta \end{cases}
$$

Proof. Let $V(T(B_{m,n})) = \{u, v, g\} \cup \{u_i, e_i : (1 \leq i \leq m)\} \cup \{v_i, f_i : (1 \leq i \leq n)\}\,$ where e_i is the vertex corresponding to the edge uu_i , $(1 \le i \le m)$, f_i is the vertex corresponding to the edge vv_i , $(1 \leq i \leq n)$ and g is the vertex corresponding to the edge uv of $B_{m,n}$.

Note that $deg(e_i) = m+2, deg(f_i) = n+2, deg(g) = m+n+2, deg(u_i) = deg(v_i) =$ 2, $deg(u) = 2m + 2, deg(v) = 2n + 2.$

By definition of the Total graph, the vertices $\{g, v, f_i : (1 \le i \le n)\}\)$ induce a clique of order K_{n+2} in $M(B_{m,n})$. Thus, $\chi_r(T(B_{m,n})) \geq n+2$, for any r. **Case 1:** $1 \le r \le n + 1$

Consider the color function $c: V(T(B_{m,n})) \to \{c_1, c_2, \ldots, c_{n+2}\}\$ defined by $c(g)$ $c(v_i) = c_1, c(v) = c_2, c(f_i) = c_{i+2}, (1 \leq i \leq n), c(e_i) = c_{i+1}, (1 \leq i \leq m), c(u) =$ c_{m+2} and

$$
c(u_i) = \begin{cases} c_{n+1}, n \text{ is odd} \\ c_{n+2}, n \text{ is even} \end{cases}
$$

It is clear that c is a r dynamic coloring and hence $\chi_r(T(B_{m,n})) \leq n+2$. Case 2: $n+2 \leq r \leq \Delta$

Consider the color function $c: V(T(B_{m,n})) \to \{c_1, c_2, \ldots, c_{r+1}\}\$ defined by $c(g)$ = $c_1, c(v) = c_2, c(f_i) = c_{i+2}, (1 \leq i \leq n)$.

In order to maintain r-adjacency condition we need at least $r-n-1$ new colors to color the remaining vertices. Color the vertices $\{u, v_i : (1 \le i \le n)\}\)$ consecutively with the colors c_{n+3}, \ldots, c_{r+1} and for $(1 \leq i \leq m)$ $c(e_i) = c_{i+1}$, if $c(u) = c_{r+1}$, otherwise color the vertices $\{e_i : (1 \le i \le m)\}\)$ consecutively with the colors $c_{n+4}, \ldots, c_{r+1}, c_{i+1}$. For $(1 \leq i \leq m)$ assign to the vertex u_i one of the allowed colors - such color exists, because $deg(u_i) = 2$.

Hence, $\chi_r(T(B_{m,n})) \leq r + 1$.

It is clear that c is a r dynamic coloring and hence

$$
\chi_r(T(B_{m,n})) = \begin{cases} n+2, & 1 \le r \le n+1 \\ r+1, & n+2 \le r \le \Delta \end{cases}
$$

Theorem 2.4. Let $m, n \geq 2, m \leq n$, the r-dynamic chromatic number of the Central graph of a Bistar graph is

$$
\chi_r(C(B_{m,n})) = \begin{cases} m+n, & r=1\\ m+n+2, & 2 \le r \le \Delta-1\\ m+2n+3, & r=\Delta \end{cases}
$$

Proof. Let $V(C(B_{m,n})) = \{u, v, g\} \cup \{u_i, e_i : (1 \leq i \leq m)\} \cup \{v_i, f_i : (1 \leq i \leq n)\},\$ where e_i is the vertex corresponding to the edge uu_i , $(1 \le i \le m)$, f_i is the vertex corresponding to the edge vv_i , $(1 \leq i \leq n)$ and g is the vertex corresponding to the edge uv of $B_{m,n}$.

Note that $deg(e_i) = deg(f_i) = deg(g) = 2$, $deg(u_i) = deg(v_i) = deg(u)$ $deg(v) = m + n + 1.$

By definition of the Central graph, the vertices $\{u, v_i : (1 \le i \le n)\}\)$ induce a clique of order K_{n+1} in $C(B_{m,n})$. Moreover the vertices u_i $(1 \leq i \leq m)$ is adjacent to the vertices v_i $(1 \leq i \leq n)$. Thus, $\chi_r(C(B_{m,n})) \geq m+n$, for any r. Case 1: $r = 1$

Consider the color function $c: V(C(B_{m,n})) \rightarrow \{c_1, c_2, \ldots, c_{m+n}\}\$ defined by $c(u_i) = c_i, (1 \leq i \leq m), c(v_i) = c_{m+i}, (1 \leq i \leq n), c(u) = c(f_i) = c_1, c(g) = c_2,$ and $c(v) = c(e_i) = c_{m+1}$.

It is clear that c is a r dynamic coloring and hence $\chi_r(C(B_{m,n})) \leq m + n$. Case 2: $2 \le r \le \Delta - 1$

Consider the color function $c: V(C(B_{m,n})) \to \{c_1, c_2, \ldots, c_{m+n+2}\}\$ defined by $c(g) = c_1, c(u_i) = c_i, (1 \leq i \leq m), c(u) = c_{m+n+1}, c(v) = c_{m+n+2}, c(v_i) = c_{m+i}$ $(1 \leq i \leq n), c(f_{n-i}) = c_{m+1+i}, (0 \leq i \leq n-1), c(e_i) = c_{m+1-i}, (1 \leq i \leq m).$ It is clear that c is a r dynamic coloring and hence $\chi_r(C(B_{m,n})) \leq m + n + 2$.

Hence, $\chi_r(C(B_{m,n})) \leq m + n + 2$.

Case 3: $r = \Delta$

Consider the color function $c: V(C(B_{m,n})) \to \{c_1, c_2, \ldots, c_{m+2n+3}\}\$ defined by $c(u_i) \ = \ c_i, \ c(v_i) \ = \ c_{m+i}, \ (1 \leq i \leq n) \, , \ c(u) \ = \ c_{m+n+1}, \ c(v) \ = \ c_{m+n+2}, \ c(g) \ =$ $c_{m+2n+3}, c(f_i) = c_{m+n+2+i}, c(e_i) = c_{m+n+2+i}.$

It is clear that c is a r dynamic coloring and hence $\chi_r(C(B_{m,n})) \leq m + 2n + 3$. Hence, $\chi_r(C(B_{m,n})) \leq m + 2n + 3$.

It is clear that c is a r dynamic coloring and hence

$$
\chi_r(C(B_{m,n})) = \begin{cases} m+n, & r=1\\ m+n+2, & 2 \le r \le \Delta - 1\\ m+2n+3, & r=\Delta \end{cases}
$$

REFERENCES

- [1] Bondy J.A. and Murty, U.S.R., Graph theory with applications, New York: Macmillan Ltd. Press, 1976.
- [2] Ahadi, A., Akbari, S., Dehghana, A. and Ghanbari, M., On the difference between chromatic number and dynamic chromatic number of graphs, *Discrete Math.* 312 (2012), 2579-2583.
- [3] Akbari, S., Ghanbari, M. and Jahanbakam, S., On the dynamic chromatic number of graphs, in: Combinatorics and Graphs, in: Contemp. Math.,(Amer. Math. Soc.,) 531 (2010), 11-18.
- [4] Akbari, S., Ghanbari, M. and Jahanbekam, S., On the list dynamic coloring of graphs, Discrete Appl. Math. 157 (2009), 3005-3007
- [5] Arundhadhi, R. and Ilayarani, V., Total coloring of closed helm, Flower and Bistar Graph Family, International journal of scientific and Research Publication, Vol 7, Issue 7, July 2017, ISSN 2250-3153.
- [6] Alishahi, M., Dynamic chromatic number of regular graphs, *Discrete Appl. Math.* 160 (2012), 2098-2103.
- [7] Dehghan, A. and Ahadi, A., Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number, *Discrete Appl. Math.* 160(15) (2012), 2142–2146.
- [8] Harary, F., Graph Theory, Narosa Publishing home, New Delhi 1969.
- [9] Lai, H.J., Montgomery, B. and Poon, H., Upper bounds of dynamic chromatic number, Ars $Combin. 68 (2003), 193-201.$
- [10] Li, X. and Zhou, W., The 2nd-order conditional 3-coloring of claw-free graphs, Theoret. $Comput. Sci. 396 (2008), 151-157.$
- [11] Li, X. Yao, X., Zhou, W. and Broersma, H., Complexity of conditional colorability of graphs, $Appl. Math. Let t. 22 (2009), 320-324.$
- [12] Montgomery, B., Dynamic coloring of graphs, ProQuest LLC, Ann Arbor, MI, (2001), Ph.D Thesis, West Virginia University.
- [13] Taherkhani, A., r-Dynamic chromatic number of graphs, Discrete Appl. Math., 201(2016), $222 - 227$.
- [14] Michalak, D., On middle and total graphs with coarseness number equal 1, Springer Verlag Graph Theory, Lagow proceedings, Berlin Heidelberg, New York, Tokyo, (1981), 139-150.
- [15] Vernold Vivin, J., Ph.D Thesis, Harmonious coloring of total graphs, n -leaf, central graphs and circumdetic graphs, Bharathiar University, (2007), Coimbatore, India
- [16] Arockia Aruldoss, J. and Pushparaj, S., Vertex Odd Mean and Even Mean Labeling of Fan Graph, Mongolian Tent, International Journal of Mathematics And its Applications, Volume 4, Issue 4 (2016), 223-227.

Current address: G.Nandini: Department of Mathematics, SNS College of Technology, Coimbatore - 641 035 Tamil Nadu, India.

 E -mail address: nandiniap2006@gmail.com

ORCID Address: http://orcid.org/0000-0002-9368-571X

Current address: M.Venkatachalam: Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029, Tamil Nadu India

 E -mail address: venkatmaths@gmail.com

ORCID Address: http://orcid.org/0000-0001-5051-4104

Current address: S.Gowri: Department of Mathematics, SNS College of Technology, Coimbatore 641035 Tamil Nadu, India.

 E -mail address: gowrisathasivam@gmail.com

ORCID Address: http://orcid.org/0000-0001-5849-3213