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APPROXIMATE CONTROLLABILITY OF SECOND-ORDER
STOCHASTIC NON-AUTONOMOUS INTEGRODIFFERENTIAL

INCLUSIONS BY RESOLVENT OPERATORS

R. NIRMALKUMAR AND R. MURUGESU

Abstract. In this paper, we formulate a set of suffi cient conditions for the ap-
proximate controllability for a class of second-order stochastic non-autonomous
integrodifferential inclusions in Hilbert space. We establish the results with
the help of resolvent operators and Bohnenblust-Karlin’s fixed point theorem
is to prove the main result. An application is given to illustrate the main
result.

1. Introduction

Differential inclusions have wide applications in engineering, economics and in
optimal control theory. Many authors studied the existence, controllability and sta-
bility of differential inclusions [3, 7, 8, 25, 34, 35, 36]. The idea of controllability is of
immense influence in mathematical control theory, which plays a vital role in both
engineering and sciences. Controllability generally means that it is possible to steer
dynamical control systems from an arbitrary initial state to an arbitrary final state
using the set of admissible controls. There are two basic theories of controllability
can be identified as approximate controllability and exact controllability. Most of
the criteria, which can be met in the literature are formulated for finite dimensional
system. But in the infinite dimensional system, many unsolved problems are still
exist as for as controllability is concerned. In the case of infinite dimensional sys-
tem, controllability can be distinguished as approximate and exact controllability.
Approximate controllability means that the system can be governed to arbitrary
small neighborhood of final state whereas exact controllability allows to govern the
system to arbitrary final state. In otherwords the approximate controllability gives
the possibility of governing the system of states which forms a dense subspace in the
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state space. Many authors studied the existence, controllability and approximate
controllability of the stochastic differential equations and inclusions in the first and
second order [8, 9, 13, 19, 21, 23, 24, 25, 28, 29, 30, 31, 33, 37, 38].
Stochastic Differential Equations(SDE’s) have been broadly applied in various

areas of applied sciences. A common development of a deterministic model of differ-
ential equation is a structure of stochastic differential equation, where appropriate
parameters are modeled as applicable stochastic process. This is because of the
proof that problems in a real life situations are fundamentally modeled by sto-
chastic systems instead deterministic systems. SDE’s naturally refer to the time
dynamics of the evolution of a state vector, based on the (approximate) physics of
the real system, together with a driving noise process. The noise process can be
assumed in several ways. Random differential and evolution systems play a cru-
cial role in characterizing many social, physical, biological, medical and engineering
problems [6, 10, 26, 27, 32] and references therein.
In the past years, the authors [1, 2, 4, 12, 16, 17], investigated the existence of ab-

stract second order initial value problem for the non-autonomous system. In [14, 15]
Grimmer.et.al, studied the analytic resolvent operators for the integral equations
in Banach space and he also studied the resolvent operator for integral equations in
Banach space. In [18] Henríquez.et.al studied the existence of solutions of a second
order abstract functional cauchy problem with nonlocal conditions and in [20] he
also studied the existence of solutions of non-autonomous abstract cauchy problem
of second order integrodifferential equations by the use of resolvent operators in-
stead of cosine family of operators. In [16] Henríquez, investigated the existence
of solutions of non-autonomous second order functional differential equations with
infinite delay by using Leray Schauder alternative fixed point theorem. The approx-
imate controllability of second order stochastic non autonomous integrodifferential
inclusions by resolvent operators have not studied yet. Motivated by the above
facts, we establish the suffi cient conditions for the approximate controllability of
second order stochastic integrodifferetial inclusions by resolvent operators by using
Bohenblust-Karlin’s fixed point theorem.
In this paper, we establish the set of suffi cient conditions for the approximate

controllability for a non-autonomous second order stochastic integrodifferential in-
clusions in Hilbert space of the form,

d

dt
[x′(t)] ∈ A(t)x(t) +

∫ t

0

G(t, s)x(s)ds+Bu(t) + Σ(t, x(t))dw(t), t ∈ J := [0, b],

(1.1)

x(0) = y, x′(0) = z (1.2)

where A(t) : D(A(t)) ⊆ X → X is a closed linear operator, G(t, s) : D(G) ⊆ X →
X is a linear operator and the control function the state x(·) takes the values in
the separable real Hilbert space X; Further Σ : J × X → L0

2(K, X) is nonempty,
bounded, closed and convex multivalued map and the control function u(·) is given
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in L(J, U), a Hilbert space of admissible control functions with U as Hilbert space.
B is a bounded linear operator from U into X.
The paper is organised as follows: In section 2, we present some basic notations

and preliminaries and in section 3, we studied the approximate controllability results
by resolvent operator and in section 4, an application is provide to illustrate the
main results.

2. Preliminaries

In this section, the basic preliminaries, definitions, lemmas, notations, multi-
valued maps and some results which are needed to establish our main results are
discussed.
Let (X, ‖·‖X) and (K, ‖·‖K) be two real separable Hilbert spaces and for conve-

nience, we use the same notation ‖·‖ to denote the norms in X,K and 〈·, ·〉 to denote
the inner product space without any confusion. Let L(K, X) be space of bounded
linear operators from K into X. Let (Ω,F , {Ft}t≥0,P) be a complete filtered prob-
ability space satisfying the usual conditions, that is the filtration {Ft}t≥0 is a right
continuous increasing family and F0 contains all P-null sets. Let {w(t) : t ≥ 0} be
a cylindrical K - valued Wiener process defined on a filtered complete probability
space (Ω,F , {Ft}t≥0,P) with finite trace nuclear covariance operator Q ≥ 0 such
that Tr(Q) < ∞. Further, we assume that there exists a complete orthonormal
basis {ek}k≥1 in K, a bounded sequence of nonnegative real numbers λk such that
Qek = λkek, k = 1, 2, ... and sequence of independent Wiener processes. We assume
that Ft = σ {w(s) : 0 ≤ s ≤ t} is the σ - algebra generated by w and Fb = F . For
ϕ ∈ L(K, X), define

‖ϕ‖2Q = Tr (ϕQϕ∗) =

∞∑
n=1

∥∥∥√λnϕen∥∥∥2

If ‖ϕ‖2Q = Tr (ϕQϕ∗) < ∞, then ϕ is called a Q-Hilbert-Schmidt operator. Let
LQ(K, X) denotes the space of all Q-Hilbert Schmidt operators ϕ : K → X. The
completion LQ(K, X) of L(K, X) with respect to the topology induced by the
norm ‖·‖Q, where ‖ϕ‖

2
Q = 〈ϕ,ϕ〉 is a Hilbert space with the above norm topol-

ogy. The collection of all strongly measurable, square integrable, X- valued ran-
dom variables denoted by L2(Ω, X) is a Banach space equipped with the norm

‖·‖L2 =
(
E ‖x(·, w)‖2X

) 1
2

.

Let C(J,L2(Ω, X)) be the Banach space of all continuous functions from J into
L2(Ω, X), satisfying sup0≤t≤bE ‖x(t)‖2X < ∞,L0

2(Ω, X) denotes the family of all
F0- measurable, X- valued random variables.
The resolvent set of linear operators A is given by ρ(A). Also, we represent

by [D(A)] the domain of A endowed with the graph norm E ‖A‖2A = E ‖x‖2 +

sup0≤s≤t≤b ‖A(t)S(t, s)z‖2 , z ∈ Z. Here (Z, ‖·Z‖) is a Hilbert space continuously
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included in X and S(t, s) ∈ L(Z, [D]). To get our results, we consider the abstarct
second order integrodifferential problem

x′′(t) ∈ A(t)x(t) +

∫ t

0

G(t, s)x(s)ds+Bu(t) , ν ≤ t ≤ b, (2.1)

x(ν) = 0, x′(ν) = z ∈ X (2.2)

for 0 ≤ ν ≤ b, has an associated resolvent operator of bounded linear operators
R(t) on X which was proved in [20].

Definition 2.1. A family of bounded linear operators R(t) on X is called a resol-
vent operator of (1.1)-(1.2) if the following conditiond are satisfied.
a) The operator R: ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b} → L(X) is strongly continuous,
R(t, ·)z is continuously differentiable for all z ∈ X. We denote by the positive
constants M and M̃ such that

‖R(t, s)‖ ≤M,

∥∥∥∥ ∂∂sR(t, s)

∥∥∥∥ ≤ M̃, (t, s) ∈ ∆. (2.3)

b) Let z ∈ D. Since R(·, β)z is a solution of the problem (1.1)-(1.2), we have

∂2

∂t2
R(t, β)z = A(t)R(t, β)z +

∫ t

σ

G(t, ξ)R(η, β)zdξ. (2.4)

Now we consider the abstract second-order cauchy problem

x′′(t) ∈ A(t)x(t) +

∫ t

0

Q(t, s)x(s)ds, t ∈ I = [0, b] (2.5)

x(0) = y, x′(0) = z (2.6)

Definition 2.2. Under the above conditions, let y, z ∈ X and then the mild solu-
tion x(·) of the problem (2.5)-(2.6) is given by

x(t) = −∂R(t, 0)

∂s
y +R(t, 0)z (2.7)

Definition 2.3. A multivalued map G : X → 2X \ {∅} is convex(closed) valued
if G(x) is convex(closed) for all x ∈ X. G is bounded on bounded sets if G(B) =
Ux∈BG(x) is bounded in X for any bounded set B of X i.e.,

sup
x∈B
{sup {‖y‖ : y ∈ G(x)}} <∞.

Definition 2.4. G is called upper semicontinuous (u.s.c for short) on X, if for
each x0 ∈ X, the set G(x0) is a nonempty closed subset of X and if for each open
set N of X containing G(x0), there exits an open neighborhood V of x0 such that
G(V ) ⊆ N .

Definition 2.5. The multi-valued operator G is called compact if G(X) is a com-
pact subset of X. G is called completely continuous if G(B) is relatively compact
for every bounded subset B of X.
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For more details on Multivalued maps, see the books of Deimling in [11], Hu and
Papageorgiou in [22].
If the multivalued map G is completely continuous with nonempty values, then

G is u.s.c., if and only if G has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn)
imply y∗ ∈ G(x∗). G has a fixed point if there is a x ∈ X such that x ∈ G(x).
In the following, BCC(X) denotes the set of all nonempty, bounded, closed and
convex subset of X.

Definition 2.6. A multivalued map G : J → BCC(X) is said to be measurable
if, for each x ∈ X, the function v : J → R, defined by v(t) = d(x,Gx(t)) =
inf {‖x− z‖ : z ∈ G(t)} belongs to L1(J,R).

Definition 2.7. The multivalued map Σ : J × X → BCC(X) is said to be L2 -
Caratheodory if
(i) t→ Σ(t, x) is measurable for each x ∈ X ,
(ii) x→ Σ(t, x) is upper semicontinuous for almost all t ∈ J ,
(iii) for each r > 0, there exists Lr ∈ L1(J,R) such that

‖Σ(t, x)‖2 = sup
{
E ‖σ‖2 : σ ∈ Σ(t, x)

}
≤ Lr(t) for almost all t ∈ J and all ‖x‖2 ≤ r.

Lemma 2.8 ([3], Lasota and Opial). Let J be a compact real interval, BCC(X)
be the set of all nonempty, bounded, closed and convex subset of X and Σ be a
multivalued map SΣ,x 6= ∅ and let Γ be a linear combination mapping from L2(J,X)
to C(J,X). then, the operator

Γ ◦ SΣ : C → BCC(C(J,X)), x→ (Γ ◦ SΣ)(x) = Γ(SΣ,x),

is a closed graph operator in C × C, where SΣ,x is known as the selected operators
set from Σ, is given by

σ ∈ SΣ,x =
{
σ ∈ L2(L(K,X) : σ(t) ∈ Σ(t, x) for a.e t ∈ J

}
.

Lemma 2.9 ( Bohnenblust-Karlin’s [5]). Let D be a nonempty subset of X, which
is bounded, closed and convex. Suppose G : D → 2X\ {∅} is u.s.c with closed,
convex values and such that G(D) ⊆ D and G(D) is compact. Then G has a fixed
point.

Definition 2.10. A continuous X - valued process x is said to be a mild solution
of (1.1)-(1.2) if
(i) x(t) is Ft - adapted and {x(t) : t ∈ [0, b]}.
(ii) there exists Σ ∈ L1(J,X) such that σ(t) ∈ Σ(t, x(t)) on t ∈ J

x(t) = −∂R(t, 0)

∂s
y +R(t, 0)z +

∫ t

0

R(t, s)Bu(s)ds+

∫ t

0

R(t, s)σ(s)dw(s)ds

(iii) x0 = y, x′(0) = z. is satisfied.
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Now, it is convenient to introduce two appropriate operators and basic assump-
tions on these operators:

γb0 =

∫ b

0

R(b, s)BB∗R∗(b, s)ds : X → X,

R(α, γb0) = α(αI + γb0)−1 : X → X.

where B∗ denotes the adjoint of B and R∗(t) is the adjoint of R(t). It is straight
forward that the operator γb0 is a linear bounded operator.
To study the approximate controllability of system (1.1)-(1.2), we impose the

following conditions
(H0) αR(α, γb0) = α(αI + γb0)−1 → 0 as α→ 0+ in the strong operator topology.
It the view of [36], Hypothesis (H0) holds if and only if the linear system

x′′(t) ∈ A(t)x(t) +

∫ t

0

G(t, s)x(s)ds+ (Bu)(t), t ∈ [0, b],

x(0) = y, x′(0) = z,

is approximately controllable on [0,b].

3. Approximate Controllability Results

In this section, we shall formulate and prove suffi cient conditions for the approxi-
mate controllability for non-autonomous second order stochastic integrodifferential
inclusions of the form (1.1)-(1.2) by using Bohnenblust-Karlin’s fixed point theorem.

Definition 3.1. Let xb(φ, u) be the state value of (1.1)-(1.2) at the terminal time
b corresponding to the control u and the initial value φ. Introduce the set

R(b, φ) = {xb(φ;u)(0) : u(·) ∈ L(J, U)} ,
which is called the reachable set of (1.1)-(1.2) at the time b and its closure in X is
denoted by R(b, φ). The system (1.1)-(1.2) is said to be approximately controllable
on J if R(b, φ) = X.

In order to establish the result, we need the following hypotheses:
(H1) The resolvent operator R(t, s), (t, s) ∈ ∆ is compact.
(H2) The multivalued map Σ : J×X → BCC(X) is an L2 caratheodory function

which satifies the following conditions:
(i) For each t ∈ J , the function Σ(t, .) is u.s.c and for each x ∈ X, the
function σ(., x) is measurable. And for each fixed x ∈ X, the set

SΣ,x =
{
σ ∈ L2(L(K, X)) : σ(t) ∈ Σ(t, ψ) for a.e t ∈ J

}
is nonempty.
(ii) For each positive number r there exists a positive function Lr : J → R+

such that

sup
{
E ‖σ‖2 : σ(t) ∈ Σ(t, ψ)

}
≤ Lσ,r(t) a.e t ∈ J.
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r
lim→ ∞ inf

∫ t
0
Lσ,r(s)ds

r
= Λ <∞.

Lemma 3.2. For any x̄b ∈ L2(Fb, X), there exists φ̄ ∈ LF2 (Ω,L2(J,L(K, X))) such
that x̄b = Ex̄b +

∫ b
0
φ̄(s)dw(s).

Now for any α > 0, x̄b ∈ L2(Fb, X) and for σ ∈ SΣ,x, we define the control
function

uα(t, x) = B∗R∗(b, s)R(α, γb0)P (x(.))

where

p(x(.))

{
Ex̄b +

∫ b

0

φ̄(s)dw(s)− ∂R(t, 0)

∂s
y +R(t, 0)z +

∫ t

0

R(t, s)σ(s)dw(s)ds

}
.

Theorem 3.3. Suppose that the hypotheses (H1) − (H2) are satisfied then the
system (1.1)-(1.2) has a mild solution on J , provided that

4M2γb2[1 +
4

α2
M4M4

B ] < 1

and where ‖B‖ = MB.

Proof. The main aim in this section is to find the conditions for solvability of the
system (1.1)-(1.2) for α > 0. We show that, using the control uα(x, t), the operator
φ : C → 2C , defined by

φ(x) =

{
ϕ ∈ C : ϕ(t) = −∂R(t, 0)

∂s
y +R(t, 0)z +

∫ t

0

R(t, s)Buα(s)ds

+

∫ t

0

R(t, s)σ(s)dw(s)ds, σ ∈ Sσ,x
}

has a fixed point x, which is a mild solution of the system (1.1)-(1.2).
We now show that φ satisfies all the conditions of Lemma 2.9. To simplify the

result, we subdivide the proof into five steps.
Step 1: φ is convex for each x ∈ C. In fact, if ϕ1, ϕ2 belongs to φ(x), then there
exist σ1, σ2 ∈ SΣ,x such that for each t ∈ J , we have

ϕi(t) =
∂R(t, 0)

∂s
y +R(t, 0)z +

∫ t

0

R(t, s)σi(s)dw(s)ds

+

∫ t

0

R(t, s)BB∗R∗(b, s)R(α, γb0)

×
{
Ex̄b +

∫ b

0

φ̄(s)dw(s)− ∂R(t, 0)

∂s
y +R(t, 0)z +

∫ t

0

R(t, s)σi(s)dw(s)ds

}
(s)ds,

i = 1, 2.
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Let λ ∈ [0, 1]. Then for each t ∈ J , we get

(λϕ1 + (1− λ)ϕ2)(t) =
∂R(t, 0)

∂s
y +R(t, 0)z

+

∫ t

0

R(t, s)[λσ1(s) + (1− λ)σ2(s)]dw(s)ds

+

∫ t

0

R(t, s)BB∗R∗(b, s)R(α, γb0)

{
Ex̄b +

∫ b

0

φ̄(s)dw(s)− ∂R(t, 0)

∂s
y

+R(t, 0)z +

∫ t

0

R(t, s)[λσ1(s) + (1− λ)σ2(s)]dw(s)ds

}
(s)ds

It is easy to see that SΣ,x is convex since Σ has convex values. So λσ1(s) + (1 −
λ)σ2(s) ∈ SΣ,x. Thus, λϕ1 + (1− λ)ϕ2 ∈ φ(x).

Step 2: For r > 0, let Br =
{
x ∈ C : ‖x‖2C ∈ r

}
. Certainly, Br is a bounded,

closed and convex set of C. We claim that there exists a positive number r such
that φ(Br) ⊆ Br.
If this is not true, then for each positive number r, there exists a function xr ∈ Br,
but φ(xr) 6= Br, i.e., E ‖φ(xr)‖2C > r

r < ‖Eφ(xr)(t)‖2

≤ 4

{
E

∥∥∥∥∂R(t, 0)

∂s
y

∥∥∥∥2

+ E ‖R(t, 0)z‖2 + E

∥∥∥∥∫ t

0

R(t, s)Burα(s, x)ds

∥∥∥∥2

+E

∥∥∥∥∫ t

0

R(t, s)σr(s)dw(s)ds

∥∥∥∥2
}

≤ 4

{
M̃2E ‖y‖2 +M2E ‖z‖2 +M2b2

∫ t

0

Lσ,r(s)dw(s) +
4

α2
M4M4

Bb
2

×

2E ‖x̄b‖2 + 2E

∥∥∥∥∥
∫ b

0

φ̄(s)dw(s)ds

∥∥∥∥∥
2

+ M̃E ‖y‖2 +M2E ‖z‖2 +M2

∫ t

0

Lσ,r(s)dw(s)


dividing both sides of the above inequality by r and taking r →∞ we have

4M2γb2[1 +
4

α2
M4M4

B ] ≥ 1

which is a contradiction to our assumption. Hence, for some positive number r > 0
and some σ ∈ SΣ,x, φ(Br) ⊆ Br.

Step 3: φ sends bounded sets into equicontinuous sets of C. For each x ∈ Br,
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ϕ ∈ φ(x), there exists σ ∈ SΣ,x such that for each t ∈ J , we have

ϕ(t) = −∂R(t, 0)

∂s
y +R(t, 0)z +

∫ t

0

R(t, s)Buα(s)ds+

∫ t

0

R(t, s)σ(s)dw(s).

Let 0 < ε < t and 0 < t1 < t2 ≤ b, then

E ‖ϕ(t1) − ϕ(t2)‖2 = 8E

∥∥∥∥−∂R(t1, 0)

∂s
+
∂R(t2, 0)

∂s

∥∥∥∥2

E ‖y‖2

+8E ‖R(t1, 0)−R(t2, 0)‖2E ‖z‖2

+8E

∥∥∥∥∫ t1

0

R(t1, s)−R(t2, s)σ(s)dw(s)

∥∥∥∥2

+8E

∥∥∥∥∥
∫ t1

t1−ε

R(t1, s)−R(t2, s)σ(s)dw(s)

∥∥∥∥∥
2

+8E

∥∥∥∥∫ t2

t1

R(t2, s)σ(s)dw(s)

∥∥∥∥2

+ 8E

∥∥∥∥∫ t1

0

R(t1, s)−R(t2, s)Bu(η, x)dη

∥∥∥∥2

+8E

∥∥∥∥∥
∫ t1

t1−ε

R(t1, s)−R(t2, s)Bu(η, x)dη

∥∥∥∥∥
2

+ 8E

∥∥∥∥∫ t2

t1

R(t2, s)Bu(η, x)dη

∥∥∥∥2

≤ 8E

∥∥∥∥−∂R(t1, 0)

∂s
+
∂R(t2, 0)

∂s

∥∥∥∥2

E ‖y‖2 + 8E ‖R(t1, 0)−R(t2, 0)‖2E ‖z‖2

+8E

∥∥∥∥∫ t1

0

R(t1, s)−R(t2, s)Lσ,r(s)dw(s)ds

∥∥∥∥2

+8E

∥∥∥∥∥
∫ t1

t1−ε

R(t1, s)−R(t2, s)Lσ,r(s)dw(s)ds

∥∥∥∥∥
2

+8E

∥∥∥∥∫ t2

t1

R(t2, s)Lσ,r(s)dw(s)ds

∥∥∥∥2

+8M2
BE

∥∥∥∥∫ t1

0

R(t1, s)−R(t2, s)u(η, x)dη

∥∥∥∥2

+8M2
BE

∥∥∥∥∥
∫ t1

t1−ε

R(t1, s)−R(t2, s)u(η, x)dη

∥∥∥∥∥
2

+ 8M2
BE

∥∥∥∥∫ t2

t1

R(t2, s)u(η, x)dη

∥∥∥∥2

The righthand side of the above inequality tends to zero independently of x ∈ Br
as (t1 − t2)→ 0 and ε suffi ciently small, since the compactness of the resolvent op-
erator R(t, s) implies the continuity in the uniform operator topology. Thus φ(xr)
sends Br into equicontinuous family of functions.
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Step 4: The set
∏

(t) = {ϕ(t) : ϕ ∈ φ(Br)} is relatively compact in X.

Let t ∈ (0, b] be fixed and ε a real number satisfying 0 < ε < t. For x ∈ Br, we
define

ϕε(t) = −∂R(t, 0)

∂s
y+R(t, 0)z+

∫ t−ε

0

R(t, s)Buα(η, x)dη+

∫ t−ε

0

R(t, s)σ(s)dw(s)ds

Since R(t, s) is a compact operator, the set
∏
ε(t) = {ϕε(t) : ϕε ∈ φ(Br)} is rel-

atively compact in X for each ε, 0 < ε < t. Moreover, for each 0 < ε < t, we
have

E ‖ϕ(t)− ϕε(t)‖
2 ≤ E

∥∥∥∥∫ t−ε

t

R(t, s)Buα(η, x)dη

∥∥∥∥2

+E

∥∥∥∥∫ t−ε

t

R(t, s)σ(s)dw(s)ds

∥∥∥∥2

.

Therefore
E ‖ϕ(t)− ϕ∈(t)‖2 → 0 as α→ 0+.

Hence there exists relatively compact sets arbitrarily close to the set
∏

(t) =

{ϕ(t) : ϕ ∈ φ(Br)} and the set
∏̃

(t) is relatively compact in X for all t ∈ [0, b].
Since it is compact at t = 0, hence

∏
(t) is relatively compact in X for all t ∈ [0, b].

Step 5: φ has a closed graph.
xn → x∗ as n → ∞, ϕn ∈ φ(xn) and ϕn → ϕ∗ as n → ∞. We will show that

ϕ∗ ∈ φ(x∗). Since ϕn ∈ ψ(xn), there exists a σn ∈ SΣ,xn such that

ϕn(t) =
∂R(t, 0)

∂s
y +R(t, 0)z +

∫ t

0

R(t, s)σn(s)dw(s)ds+

∫ t

0

R(t, s)BB∗R∗(b, s)

×R(α, γb0)

{
Ex̄b +

∫ b

0

φ̄(s)dw(s)− ∂R(b, 0)

∂s
y +R(b, 0)z

+

∫ t

0

R(b, η)σn(η)dw(η)dη

}
(s)ds.

We must prove that there exists σ∗ ∈ SΣ,x∗ such that

ϕ∗(t) =
∂R(t, 0)

∂s
y +R(t, 0)z +

∫ t

0

R(t, s)σ∗(s)dw(s)

+

∫ t

0

R(t, s)BB∗R∗(b, s)R(α, γb0)

×
{
Ex̄b +

∫ b

0

φ̄(s)dw(s)− ∂R(b, 0)

∂s
y +R(b, 0)z +

∫ t

0

R(b, η)σ∗(η)dw(η)

}
(s)ds

clearly, we have∥∥∥(ϕn +
∂R(t, 0)

∂s
y −R(t, 0)z −

∫ t

0

R(t, s)σn(s)dw(s)ds−
∫ t

0

R(t, s)BB∗R∗(b, s)
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×R(α, γb0)

{
Ex̄b +

∫ b

0

φ̄(s)dw(s)− ∂R(b, 0)

∂s
y −R(b, 0)z −

∫ t

0

R(b, η)σn(η)dw(η)dη

}
(s)ds

)
−
(
ϕ∗ +

∂R(t, 0)

∂s
y −R(t, 0)z −

∫ t

0

R(t, s)σ∗(s)dw(s)ds−
∫ t

0

R(t, s)BB∗R∗(b, s)

×R(α, γb0)

{
Ex̄b +

∫ b

0

φ̄(s)dw(s)− ∂R(b, 0)

∂s
y −R(b, 0)z

−
∫ t

0

R(b, η)σ∗(η)dw(η)dη

}
(s)ds

)∥∥∥2

→ 0 as n→∞.

Consider the linear continuous operator ψ : L1(J × X) → L1(J × X) and κ :
L1(J ×X)→ L1(J ×X),

(κσ)(t) =

∫ t

0

R(t, s)σ(s)dw(s)ds−
∫ t

0

R(t, s)BB∗R∗(b− s)R(α, γb0){
×
∫ b

0

R(t, s)σ(τ)dw(τ)dτ
}

(s)ds.

From Lemma 2.8 it follows that κ ◦ SΣ is a closed graph operator. Also, from the
definition of κ, we have that(
ϕn +

∂R(t, 0)

∂s
y −R(t, 0)z −

∫ t

0

R(t, s)σn(s)dw(s)ds−
∫ t

0

R(t, s)BB∗R∗(b, s)R(α, γb0)

×
{
Ex̄b +

∫ b

0

φ̄(s)dw(s)− ∂R(b, 0)

∂s
y −R(b, 0)z

−
∫ t

0

R(b, η)σn(η)dw(η)dη

}
(s)ds

)
∈ κ(Sσ,xn).

Since yn → y∗, for some y∗ ∈ SΣ,y∗ , it follows from Lemma 2.9 that(
ϕ∗(t)−

∫ t

0

R(t, s)BB∗R∗(b, s)R(α, γb0)

{
Ex̄b +

∫ b

0

φ̄(s)dw(s)− ∂R(b, 0)

∂s
y −R(b, 0)z

−
∫ b

0

R(b, s)σ∗(s)dw(s)ds

}
(s)ds+

∫ t

0

R(t, s)σ∗(s)dw(s)
)

for some σ∗ ∈ S(Σ, y∗). Therefore φ has a closed graph.

As a consequences of step 1 to step 5 together with the Arzela-Ascoli theo-
rem, we conclude that φ is a compact multivalued map, u.s.c with convex closed
values. As a consequences of Lemma 2.9, we can deduce that φ has a fixed point x
which is a mild solution of (1.1)-(1.2). �
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Roughly speaking, by using the control function u, from any given initial point
x0 ∈ X we can move the system with the trajectory as close as possible to any
other final point xb ∈ X.

Theorem 3.4. Suppose that the assumptions (H0) − (H2) hold. Assume addi-
tionally that there exists N ∈ L1([0,∞)) such that supx∈X E ‖σ(t, x)‖2 ≤ N(t) for
a.e. t ∈ J , then the non-autonomous second order integrodifferential inclusions
(1.1)-(1.2) is approximately controllable on J.

Proof. Let x̂α(·) be fixed point of φ in Br. By Theorem 3.3 any fixed point of φ is
a mild solution of (1.1)− (1.2) under the control

ûα(t) = B∗R∗(b, t)R(α, γb0)p(x̂α)

and

x̂α(b) = xb + αR(α, γb0)p(x̂α) (3.1)

Moreover by assumption on σ and Dunford-Pettis theorem, we have that the
{σα(s)} is weakly compact in L1(J,X), so there is a subsequence, still denoted
by {σα(s)}, that converges weakly to say σ(s) in L1(J,X). Define

w = Ex̄b +

∫ b

0

φ̄(s)dw(s)− ∂R(t, 0)

∂s
y +R(t, 0)z +

∫ t

0

R(t, s)σ(s)dw(s)ds

now we have

E ‖p(x̂α)− w‖2 =

∥∥∥∥∥
∫ b

0

R(b, s)[σ(s, x̂α(s))− σ(s)]dw(s)ds

∥∥∥∥∥
2

≤ sup
t∈J

∥∥∥∥∥
∫ b

0

R(b, s)[σ(s, x̂α(s))− σ(s)]dw(s)ds

∥∥∥∥∥
2

(3.2)

By using infinite dimensional version of the Ascoli-Arzela theorem, one can show
that an operator l(·) →

∫ ·
0
S(·, s)l(s)ds : L1(J,X) → C is compact. Therefore, we

obtain that E ‖p(x̂α)− w‖2 → 0 as α→ 0+. Moreover, from (3.1) we get,

E ‖x̂α(b)− w‖2 ≤ E
∥∥αR(α, γb0)(w)

∥∥2
+ E

∥∥αR(α, γb0)
∥∥2
E ‖p(x̂α)− w‖2

≤ E
∥∥αR(α, γb0)(w)

∥∥2
+ E ‖p(x̂α)− w‖2 .

It follows from assumption (H0) and the estimation (3.2) that E ‖p(x̂α)− w‖2 →
0 as α→ 0+. This proves the approximate controllability of second order differential
inclusions (1.1)-(1.2). �
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4. Application

Consider the second order Cauchy problem with control

∂2

∂t2
z(t, τ) ∈ ∂2

∂τ2
z(t, τ) + b(t)

∂

∂t
z(t, τ)

+

∫ t

0

a(t− s) ∂
∂τ
z(t, τ) + µ(t, τ) + σ(t, z(t, τ))dw(t) (4.1)

for t ∈ J , 0 ≤ τ ≤ π, subject to the initial conditions
z(t, 0) = z(t, π) = 0, (4.2)

z(0, τ) = z0(τ) (4.3)
∂z(0, τ)

∂t
= z1(τ), (4.4)

where w(t) denotes a standard cylindrical process in X defined on a stochastic
space (Ω,F ,P), a, b : R → R, µ : J × [0, π] → [0, π]are continuous functions and

X = K = L2([0, π]). Define the operators A : D(A) ⊂ X → X, by (Az)(ξ) = d2z(ξ)
dξ2

,
where each domain D(A) is given by

{z ∈ X, y, y′ are absolutely continuous y′′ ∈ H, y(0) = y(π) = 0} .
It is well known that A is the infinitesimal generator of a resolvent operator R(t)
on X. Further A and L can be written as Az =

∑∞
n=1−n2 〈y, wn〉wn, y ∈ D(A),

where zn(ξ) =
√

2
π sinnξ, n = 1, 2, 3, ... is the orthogonal set of vectors of A

We take A(t)y(τ) = b(t)y(τ) defined on X. Let z(t)(τ) = z(t, τ) and the func-
tions f : J ×X → L0

2, G(t, s) ⊆ X → X, u : J → U given by

σ(t, w)(τ) = f(t, w(τ))

g(t, w)y(τ) = a(t− s)∂z(τ)

dτ
,

Bu(t)(τ) = µ(t, τ),

where µ : J × [0, π]→ [0, π] is continuous.
Assume these functions satisfy the requirement of hypotheses. From the above

choices of the functions and evolution operator A(t) with B = I, the system (4.1)-
(4.4) can be formulated as an abstract second order semilinear system (1.1)-(1.2)
in X. Further, we can impose some suitable conditions on the above defined func-
tions to verify the assumptions on Theorem 3.4, we can conclude that (4.1)-(4.4) is
approximately controllable on [0, b].
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