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Abstract 

This paper implements copulas to identify the dependence structure between electricity 

consumption and its cofounding indicators. To achieve this, Turkish electricity demand, its 

economic and sectoral indicators are taken into account. As a first step, bivariate copulas are 

used to identify the best fitting copula and the degree of the dependence. Thereafter, 

multivariate model is established using vine copulas using highly correlated variables. The 

empirical results confirm the added value of the proposed approach in determining numerous 

tail properties. We indicate that the copulas are useful to underline, especially, the tail properties 

of indicators in the market for decision makers. 
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1. INTRODUCTION 

 

Energy is one of the most prominent and crucial input for the sustainable economic growth which is 

primarily based on the efficient use of the energy sources. As a most commonly used one, electricity 

market requires a clear understanding of the factors which contribute to the changes in the price and the 

demand. Due to its significant role in sustainable economic growth, theoretical and empirical studies are 

done in identifying the relation between electricity consumption and economic indicators using time 

series and econometric models [1-5]. In addition to depict the relation between electricity demand and 

related variables, the degree of the relation among them is also an important concern for decision makers 

in the market. Widely used conventional econometric tools like Granger-Causality, Johansen Co-

integration, Autoregressive Distributed Lag (ARDL) bounds tests search for the relation between 

variables incorporating the impact of time which may yield disparities on the findings due to the time 

interval chosen. However, a significant relation between electricity consumption and economic indicators, 

such as GDP is one of the common indicators in previous studies. On the other hand, literature on 

modeling electricity supply counts to few; the causal relation between electricity supply and factors such 

as, economic growth, exports, electricity prices, employment are studied using similar techniques to 

demand analysis whose results point out the dependence between energy supply and economic indicators 

[6,7]. 

 

Copulas or copula functions are mainly the expressions for joint distributions of random variables having 

no restrictions on the marginal distributions especially, when the multivariate normality assumption is not 

justifiable [8]. Apart from the classical techniques for the analysis of macroeconomic variables, copulas 

provide an efficient and flexible tool to measure the dependence among the financial time series. One of 

the most important characteristics of financial data is the tail dependence structure, that accounts for the 
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joint behavior of variables having strong dependence on the extreme observations, which are successfully 

captured by different copula families [9]. Apart from the extension of classical copula families, as a novel 

improvement, vine copulas came into play for detecting multivariate complex dependencies between 

variables conditional to their dependence ranks [10]. For instance, pair copula construction is used on 

macroeconomic variables such as oil revenue, economic growth, total consumption and investment with 

Bayesian framework [11]. A general review of the growing literature on copula based economic and 

financial time series models can be found in [9]. 

 

In Turkey, the energy demand, especially for electricity has increased in last decades. Recent strategic 

planning in Turkish energy sector aims several objectives, including the compensation of long term 

demand and energy requirements by adding suitable new and efficient energy resources; to diversify 

energy resources for avoiding dependence on external sources; to reduce all losses related to the 

electricity sector with the help of liberalized energy markets. To achieve these purposes, it is required to 

understand the relation between the factors, contributing on the price and demand changes in the 

electricity market. The majority of previous studies analyzed the association between energy 

consumption, income, aggregate output, exports, capital, labor supply, industrial production and growth 

using time series methods investigated in short and long run time frames [12-14]. Additionally, [15] 

determines the association between main macroeconomic and sectorial indicators with electricity 

consumption and production, and conducts a partial equilibrium analysis for determining the equilibrium 

prices with the indication of the existence of co-integration among variables in consideration for the time 

interval between 1970 and 2010. 

 

On the basis of all these, as a main goal of this study, to capture the dependence pattern between the 

macroeconomic variables and the energy consumption we implement copulas alternative to the 

conventional econometric techniques. Turkish electricity market data, economic and sectorial indicators 

are used to illustrate the implementation of the copula framework. The analyses are performed in two 

phases: (i) Implementation of different bivariate copula families to measure the association between 

electricity demand and selected macroeconomic/sectoral variables. The coefficient of tail dependencies is 

calculated to display the joint behavior of parameters and the size of tail dependencies. (ii) Introducing 

vine copula (R- and C- vine) framework to detect the association between all considered variables, in a 

multivariate setting. R-vine and C-vine copulas with different pair copulas are investigated and the most 

plausible vine copula model is identified using GOF tests. 

 

The rest of paper is organized as follows: Section 2 summarizes the theoretical background of copulas 

and vine copulas briefly. The pre-processing part before copula modeling with the descriptions of the data 

set is presented in Section 3. Thereafter, section 4 summarizes the findings of the implementation of the 

copula approach on measuring dependence between electricity demand and selected indicators on Turkish 

data. Finally, in Section 5, the main conclusions of the study are discussed with the benefits and 

drawbacks of copulas. 

 

2. BIVARIATE and VINE COPULAS 

 

The motivation behind the copula framework is based on the attempts of answering the questions about 

construction of multivariate distributions with different margins and separation of the dependence 

structure from those margins. A copula is a multivariate distribution whose marginal distributions are all 

uniform over  1,0 , any p -dimensional one can be constructed by following Sklar’s Theorem, given 

below [8]. 

 

Theorem 1 (Sklar’s Theorem, 1959). Let F  be a p -dimensional distribution function with univariate 

margins pFFF ,...,, 21  defined on their corresponding domains. Then, there exists a copula function C  

such that 

 

))(),...,(),((),...,,( 221121 ppp uFuFuFCuuuF        (1) 
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Here, C  is unique whenever pFFF ,...,, 21  are continuous marginal distributions [16]. 

To illustrate, elliptical (implicit) copulas are defined shortly as follows: 

 

Definition 2. Let F  be the multivariate Cumulative Distribution Function (CDF) of an elliptical 

distribution. Let iF and 
1

iF for pi ,...,2,1 denote the CDF of the i ’th marginal and its inverse, 

respectively. The elliptical, F , is expressed as, 

 

))(...)((),...,(
1

1

1

11 ppp uFuFFuuC


         (2) 

 
The widely used and known elliptical families are normal (Gaussian) and Student-t copulas, representing 

different tail dependence properties. In addition to elliptical families, many of other well-known copula 

families can be classified as archimedean copulas based on their construction such as Frank, Joe, Clayton 

and Gumbel family. Different copula families stand for ways of deriving distinct dependence structures. 

For example, elliptical copulas and Frank copula are preferable to examine the symmetric dependence 

structures. On the other hand, Clayton and Gumbel are useful to identify the tail dependencies at lower 

and upper quantiles, respectively. Joe copula family behaves similar to Clayton one in terms of tail 

dependence. Naturally, if there is no significant dependence between variables, independent copula 

appears for the modeling part. Along with one parameter copula families, other copula families are 

constructed based on the rotations or extensions of the existed ones, called as associated copulas. Among 

those special families, rotated copulas, especially survival ones, deserves more attention since they allow 

to measure negative dependence between variables over various tail structures. Above mentioned copula 

families with their bivariate density functions and the corresponding parameter space presented in Table 

1. 

 

Table 1. The forms of the most widely used copula families and their parameter spaces 

Copula 

Family 
𝐶𝜃(𝑢, 𝑣) Parameter (𝜃) 

Normal ∅𝜌(∅
−1(𝑢), ∅−1(𝑣))

= ∫ ∫
1

2𝜋√1 − 𝜌2
exp(−

𝑠2 − 2𝜌𝑠𝑡 + 𝑡2

2(1 − 𝜌2)
) 𝑑𝑠𝑑𝑡

∅−1(𝑣)

−∞

∅−1(𝑢)

−∞

 

𝜌𝜖(−1,1) 

Student-t 𝑡𝑑,𝜌 (𝑡𝑑
−1(𝑢), 𝑡𝑑

−1(𝑣))

= ∫ ∫
1

2𝜋√1 − 𝜌2
(1 +

𝑠2 − 2𝜌𝑠𝑡 + 𝑡2

𝑑(1 − 𝜌2)
)

−
𝑑+2
2𝑡𝑑

−1(𝑣)

−∞

𝑡𝑑
−1(𝑢)

−∞

𝑑𝑠𝑑𝑡 

 

𝜌𝜖(−1,1); 
   d𝜖(0,∞) 

Frank −1

𝜃
ln [1 +

(𝑒𝑥𝑝−𝜃𝑢 − 1)(𝑒𝑥𝑝−𝜃𝑣 − 1)

(𝑒𝑥𝑝−𝜃 − 1)
] 

𝜃𝜖(−∞,∞)
/{0} 

Joe 
1 − ((1 − 𝑢)𝜃 + (1 − 𝑣)𝜃 − (1 − 𝑢)(1 − 𝑣)𝜃)

1
𝜃 

𝜃𝜖[1,∞) 

Clayton 
(𝑢−𝜃 + 𝑣−𝜃 − 1)

−1
𝜃  

𝜃𝜖(0,∞) 

Gumbel 
exp [−(𝑢−𝜃 + 𝑣−𝜃)

−1
𝜃 ] 

𝜃𝜖[1,∞) 

Independent 𝑢. 𝑣 𝑢, 𝑣𝜖(0,1) 
 

Even if they are very practical to model the dependence structure for bivariate case, the use of copulas is 

still challenging in higher dimensions, where standard multivariate copulas suffer from rather inflexible 

structures. One of the recent approaches for copula construction in higher dimensions is vine copula 

methodology which measures the dependencies in multivariate case by allowing a tractable graphical 

illustration. In this respect, vine copulas overcome limitations of direct extension of copula families for 

higher dimensions and are able to model complex dependence patterns by benefiting from the rich variety 

of bivariate copulas simultaneously. 
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A vine copula structure is defined as a nested set of trees describing the pairwise copula functions 

unconditional at the first tree and conditional at the rest of connected trees described as follows: 

Definition 4.  Let 11,...,  pTTV  denote the regular vine for p  variables, where iT  is a connected tree 

with nodes iN and edges iE for pi ,...,2,1 . In this tree structure, iT  represents tree with nodes such 

that 1 ii EN  

 

A regular vine with p  variables is a vine where two edges in tree i  are connected by an edge in tree 

1i , only if these edges share a common node. In general, there are totally 2/)1( pp  possible edges 

in a regular vine for p  variables [17]. Formally, vine copulas are multivariate distribution functions built 

on bivariate copulas and this modeling setup is called as Pair Copula Construction (PCC) generally [18]. 

The procedure of PCC for a multivariate distribution function in p -dimension is defined as follows [10]: 

 

Definition 5. Given 

)(),...,|(),...,( 11
2

111 ufuuufuuf
p

t
ttp 








 


         (3) 

and for distinct values of i  , j , kii ,...,1 with ji   and kii  ...1  define 

 

)),...,|(),,...,|((
1111 ,...,|,,...,|, kkkk iijiiiiijiiiji uuuFuuuFcc        (4) 

 

where f  and c  denote probability density function (pdf.) of original margins and copula density 

function, respectively. Then, one can rewrite the conditional pdf., ),...,|( 11 tt uuuf , in terms of 

conditional copulas as, 

 

)(),...,|(),...,|( ,1
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




     (5) 

Then, rewriting equation (3) with the help of equation (5) for is  , jit   results in, 
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The decomposition in Equation (5) suggests that, there is no unique way of deriving multivariate copula 

density. For this reason, the full specification of a vine copula requires the choice of vine tree structure, 

selection of copula families for each pair and estimation of the corresponding parameters [19]. In 

multivariate case, there are two special tree structures among the others, called Canonical (C)- and 

Drawable (D)-vine copulas. C-vine is a type of regular vine distribution in which each tree has a unique 

node that is connected to edges. It uses only star like trees and it is useful for ordering of variables by 

importance. On the other hand, D-vine requires no node in any tree is connected to more than two edges. 

It uses only path like trees and beneficial for temporal ordering of variables. 

 

3. DEPENDENCE STRUCTURES IN THE MARKET 

 

In this paper, bivariate and multivariate models mentioned earlier with numerous pair copula families are 

considered to detect the most significant model. Besides, tail dependence properties of the relevant pairs 

are investigated based on both bivariate and vine copulas. Various factors which have impacts on 

electricity prices are chosen such as industrial value added, GDP, production, investments, labor supply, 

gross profit, consumption and sectoral influence such as urbanization ratio, transmission and distribution 



1288    O.Ozan EVKAYA, et al. / GU J Sci, 31(4): 1284-1296 (2018) 

losses. Annually collected data set retrieved from Turkish Electricity Transmission (TEIAS) and World 

Bank between years 1970-2012 [20,21] for dependence analysis. The summary of selected variables, their 

abbreviations and units are listed in Table 2. Some of the economic variables are adjusted to per capita 

and all computations are reproducible in Cran-R. 

 

Table 2. Variables used in the electricity demand modeling 

Variable Abbreviation Unit 

Average Annual Electricity Prices AEPR USD 

Industrial Value Added per capita IVAL USD 

Transmission and Distribution Losses per capita TDLOS % 

Urbanization Ratio per capita UR % 

Gross Domestic Product per capita GDP USD 

Total Annual Electricity Production per capita AELPR kWh 

Investments in Electricity Sector INV USD 

Labor Supply per capita LSUP % 

Gross Profit in Electricity Market GRPEM cent/kWh 

Electricity Consumption per capita ECON kWh 

 

Spearman’s (  ) and Kendall’s ( ) coefficients are calculated depending on the bivariate copula family 

to measure the association between the selected variables. Such measurement allows us to describe the 

pairwise dependencies of standardized time series data presented in Table 3. Based on both correlation 

measures (  and  ), almost each pair shows significant dependence except the pair (AEPR; TDLOS). 

Besides, the most significant positive correlation occurs for the pairs (UR; AELPR), (UR; ECON) and 

(AELPR; ECON) indicating that price have influence on urbanization and consumption. Such result is 

coherent with the fact that the urbanization ratio with the electricity production and consumption 

measures are directly related to each other. 

 

Table 3. Pairwise correlation coefficients: Upper triangle values (.) for Kendall’s  , lower triangle 

values [.] for Spearman’s   

 AEPR IVAL TDLOS UR GDP AELPR LSUP ECON 

AEPR 1 (-0.2) (-0.08) (-0.23) (-0.25) (-0.23) (0.67) (-0.24) 

IVAL [-0.37] 1 (0.55) (0.88) (0.93) (0.88) (-0.4) (0.88) 

TDLOS [-0.19] [0.77] 1 (0.61) (0.53) (0.61) (-0.19) (0.61) 

UR [-0.42] [0.97] [0.81] 1 (0.88) (0.99) (-0.44) (0.99) 

GDP [-0.42] [0.99] [0.76] [0.97] 1 (0.88) (-0.46) (0.88) 

AELPR [-0.42] [0.97] [0.81] [1] [0.97] 1 (-0.43) (1) 

LSUP [0.86] [-0.59] [-0.43] [-0.61] [-0.63] [-0.61] 1 (-0.43) 

ECON [-0.42] [0.97] [0.81] [1] [0.97] [1] [-0.61] 1 

 

To derive uncorrelated residuals for each variable before implementing copula analysis, seasonality and 

trends should be detected and eliminated by a suitable ARIMA(p, d, q) model to the stationary series. 

Having no seasonality, the increasing trend in standardized series is analyzed through stationarity and unit 

root tests which agree on the non-stationarity at 5% significance level (Figure 1). 

 

 

 



1289    O.Ozan EVKAYA, et al. / GU J Sci, 31(4): 1284-1296 (2018) 

Figure 1. Standardized time series plots of the variables 

 

Table 4. The best fitting ARIMA models and diagnostic test results on residuals of the models 

Variable Model BP (p-value) LB (p-value) 

AEPR ARIMA(0,1,0) (0.8288) (0.8227) 
IVAL ARIMA(0,1,0) (0.4337) (0.4174) 
TDLOS ARIMA(0,1,0) (0.2041) (0.1883) 
UR ARIMA(1,1,0) (0.9764) (0.9755) 
GDP ARIMA(0,1,0) (0.6382) (0.6262) 
AELPR ARIMA(0,1,0) (0.9330) (0.9306) 
LSUP ARIMA(0,1,0) (0.2145) (0.1985) 
ECON ARIMA(0,1,0) (0.0704) (0.0609) 

 

To eliminate the stochastic trend term from the series, the first ordered differences of all series are taken 

and the resulting series are employed in further analysis. Among all plausible models, the best fitting 

ARIMA with associated orders are chosen based on BP and LB statistics. ARIMA models with fitting 

orders based on the corresponding p-values based on differenced standardized time series data are found 

to be stationary yielding the residuals being independent (p-value>0.05) as can be seen Table 4. Except 

urbanization ratio (UR), all other variables follow )0,1,0(ARIMA  based on ACF and PACF plots and 

relevant test statistics. After making each univariate series stationary and fitting plausible time series 

models, the copula framework comes into play to describe the bivariate dependence structure. Based on 

residuals, the details of pairwise are visualized in Figures 2 and 3. 

 

In Figure 2, pair plots of uniform margins on  1,0  with respect to the   has three layers. Bivariate 

contour plots are represented on the lower panel in the matrix, whereas the histograms for each data are 

given on the diagonal, and the scatter plots and   correlations are visualized on the upper panel. Based 

on   values, the most correlated pairs are (IVAL; GDP), (AELPR; ECON) (IVAL; AELPR), (IVAL; 

ECON), (GDP; AELPR) and (GDP; ECON) have positive correlations, the last four pairs being more 

significant. However, (IVAL; TDLOS), (TDLOS; GDP), (TDLOS; ECON) and (AELPR; LSUP) depict 

less significant negative correlations. For the variables AEPR, UR and LSUP, no significant positive or 

negative relationship is captured with other indicators, so it is the main reason why copula modeling is 

considered only for the variables that have noteworthy associations. These are listed as (IVAL, TDLOS, 

GDP, AELPR and ECON) which yield 10 different pairs for the construction of bivariate copulas. 
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Figure 2. Pair plots for transformed data with respect to Kendall’s    

 

Figure 3. Kendall pair plots for bivariate copula data for the pairs: (a) IVAL, TDLOS; (b) IVAL, GDP; 

(c) IVAL, AELPR; (d) IVAL, ECON; (e) TDLOS, GDP; (f) TDLOS, AELPR; (g) TDLOS, ECON; (h) 

GDP, AELPR; (i) GDP, ECON; (j) AELPR, ECON. 
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In Figure 3, visualizations of Kendall Pair plots (K-plots), the possible positive and negative 

dependencies and their magnitudes are described based on whether the curve is located above or below 

the main diagonal line. For instance, the perfect negative dependence corresponds to the data points lying 

on the x-axis or closer. Conversely, for the perfect positive dependence, the points must be located around 

the curve above the line where xy  . Accordingly, there exists significant positive dependence between 

(IVAL, GDP), (IVAL, AELPR), (IVAL, ECON), (GDP, AELPR), (GDP, ECON) and (AELPR, ECON). 

On the other hand, for the pairs (IVAL, TDLOS), (TDLOS, GDP), (TDLOS, AELPR) and (TDLOS, 

ECON) no significant dependence is captured. Besides, (TDLOS, AELPR) and (TDLOS, ECON) are 

almost independent because of grouped data points around the main diagonal line.  

 

4. RESULTS and DISCUSSIONS 

 

After observing dependence patterns of variables, bivariate and multivariate copulas (vine models) are 

performed to investigate the tail dependence among the variables and vine copula modeling is examined 

with its tree structure and its interpretations. 

 

4.1. Bivariate Copula Modeling 

 

Appropriate copula family for the given pairwise series is estimated using the maximum likelihood (ML) 

estimation at which the best bivariate copula family is selected according to BIC values. For instance, the 

best fitted copula function is Survival Gumbel with parameter   = 1.9231 for the pair (IVAL, ECON) 

given in Table 5. Here, the value of   denotes a meaningful positive correlation, as it is positive and 

exceeds 1. Based on the same selection criteria, the most suitable copula model for each pair are studied 

and summarized in Table 5. Only the pairs (IVAL, TDLOS) and (IVAL, AELPR) fit to two-parameter 

copula families whose second parameters are given in parenthesis. 

 

In Table 5, the higher parameter values of the selected copula families result in the higher dependence 

between two variables. As it is expected from Figure 3, the pairs (IVAL, TDLOS) and (TDLOS, GDP) 

has negative dependence structure, the former one is more significant based on its parameter. 

Furthermore, there exist a certain lower tail dependence patterns for the pairs (GDP, AELPR) and (GDP, 

ECON), having a reasonable interpretation from the economical point of view. At the lower tail, the 

impact of GDP is more significant on electricity demand because of higher parameter value presented 

above. In this respect, economic growth sustains its importance on the demand side of the Turkish 

electricity market. 

 

Table 5. Bivariate copula fit for each pair with their parameter estimates 

Pair Copula Family Parameter Estimates 

(IVAL, TDLOS) Tawn type 1 copula (270 

degrees) 

-6.4456 (0.1662) 

(IVAL, GDP) Joe copula 165.4306 

(IVAL, AELPR) Student-t copula 0.6640 (d=2) 

(IVAL, ECON) Survival Gumbel 1.9231 

(TDLOS, GDP) Gaussian -0.4194 

(TDLOS, AELPR) independence 0 

(TDLOS, ECON) independence 0 

(GDP, AELPR) Survival Gumbel 1.9318 

(GDP, ECON) Survival Gumbel 2.1840 

(AELPR, ECON) Joe copula 150.2248 

 

In examining tail behaviors to capture the behavior of extremes, the Coefficients of Tail Dependence 

(CoeffTD) which provide a measure of external dependence, equivalently, the level of the strength of 

dependence in the tails of a bivariate distribution are calculated (Table 6). The CoeffTD is defined in 

terms of limiting conditional probabilities of quantile exceedances for the given copula family.  
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Table 6. Coefficients of tail dependence for each bivariate copula model 

Pair Copula Family Tail Type CoeffTD 

(IVAL, TDLOS) Tawn type 1 copula (270 degrees) None - 

(IVAL, GDP) Joe copula Upper 0.9958 

(IVAL, AELPR) Student-t copula Lower, Upper 0.4931, 0.4931 

(IVAL, ECON) Survival Gumbel Lower 0.5661 

(TDLOS, GDP) Gaussian None - 
(TDLOS, AELPR) independence None - 
(TDLOS, ECON) independence None - 
(GDP, AELPR) Survival Gumbel Lower 0.5684 

(GDP, ECON) Survival Gumbel Lower 0.6265 

(AELPR, ECON) Joe copula Upper 0.9954 

 

Based on the values given in the last column of Table 6, almost for all pairs, theoretical tail dependencies 

are remarkable (> 0.5 or 0.5). Naturally, no tail dependence exists for the pairs (IVAL, TDLOS), 

(TDLOS, GDP), (TDLOS, AELPR) and (TDLOS, ECON). For the Joe Copula selection, there exist 

perfect upper tail dependencies for the pairs (IVAL, GDP) and (AELPR, ECON). Besides, there exist 

positive dependence structure at lower tails for the pairs (IVAL, ECON), (GDP, AELPR) and (GDP, 

ECON). The only two tailed dependence structure is found for the pair (IVAL, AELPR), yielding much 

lower association compared to the other ones. The significant positive dependence in the upper tail for 

pairs (IVAL, GDP) and (AELPR, ECON) is meaningful as they behave similarly whenever they take 

higher values. Equivalently, when the value of GDP is increased, one can expect that IVAL is increased 

or vice versa, especially, on the higher observations. Survival Gumbel copula fits for the pairs (GDP, 

AELPR) and (GDP, ECON) represents that lower tail dependence structure overlaps with one of the main 

result of [21], GDP stimulates electricity sector by affecting both ECON and AELPR positively. Besides, 

another Survival Gumbel fit for the pair (IVAL, ECON) re-examines the discovered negative association 

between IVAL and ECON with respect to lower tail dependence, a substantial indicator for the required 

developments in Turkish electricity market. These findings are also supported by [15]. Besides, contour 

plots are illustrated to diagnose the dependencies in terms of probability measure via their corresponding 

probability density functions (pdf) and visualized the joint behavior of pairwise data (Figure 4). Two 

different tail behaviors for the pair (GDP, ECON) and (IVAL, AELPR) are depicted. The left panel in 

Figure 4 visualizes the Survival Gumbel Copula for the pair (GDP, ECON) which yields the significance 

of the lower tail dependence meaning to such joint tail behaviors re-examine the relationship between 

these variables with more information on extremes instead of focusing on either the association or 

causality among them. In a similar manner, at the right panel of Figure 4, given contour plot shows that 

IVAL and AELPR move together with respect to Student-t copula yielding joint behavior on both lower 

and upper tails. This means, both variables are likely to increase together as a result of the proper 

economic regulation in the long run compatible with the similar findings obtained using co-integration 

analysis. 
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Figure 4. Contour plots of fitted copulas: (a) Survival Gumbel for (GDP, ECON); (b) Student-t for pair 

(IVAL, AELPR) 

 

4.1. Vine Copula Modeling 

 

To identify dependence between all selected variables in higher dimensions, the most of the correlated 

variables based on pairwise correlations given on the upper panel of Figure 2 are considered.  

 

The general structure of vine copulas is based on the nested set of trees or graphs with certain properties. 

At each step, defined edges for the trees are generated by distinct bivariate copula families. We construct  

the Regular R-Vine ( RV ) and Canonical C-Vine (CV ) copulas to capture the dependence in 

multivariate structure. For CV copula fit, GDP is selected as a root node in the first tree as it is one of the 

main indicator for economic growth. In each case, two vine structures are generated to measure the 

influence of assuming the independence copula on the pair copula construction. Table 7 presents 

Independent (I) and not independent (NI) classes for each vine models based on their selection criteria 

AIC or BIC which are indicated by subscripts 1 and 2, respectively. 

 

Table 7. The most significant scenarios selected in I and NI vine copula classes 

Model                                I                                                                  NI 

 AIC                           BIC                           AIC                           BIC 

RV1 -6899.68 -6889.25 -7469.92 -7443.85 

RV2 -6899.68 -6889.25 -7470.40 -7446.07 

CV1 -5699.87 -5685.97 -5701.67 -5675.61 

CV2 -5718.99 -5705.08 -5712.28 -5693.17 

  

Table 8: Comparison of 2RV and 2CV  copula test results 

Model                    p-value                            AIC (p-value)                           BIC (p-value) 

        Clarke             Vuong            Clarke             Vuong             Clarke             Vuong 

RV2 vs CV2 0.0436 0.5233 0.04365 0.5261 0.0195 0.5286 

 

Based on the values of AIC and BIC we see that 2RV ( NI) performs better compared to 2RV  (I) case. 

Besides, the model 2RV  beats 1RV  in both I and NI scenarios. However, 2CV  is the plausible model 

both in I and NI cases. For both vine models, iRV  models yield lower AIC and BIC values compared to 

iCV  copulas for 2,1i , which implies that RV  model is more suitable for the multivariate joint 

density. As a final step, to identify the most suitable vine copula model between best performing models (

2RV and 2CV ), Clarke and Vuong tests are performed ([22] and [23]) whose results are shown in Table 8. 

Primarily, 2RV  model is statistically different from 2CV  (p < 0,05) based on Clarke test. Besides, Vuong 
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test implies that 2RV  is preferable to 2CV . The same result is coherent with the presented AIC and BIC 

values given in Table 7. Based on 2RV , for the joint density of selected parameters IVAL, TDLOS, GDP, 

AELPR and ECON, the vine tree structure is graphically presented in Figure 5. In this setup, the most 

suitable unconditional copula families for the selected pairs are given at 1T  and conditional ones for the 

rest of the vine copula modeling are displayed at 2T , 3T  and 4T . For instance, the most significant copula 

family is the Survival Gumbel for the pair (ECON; GDP) at the first tree, as an unconditional bivariate 

density. 

 

 
Figure 5. Vine tree structures of selected R-vine model for 1T , 2T , 3T and 4T  

 

Such a copula function exhibits strong right tail dependence, more precisely, both variables ECON and 

GDP behave similarly at the lower tail which is also justified in bivariate copula model. The observed 

Tawn copula families at tree 1T , 2T  and 3T  indicate different correlation structure. For instance, the 

rotated Tawn type copulas, 𝑇𝑎𝑤𝑛1270 at tree 1T  and 𝑇𝑎𝑤𝑛290 at tree 3T  are the reasons for the existence 

of negative correlation for the unconditional pair (IVAL, TDLOS) and pair (ECON, TDLOS) conditional 

to (GDP, IVAL), respectively. On the other hand, the survival Tawn copula (𝑇𝑎𝑤𝑛2180), exhibits a 

positive correlation structure for the pair (ECON, IVAL) conditional to GDP. The strong positive 

dependence patterns are captured for (GDP, IVAL) and (ECON, AELPR) by Joe Copula at tree 1T , 

meanwhile Clayton family is the clue of strong left tail dependence for the conditional pair (GDP, 

AELPR) given ECON at tree 2T . At the final tree, 4T , the conditional density of Frank copula for the 
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conditional pair (AELPR, TDLOS) given (GDP, ECON, IVAL) identifies the symmetric positive 

correlation in both upper and lower tails. 

 

5. CONCLUSIONS 

 

Alternative to the conventional econometric techniques, copula approach is considered to explain the 

association between the electricity consumption and selected economic and sectorial indicators under the 

framework of bivariate and vine copulas. For this motivation, annual observations from Turkish 

electricity market between years 1970 and 2012 are utilized in this study. Especially, tail dependencies of 

selected variables are investigated and interpreted with the help of pair copula construction, which 

provides a useful guide for the joint behavior of series at extremes. Bivariate copula modeling of 

electricity consumption and other variables shows that Survival Gumbel comes out to be the best model 

for the pairs, (IVAL, ECON), (GDP, AELPR) and (GDP, ECON), which characterize lower tail 

dependency pattern precisely. R-vine and C-vine models are implemented with different scenarios to 

determine the best model; 2RV , with no independence pair copula. Taking into account the existence of 

tail properties, unconditional and conditional densities of the related pairs are examined and the joint 

behaviors of each pair can be interpreted conditionally. It is found that Clayton family describes the joint 

behavior of GDP with annual electricity price, AELPR, conditioned on electricity consumption, ECON. 

In terms of its tree structure, Clayton family depicts the existence of lower values for the pair GDP and 

price whenever the consumption decreases. The main advantage of the copula approach is focusing on the 

joint tail behaviors for the interested pair variables. Instead of only deriving the direction of the 

relationship and its duration (in the short or long run) with the help of classical econometric techniques, 

copulas allow to consider the movement of tail properties of both variables flexibly. The results of the 

study yield a strong evidence for the tail properties of the selected pairs, which simply imply the vital 

importance of a developed energy policy integrated with sustainable economic growth for an economy. 
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