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Özet: Bu çalışmada spacelike regle yüzeyler için Chasles teoremi 
sunulmuş ve bir spacelike regle yüzey ile bu yüzeyin yönlü 
konisinin Frenet çatıları ve invaryantları verilmiştir. Bir spacelike 
regle yüzey ile bu yüzeyin yönlü konisinin aynı Frenet çatısına 
sahip olduğu gösterilmiştir. 

  

Frenet Frames and Frenet Invariants of Spacelike Ruled Surfaces 
 

Keywords 
Minkowski 3-
space, 
Spacelike ruled 
surface, 
Frenet frame 

Abstract: In this study, we introduce the Chasles theorem for 
spacelike ruled surfaces and give the Frenet frames and invariants 
of a spacelike ruled surface and of its directing cone. We show that 
a spacelike ruled surface and its directing cone have the same 
Frenet frame. 

 
 
1. Introduction 
A ruled surface is a special surface 
generated by moving a straight line 
continuously in the space. Since the ruled 
surfaces have important positions and 
applications in study of design problems 
in spatial mechanisms and physics, these 
surfaces are one of the most important 
topics of surface theory. Because of this 
position of the ruled surfaces, many 
geometers have studied on them in the 
Euclidean space and they have 
investigated many properties of the ruled 
surfaces [6,7,12,14]. Furthermore, the 
differential geometry of the ruled 
surfaces in Minkowski space has been 
studied by several authors [2-
4,8,9,11,15]. 
 

In the Euclidean 3-space 
3E , the Frenet 

frames and formulas of a ruled surface 
have been introduced by Karger and 
Novak [7]. Frenet frames and Frenet 
invariants of a ruled surface have large 
applications in mechanics and 
kinematics. For instance, the kinematic 
differential geometry of a rigid body is 
based on the frames and invariants of 
ruled surfaces. Instantaneous properties 
of a point trajectory and of a line 
trajectory in spatial kinematics have 
been studied by Wang, Liu and Xiao. They 
have also obtained the Euler-Savary 
analogue equations of a point trajectory 
and of a line trajectory [17,18]. 
Furthermore, they have given the 
distributions of characteristic lines in the 
moving body in spatial motion [19]. 

*Corresponding author: mehmetonder197999@gmail.com 
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Moreover, Önder and Uğurlu have 
introduced the Frenet frames, Frenet 
invariants and the instantaneous rotation 
vectors of timelike ruled surfaces in the 
Minkowski 3-space [11].  
 
In this study, we give the Frenet frame, 
invariants and instantaneous rotation 
vector of a spacelike ruled surface in the 

Minkowski 3-space 
3

1IR . We hope that, 

similar to the Euclidean spatial 
kinematics, this study lets new studies in 
Lorentzian spatial kinematics like 
instantaneous properties of a point 
trajectory and of a line trajectory in 
Lorentzian spatial kinematics. 
 
2. Preliminaries 

The Minkowski 3-space 
3

1IR  is the real 

vector space 
3IR  provided with 

standard flat metric given by 
  

2 2 2

1 2 3, dx dx dx    , 

 

where ),,( 321 xxx  is a standard 

rectangular coordinate system of 
3

1IR . 

An arbitrary vector 1 2 3( , , )v v v v  in 

3

1IR  can have one of three Lorentzian 

causal characters; it can be spacelike if 

, 0v v   or 0v  , timelike if 

, 0v v   and null(lightlike) if 

, 0v v   and 0v  . Similarly, the 

Lorentzian casual character of a curve 
 

3

1( ) :s I IR IR     

 
is determined by the character of the 

velocity vector ( )s [10]. For a vector 

3

1v IR , the norm function is defined by 

  

,v v v . 

 

For any vectors 
1 2 3( , , )x x x x  and 

1 2 3( , , )y y y y  in 
3

1IR , the cross 

product of x  and y  is given by  

 

        
2 3 3 2 1 3 3 1

2 1 1 2

( , ,

)

x y x y x y x y x y

x y x y

   


 

 
The Lorentzian sphere and hyperbolic 
sphere of radius r  and center origin in 

3

1IR  are  

 2 3 2

1 1 2 3 1( , , ) : ,S x x x x IR x x r    , 

and 

 2 3 2

0 1 2 3 1( , , ) : ,H x x x x IR x x r     , 

respectively [16]. 
 
Definition 2.1. ([13]) i) Hyperbolic 

angle: Let x  and y  be timelike vectors 

in 
3

1IR . Then there is a unique real 

number   such that 

, coshx y x y    . This 

number is called the hyperbolic angle 

between the vectors x  and y . 

 ii) Central angle: Let x  and y  be 

spacelike vectors in 
3

1IR  that span a 

timelike vector subspace. Then there is a 
unique real number   such that 

, coshx y x y    . This number 

is called the central angle between the 

vectors x  and y .  

iii) Spacelike angle: Let x  and y  be 

spacelike vectors in 
3

1IR  that span a 

spacelike vector subspace. Then there is 

a real number   such that 

, cosx y x y   . This number is 

called the spacelike angle between the 

vectors x  and y .  
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iv)  Lorentzian timelike angle: Let x  be 

a spacelike vector and y  be a timelike 

vector in 
3

1IR . Then there is a unique real 

number   such that 

, sinhx y x y    . This number 

is called the Lorentzian timelike angle 

between the vectors x  and y . 

 
Definition 2.2. ([1]) The Lorentzian 
casual character of a surface is defined by 
the aid of the induced metric on the 
surface. If this metric is a Lorentz metric, 
then the surface is said to be timelike. If 
the induced metric is a positive definite 
Riemannian metric, then the surface is 
said to be spacelike. This classification 
gives that the normal vector on the 
spacelike (timelike) surface is a timelike 
(spacelike) vector. 
 
Lemma 2.1. ([5]) In the Minkowski 3-

space 
3

1IR , the following properties are 

satisfied: 
 i) Two timelike vectors are never 
orthogonal. 
 ii) Two null vectors are orthogonal if 
and only if they are linearly dependent. 
 iii) A timelike vector is never 
orthogonal to a null (lightlike) vector. 
 
3. Spacelike Ruled Surfaces in the 
Minkowski 3-space 

Let I  be an open interval in the real line 

IR , ( )k k u  be a spacelike curve in 

3

1IR  defined on I  and ( )q q u  be a 

unit direction vector of an oriented 

spacelike line in 
3

1IR . Assume that 

, 0q q   where 
dq

q
du

 . Then we 

have the following parametrization for a 

spacelike ruled surface M , 
 

 
( , ) ( ) ( )r u v k u vq u  ,            (1) 

where , 0, , 1k k q q   and 

dk
k

du
 . 

 
A parametric u -curve of this surface is a 

straight spacelike line of the surface 

which is called ruling. For 0v  , the 

parametric v -curve of this surface is 

( )k k u  which is called base curve or 

generating curve of the surface. In 

particular, if the direction of q  is 

constant, the ruled surface is said to be 
cylindrical, and non-cylindrical 
otherwise. 
 
The distribution parameter (or drall) of 
the spacelike ruled surface (1) is given by 
 

 

, ,

,

k q q
d

q q
 ,           (2) 

 

If , , 0k q q  , then the normal vectors 

of the spacelike ruled surface are 
collinear at all points of the same ruling 
and at nonsingular points of the ruled 

surface M , tangent planes are identical. 
We then say that the tangent plane 
contacts the surface along a ruling. Such 
a ruling is called a torsal ruling. If 

, , 0k q q  , then the tangent planes of 

the ruled surface M  are distinct at all 
points of the same ruling which is called 
nontorsal (Fig. 1, [12]).  
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Figure 1. Distinct tangent planes along a 

non-torsal ruling 1u u  

 
Definition 3.1. A spacelike ruled surface 
whose all rulings are torsal is called a 
developable spacelike ruled surface. The 
remaining spacelike ruled surfaces are 
called skew spacelike ruled surfaces. 
Then from (2) it is seen that a spacelike 
ruled surface is developable if and only if 
at all its points the distribution 

parameter 0d  . 

  

For the unit normal vector m  of the 

spacelike ruled surface, we have  
 

2

( )

, ,

u v

u v

r r
m

r r

k vq q

k q k vq k vq






 


  
 

(3) 

 

where ,
dk dq

k q
du du

  . From (3), at 

the points of a nontorsal ruling 1u u  

we have  
 

 1lim ( , )
v

q q
a m u v

q


  .           (4) 

 

The plane   passing through the ruling 

1u  and is perpendicular to the vector a  

is called the asymptotic plane which is 
the tangent plane at infinity. The tangent 

plane   passing through the ruling 
1u  

and perpendicular to the asymptotic 
plane   is called the central plane. The 

point C  where   is perpendicular to   

is called central point of the ruling 
1u  

(Fig. 2). The set of central points of all the 
rulings of a spacelike ruled surface is 
called the striction curve of the surface. 
The straight lines which pass through 

point C  and are perpendicular to the 
planes   and   are called central 

tangent and central normal, respectively. 
Here, the tangent plane   is a spacelike 

plane and the asymptotic plane   is a 

timelike plane.  

 
Figure 2. Asymptotic plane and central 

plane 
 

Since the vectors q  and q  are 

perpendicular, using (4) the 
representation of unit timelike central 

normal vector h  is given by 

 

 

q
h

q
 .             (5) 
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Substituting the parameter v  of the 

central point C  into equation (3), we get 

0h m   which gives 

 

( ) , ,

0

q k vq q q k v q q     
  



(6) 

 
From (6) we obtain 
 

 

,

,

q k
v

q q
  .            (7) 

 
Thus, the parametrization of the striction 

curve ( )c c u  on a spacelike ruled 

surface is given by 
 

,
( ) ( ) ( )

,

q k
c u k u vq u k q

q q
   

  

 (8) 

 
So that, the base curve of the spacelike 
ruled surface is its striction curve if and 

only if , 0q k  . 

 
Let us pay attention to the geometrical 
interpretation of the distribution 
parameter. Let the generating curve of a 
spacelike ruled surface be its striction 
curve and let the unnormed normal 
vector of the surface at striction point 

( ,0)u  be 0m . By equality (3), we get  

 

 0m k q  .            (9) 

 

Since 0 0h m  , we obtain 

 

 ,k q q            (10) 

 

where ( )u   is a scalar function. 

This implies that 
 

 , ,k q q q q  .        (11) 

 

Hence (2) yields d   and finally, 

k q dq  . For v , the normal 

vector is m q q    and from (10) it is 

clear that 0m m . By (3) the 

unnormed normal vector of the ruled 
surface is  
 

0( ) ( )m k q v q q m vm      ,(12) 

 

If   is the hyperbolic angle between m  

and 0m  we have 

 

0 0, cosh ,

, sinh .

m m m m

m m m m



 

  


  

(13) 

 

Figure 3. Hyperbolic angle   between 

m  and 0m  

 
From (13) we get 
 

 tanh
v

d
  .         (14) 

 



 
 
 
 
 
 
 

M. Önder vd. / Spacelike Regle Yüzeylerin Frenet Çatıları ve Frenet İnvaryantları 

 

717 

So that, we give the following theorem 
which is known as Chasles theorem for 
spacelike ruled surfaces. 
 
Theorem 3.1. Let the base curve of the 
spacelike ruled surface be its striction 

curve. For the angle   between the 

tangent plane of the surface at the point 

( , )u v  of a nontorsal ruling u  and the 

central plane, we have 
 

 tanh
v

d
  ,   

 

where d  is the distribution parameter of 

the ruling u  and the central point has the 

coordinates ( ,0)u . 

 

If 0v   i.e., the base curve of a spacelike 

ruled surface is also striction curve, then 

from (14) we have 0  . It means that 

tangent plane and central plane of the 
spacelike ruled surface are overlap. 
 
4. Frenet Equations and Frenet 
Invariants of Spacelike Ruled Surfaces  

Let  ; , ,C q h a  be an orthonormal 

frame of the spacelike ruled surface (Fig. 

4). Here C  is the central point and 

, ,q h a  are the unit vectors of the ruling, 

the central normal and the central 
tangent, respectively. This frame is called 
the Frenet frame of the spacelike ruled 

surface M , and for this frame we have 
 

 
, ,q h a h a q

a q h

     

 
     (15) 

 

 
Figure 4. Frenet vectors of spacelike 

ruled surface 
 

The set of all bound spacelike vectors 

( )q u  at the point origin O  constitutes a 

cone which is called directing spacelike 

cone of the spacelike ruled surface M . 
The end points of the spacelike vectors 

( )q u  drive a spherical timelike curve 1k  

on Lorentzian unit sphere 
2

1S  and this 

curve is called the Lorentzian spherical 

image of M , whose arc length is 

denoted by 1s .  

  
Let now define the Frenet frame of the 
directing cone as the orthonormal frame 

 ; , ,O q n z  where 

 

 

1

dq
n q

ds
  .        (16) 

 
Since we have  
 

 
q

q h
q

   ,          (17) 

 
by the aid of equation (15), we see that 
the tangent planes of the directing cone 
are parallel to the asymptotic planes of 
the spacelike ruled surface. Finally, we 
have 
 

 z q h a    .                (18) 
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From (16), (17) and (18), we have the 
following theorem: 
  
Theorem 4.1. The directing spacelike 
cone has the same Frenet frame with 

spacelike ruled surface M . 
 
Let now compute the derivatives of the 

vectors h  and a  with respect to the arc 

length parameter 1s . Since h  is central 

normal vector of spacelike ruled surface 

M , by Definition 2.2, we have 

, 1h h   , thus , 0h h  . 

Consequently, 
   

    1 2h b q b a   .          (19) 

 

From , 0h q  , it follows that 

 

 1, , 1 0h q h q b     ,    (20) 

 

and if we put 2b   we get 

 

 h q a   ,          (21) 

 
where   is called the conical curvature 

of the directing cone. From , 0h a  , 

we have 
 

, , , 0h a h a h a        (22) 

 
which gives 
 

 ,h a    .          (23) 

 

Further, from the equalities , 1a a   

and , 0a q   it follows , 0a a   

and 
 

 , , , 0a q a q a q     ,   (24) 

 
respectively, which means that the vector 

a  is collinear with the timelike vector 

h , i.e. 3a b h   where 
3 3 1( )b b s . By 

the equality (23) we get 
 

 3,h a b      ,       (25) 

 
and thus  
 

 a h  .            (26) 

 

For the Lorentzian spherical curve 3k  

with arc length 3s  circumscribed on 

Lorentzian unit sphere 
2

1S  by the bound 

vector a  at the point O , we have 

 

 3

1

ds
a

ds
  .                   (27) 

 
where   is the conical curvature of the 
directing cone. Thus, with (17), (21) and 
(26) we have the following theorem. 
 
Theorem 4.2. The Frenet formulas of 

spacelike ruled surface M  and of its 
directing spacelike cone with respect to 

the arc length parameter 1s  are given by 

 

1

1

1

/ 0 1 0

/ 1 0

/ 0 0

dq ds q

dh ds h

da ds a





    
    

    
        

.   (28) 

  
From (28) the Darboux vector 
(instantaneous rotation vector) of the 

Frenet frame  ; , ,O q h a  can be given 

by 1w q a   . Thus, for the 

derivatives in (28) we can write 
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1 1 1, ,q w q h w h a w a        . 

 
Let s  be the arc length parameter of the 

striction curve ( )c s . Furthermore, we 

call 1
1

ds

ds
  as the first curvature and 

3
2

ds

ds
  as the second curvature of the 

spacelike ruled surface M  or rather of 
its directing cone. Then we have 
   

 2 1  .            (29) 

 
Spacelike ruled surfaces for which 

1 2 0    and 2 1( / ) constant     

have a spacelike cone of revolution as 

their directing cones. If 
1 20, 0   , 

then we obtain a directing spacelike 
plane instead of a spacelike directing 
cone and these spacelike ruled surfaces, 

satisfying 1 20, 0   , are called 

spacelike conoids. 
 
Multiplying (28) by the first curvature 

1
1

ds

ds
 , we have the following 

theorem. 
 
Theorem 4.3. The Frenet formulas of the 

spacelike ruled surface M  and of its 
directing cone with respect to the arc 
length parameter of the striction curve 
are given by  
 

1

1 2

2

/ 0 0

/ 0

/ 0 0

dq ds q

dh ds h

da ds a



 



    
    

    
        

,    (30) 

 

where 1
1

ds

ds
  ,  3

2

ds

ds
   and 1s , 3s  

are arc lengths of spherical curves 1 3,k k  

circumscribed by the bound vectors q  and 

a , respectively. 

  
For the derivatives of vectors of the 

Frenet frames  ; , ,O q h a  with respect 

to the arc length of striction curve of the 
surface, the Darboux vector can be given 

by 
2 2 1w q a    . Thus, the 

derivatives in (30) we can written as 
follows 
  

 
2 2

2

, ,
dq dh

w q w h
ds ds

da
w a

ds

   

 

 

       
Now, we will show that the tangent of 
striction curve of the spacelike ruled 

surface at the central point C  is 

perpendicular to the central normal 

vector h . From (8), we have 

 

 
dc

k vq vq
du

   ,                                                    

 
and further by using (5) and (7) we get 
 
 

, , ,

, , ,
0

,

dc
h h k v q h

du

k q k q q q

q q q q

 

  

            

           
Let the angle   be the spacelike angle 

between the unit tangent vector t  of 
striction curve and the ruling q . Then 

we can write 
  

 (cos ) (sin )
dc

t q a
ds

    . (31) 
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Thus, while the equation of the spacelike 
ruled surface is  
  

 ( , ) ( ) ( )r s v c s vq s  ,        (32) 

 
the equation of striction curve is 
 

 ( ) (cos ) (sin )c s q a ds   .  (33) 

 
For the parameter of distribution, using 
(2) and (30), we have 
  

 
1

, , , ,

,

dq dc
q q h tds ds

d
dq dq

ds ds


   .    (34) 

 
From (31) and (34), it follows that  
 

 

1

sin , ,

, ,

a t q h t

q h t d





   

  
      (35) 

 
By considering (31) and (35), the Frenet 

formulas of M  are given as follows 
 

1 1 1

1

1

1

cos sindc
q a fq da

ds

dq
h

ds

dh
q a

ds

da
h

ds

 

 






   







  


 



 (36)  

 

The functions 1 1 1( ), ( ), ( )f s d s s are 

the invariants of the spacelike ruled 

surface M . They determine the 
spacelike ruled surface uniquely up to its 
position in the space. 
  

5. Example (Conoid of the 1st kind). Let 

consider the ruled surface M  defined by  

( , ) ( sinh , cosh , )r u v v u v u u ,    

( 1 1)v   . 

This parametrization defines a non-
cylindrical spacelike ruled surface which 
is said to be a conoid of the 1st kind in 

3

1IR  (Fig. 5) [8]. The base curve and the 

ruling of M  are ( ) (0,0, )k u u  and 

( ) (sinh ,cosh ,0)q u u u , respectively. 

The distribution parameter of M  is 

1d  . So that, the surface M  is a skew 

spacelike ruled surface. The striction 

curve of M  is given by 
 

 ( ) ( ) (0,0, )c u k u u  . 

 
The arc length parameter of the striction 
curve is u s . Thus, the striction curve 

and Frenet vectors of M  with respect to 
the arc length parameter s  are 

 

 

( ) (0,0, ),

( ) (sinh ,cosh ,0),

( ) ( cosh , sinh ,0),

( ) (0,0,1).

c s s

q s s s

h s s s

a s





  



 

 
The derivative formulas with respect to 
the arc length parameter s  are  

 

 

/ 0 1 0

/ 1 0 0

/ 0 0 0

dq ds q

dh ds h

da ds a

    
    

     
        

 

 
and the first and second curvatures of 

spacelike ruled surface are 1 1    and 

2 0  , respectively. By (29), conical 

curvature is 0  . From (35), for the 

angle   we have 3 / 2  . So that, 

0f  . Consequently, the Frenet 
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invariants are obtained as 0f  , 0 

, 1d  . 

 

                        
Figure 5. A conoid of the 1st kind 
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