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Anahtar Kelimeler Abstract: In this paper, different controller techniques based on

Control,

Fuzzy Logic,
Particle Swarm,
Optimization,
MIMO

particle swarm optimization (PSO) algorithm are proposed to
control the water level of a steam generator with multiple input-
multiple output (MIMO) characteristics. The techniques employed
are classical proportional+integral+derivative (PID) control, fuzzy
logic control (FLC) and fuzzy tuned proportional-integral control
(FTPIC). Gains of PID controller and parameters of FLC (the core
and the boundaries of triangular membership functions in input
and output spaces) are optimized by the PSO. Validations of the
proposed PSO based PID control (PSO-PID), PSO based fuzzy logic
control (PSO-FLC) and PSO based fuzzy tuned PI control (PSO-
FTPIC) techniques are done with numerical simulation in using
MATLAB. The simulation results show that the PSO-PID provides
better performance for controlling the water level of a steam
generator compared to the others.

Buhar Generatoriiniin Su Seviyesi Denetimi icin PSO Temelli Klasik ve

Akill1 Denetleyicilerin Performansi
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Ozet: Bu calismada cok giris-cok cikis (CGCC) ozelligine sahip
buhar generatoriiniin su seviyesi denetimi icin parcacik siirii
optimizasyonu (PSO) algoritmasina dayanan farkli kontrol
teknikleri onerilmektedir. Bu teknikler, klasik oransal-integral-
tiirevsel (PID) denetim, bulanik mantik denetim (BMD) ve bulanik
ayarli oransal-integral denetimdir. PID denetleyicilerin kazanclari
ve BMD’nin parametreleri (giris ve c¢ikistaki iicgen tyelik
fonksiyonlarin merkezleri ve sinirlar1) PSO tarafindan en uygun
hale getirilmektedir. Onerilen PSO temelli PID denetim (PSO-PID),
PSO temelli bulanik mantik denetim (PSO-BMD) ve PSO temelli
bulanik ayarli PI denetim (PSO-BAPI) tekniklerinin gerceklemesi,
MATLAB kullanilarak sayisal benzetim ile dogrulanmaktadir.
Benzetim sonuglari, buhar generatoriiniin su seviyesi denetim i¢in
PSO-PID teknigini digerlerine gore daha iyi performans
sergiledigini gostermektedir.

*Sorumlu yazar: eozkop@ktu.edu.tr
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1. Introduction

Steam  generation system is a
complicated industrial process with
disturbance, uncertainty and

nonlinearity [1]. The steam system is a
part of process of generating electric
power or heating building. Accurate
modelling and controlling of the steam
generation system are vital and
important scopes to increase the
efficiency and performance in the power
plants, especially while fuel costs keep
rising [2]. There are many studies about
modeling and control issues for the
steam system in the literature [1].

The system model was designed in terms
of experiments, nonlinear distributed
parameter equations, artificial
intelligence, neural network, neurofuzzy,
stochastic fuzzy, etc [3, 4]. In the steam
generation systems, main control
objectives are correct air to fuel ratio,
water level in the drum and steam
pressure to ensure reliable, stable and
efficient operation in any circumstances
such as sudden load changes and
disturbances.

There are studies about control of a
steam generation system in the literature
and each control method has both its
pros and cons and superiority to other
controllers depending on application
aspects and cases. Model predictive
control based on nonlinear, distributed
and state-space approaches applied in a
steam generation [5]. Pole placement
control was employed in high order
steam generation model and a cascade
control topology with predictive aspect
was used for system variables. In
addition to these, multistage approach
with PI controller, sliding mode control,
predictive control, H2/Hoco control,
combination PID controller and fuzzy
logic control and also PID-controller with
parameter optimization procedure were
implemented [3, 6-10].

Demands on controllers are to ensure
fast response, less or zero overshoot,
zero steady-state error, high stability
margin, robustness and provide an
increase in productivity by improving
quality, and reducing maintenance
requirements [11]. For instance, PID
controller is preferred in the most of
process control applications since it
works efficiently in various areas of
industry and FLC utilizes quantitative
and qualitative information, to trade off
potentially conflicting objectives, to
provide a flexible control structure, and
to deal with nonlinear input/output
relationships.

In this paper, the PID and FLC techniques
are employed to control the water level
of a steam generator. Parameters of
classical (PI and PID) intelligent (FLC)
controllers are optimized by PSO since
the PSO algorithm can produce a higher
quality solution with short computing
time, accuracy, less memory size,
robustness against nonlinearities,
simplicity and flexibility than the other
stochastic methods. This paper presents
a PSO based PID controller (PSO-PID),
PSO based fuzzy logic controller (PSO-
FLC) and PSO based fuzzy tuned PI
control (PSO-FTPIC) techniques to
control the water level of a steam
generator.

2. System Structure

2.1. Steam generator model

The main system structure is based on
the steam generator at Abbott Power
Plant in Champaign, IL shown in Figure 1.
The system has multiple input-multiple
output (MIMO) characteristics consisting
of four inputs (fuel, air, water flow, and
steam demand) and four outputs
(pressure, oxygen, steam flow and level
in the drum) and also there are a dual
fuel (oil/gas) fired unit for heating and
generating electric power [12, 13].
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In the steam generation system, as fuel
(uq) is burned with air to generate heat,
the water evaporates by heat creating
steam. The heated steam is extracted
from the upper part of the drum where
water and steam are enclosed. Steam can
be used in a turbine for heating buildings
or to drive the generator for electricity
production.

nonlinearities, nonminimum  phase
behavior, and instabilities can be
described by following equations:

The parameters used in (1) to (8) are
given in Table 1. The variables n; are
colored noise sequences generated by
first-order models driven by zero mean,
unit variance white noise.

( ), poteam ) Table 1. Parameters of the nonlinear
usater, | Water equations of steam generator model.
Ys Level {Ya 11 = —0.00478 |[csy = 0.00533176 |cy0 = —0.1048569
) Steam
g £ g €1 = 0.280 €32 = 00251950  |c,; = 0.15479
€ 7 {>T<}”“ Oxygen, ., 13 = 0.01348 33 = 07317058 |c;, = 0.4954961
© Throttle c14 = 0.02493 cs1 = 0.04 c753 = —0.20797
FLETEIN RN = ® €31 = 0.1540357 |c,; = 0.0299886 ¢,y = 1.2720
‘] g Induced Cpp = 1035462 |cy3 = 0.018088 Cy5 = —324212.7805
@ Ar_ Cy3 = 1074835 |5y = 14.214 €76 = —99556.24778
2
L OralFan ) €24 = 195150 o1 = 1.00 77 = 0.0011850
Figure 1. Basic steam generator model Cas = 29.04 Cer = 0.85663 €75 = ~1704.50476
€6 = 1.824 g2 = —0.18128 ¢, = —103.7351
The multivariable system  model =20 =273=37=37=47=107,=2
consisting of essential features of the
actual boiler dynamics, including
. 9/8
% (6) = C11354(’5)951/ (©) + crpus (t — 71) — cy3us(t — T3) + €14 (1)
, _ CaaUp (£ — T3) — Co3uUy (£ — T1) — Coatty (£ — T1) 22 (1)
X, (t) = —Couxp + (2)
Castp(t — T3) + oty (t — 74)
%3 (t) = 3121 (t) — 32204 (£)x1 () — Cc33u3(t — 73) (3)
X4 (8) = —C41%4 () + 42wy (€ — T1) + €43 + us () + 15 (4)
y1(t) = c51%,(t — 14) + 1y (2) (5)
Y2(t) = ce1x2(t — T5) + ny(t) (6)
V3(t) = c70%1(t — T6) + C71%3 (t[_ Te) + Crax4(t — Ijﬁ[) + cr3us(t — 73 E Tg)
C75%1(t — Tg) + C76][1 — €773 (t — T6)
teu (t— 11 — T6) + (7)
x3(t — T6) [, (t — T6) + C76]
+¢79 + n3(t)
Va(t) = [cg1x4(t — T7) + caolxq (t — 77) + 14 () (8)

where x; is drum pressure state (kgf/cm?); y; is measured drum pressure (psi); y, and x, are
measured excess oxygen level and its state, respectively (%); x3; is system fluid’s density
(kg/m3); y; is drum water level (in.); y, is steam flow rate (kg/s); uy, u,, us are fuel, air, and
feed water flow inputs, which take values between 0 and 1; x, is exogenous variable related to

the steam demand.

The linearized model can be defined by
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x = Ax + Bu
where
r—0.005509 0 0 -—0.1588
A= 0 —0.2062 0 0
—0.01216 0 0 —-0.5672
0 0 0 —0.040
114.21 0 0 0
c=| 0 10 0 0
0.3221 0 0.1434 11.16
10.4133 0 0 19.28

2.2. Control model

A steam generation plant can be worked
properly under control requirements are
provided. These requirements can be
defined as maintaining of steam
pressure, water in the drum and mixture
of fuel and air in the camber at desired
levels and standards. Overheating of
drum components or flooding of steam
lines can be prevented by the water level
control in the drum.

In this paper, the control structure is
designed to manage the water level in
the steam generation plant. The system
control is tested by applying three
different types of controller structures.
First a classical PID control, then a
classical fuzzy logic control (FLC) and
then a fuzzy tuned PI control (FTPIC) is
applied. The performances of these
controllers are compared for better
utilization.

The parameters of the PID controller (Kbp,
Ki and Kp) are optimized by PSO to
improve the response of the controller in
this study. The general block diagram of
system with PSO based PID controller
(PSO-PID) is shown in Figure 2.

PSO
Algorithm

iNputie, ~ e(k)
+F.

o PLANT 242U,

Figure 2. Structure of PSO based PID
controller (PSO-PID)

B =

y=Cx+Du
10.2800 0 —0.01348 0
-9.375 7.658 0 0 9)
0 0 0.7317 0
L 0.02999 0 0 0.040
0 0 0 0
0 0 0 0
1.272 0 -0.2080 O (10)
0 0 0 0

The FLC consists of fuzzification, rule
base and defuzzification parts. All
membership functions for both input and
output spaces are triangular types since
triangle-shaped  fuzzy = membership
functions are modeled easily due to their
linearity and they require less time and
memory in control algorithms [14].

The FLC has two inputs named as error
(e) and error deviation (de) and one
output (du). Five triangular type
membership functions called positive big
(PB), positive small (PS), zero (ZZ),
negative small (NS), and negative big
(NB) are used in input and output spaces
of the FLC. The membership functions for
two inputs (e and de) and an output (du)
are shown in Figure 3. Classical particle
swarm  optimization with inertia
weighting approach (CPSO-IWA) is used
to optimize limits of the membership
functions.

i NB NS 2z PB PS
2 e(k)
-0.98 -0.49 0.0196 0.49 0.98

e NS 7z PB PS

u(k)
-4.02 -1.206 1.0452 3.015 4.02

Figure 3. The membership functions of the
PSO-FLC

These membership functions are
employed to convert the input signals (e
and de) to fuzzy subsets in the

fuzzification stage. The fuzzified values of
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the inputs are applied in the rule table
given in Table 2 to get the fuzzy number.

Table 2. Fuzzy logic rules decision table for
FLC.

de
NB | NS | ZZ | PS | PB
NB [ NB | NB | NS | NS | ZZ
NS | NB | NS | NS | ZzZ | PS
ZZ | NS | NS | ZzZZz | PS | PS
PS NS | ZZz | PS | PS | PB
PB ZZ | PS | PS | PB | PB

There are no generally accepted methods
or standards for a rule table design [15].

Therefore, techniques based on the
direct knowledge from experts and the
knowledge from numerical data are
preferred in literature [15, 16]. In this
paper, a symmetrical rule table
constituted by  system  response
approach given in [17] is used. The
resultant united fuzzy subsets are
converted to the crisp values at
defuzzification stage. The general block
diagram of system with PSO based fuzzy
logic controller (PSO-FLC) is shown in
Figure 4.

E1 PSO Algorithm -
DE

" |Na};5 o

N Em [
de(k)

NB NS ZZ PS PB

inputref‘ﬁ
A -

[ZhO

OE ... DE
/' Fuzzification

Fuzzy
inference

/ FLC

| u NE NS ZZ PS PB
i M dull ) ppanT [outRUL,

| O Ol

Defuzzification

Figure 4. Structure of PSO based fuzzy logic controller (PSO-FLC)

Third controller type is the PSO based
fuzzy tuned PI control (PSO-FTPIC). The
classical PI controller gains (Kp and K;)
are simultaneously tuned by the FLC
within  determined limits (Kpnin),
KP(max)' Kl(min)' Kl(max)) as the system
operates. The limits of PI controller
gains are settled by PSO algorithm. The
membership functions of inputs (e and
de) and an output (du) for the controller
gains are shown in Figure 5.

1|NB NS zz  PB PS e s PB PS
0 0
) e (k)

e 05e 0 O05e e e 05 0 05e e
1|NB NS zz PB  PS e s 7 PB PS
0 ) == k)
0le -00% 0 00% Ole 0le -00% 0 00% Ole

s M B VB WB s M B VB WB

Kp(k) :

0265 0282 0298 03165 03332K‘(k)

Figure 5. The membership functions of the
PSO-FTPIC

The fuzzy subsets very very big (VVB),
very big (VB), big (B), medium (M) and

small (S) are used for the output space
of the FLC. The related rule table is
same as in PSO-FLC algorithm given in
Table 2. The general block diagram of
system with PSO-FTPIC is shown in
Figure 6.

2.3. Performance indices

A measurement of control system
performance is important to improve
the system responses. A quantitative
measure in terms of performance
indices can be realized and used to
compare and evaluate the system's
performances. The index must be
minimized to develop the system
performance, such as minimizing the
steady state error, rise time, maximum
overshoot and settling time.

Performance indices are very useful to
analyze and design control systems. The
most common performance indices are
the integral of the square of the error
(ISE), integral of absolute magnitude of
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the error (IAE) and integral of time defined as:
multiplied by absolute error (ITAE)
T

T T
ISE':_[ e?(t)dt, IAE'=.f le(t)|dt, ITAE‘:.[ tle(t)|dt (11)
0 0 0

where e(t) is the error signal in the time domain.

Performances of control strategies are simulation models are developed in

observed in systems with different Matlab/Simulink/Simpower Software
orders and characteristics. To illustrate = Environment.
the effectiveness of the techniques,
PSO Algorithm .
: NB NS ZZ PS PB ) FLC
inpul,ef o~ e(k) | s - Furzy s m B vB wB
N — =1 ru bQQQi Kp(k
5. _ de(k) : e s zz ps ps | U] o m ﬁ)@—
&1+ :DE._. DEe | Fuzzy
Fuzzification inference Defuzzification
e(k) >+ output,
[PSo Algorithm ] Q|PLANT ?
|ne s zz ps pe _ / FLC
- e(k) < — :::: Is M B VB VB Kj(k) 1 v
1 de(k) | [se ns zz es e L — X S
+ T/
L DB DE-.. | Fuzzy
Fuzzification inference  Defuzzification

Figure 6. Structure of PSO based fuzzy tuned PI control (PSO-FTPIC)

2.4. Particle swarm optimization
Particle swarm optimization (PSO) is one
of computational intelligence-based
techniques, which can be used to figure
out the approximate solutions to
engineering optimization problems such
that success rate of PSO based on the
social behavior of bird flocking and fish
schooling is not majorly affected by
problem features such as size and
nonlinearity level [18].

(Wmax — Wnin

Uj,i(iter) = (Wmax - Nm

+ Ry [Pj,,'(iter — 1) — x;,(iter — D]+ C2R, [P (iter — 1)

— x;j;(iter — 1)]

x;;(iter) = x;;(iter — 1) + v;;(iter)

In this paper, the CPSO-IWA is used to
optimize the parameters of controllers.
In the CPSO-IWA, the swarm consists of
particles, each of which based on
components such that the velocity of the
related component can be defined as
given in Equations (12) and (13) for the
ith component of jth particle [19]. The
CPSO-IWA initialization parameters are
given in Table 3.

) X iter) X v; ;(iter — 1)

(12)

(13)

where w4, and wy,;,, are maximum and minimum inertia weights, N, is maximum number of
iteration cycles, v;; velocity, ¢; and c, are social and cognitive rate constants, R, and R, are
uniformly distributed random numbers in [0,1], P;; is local best position, P;" is global best
position and x;; is position of ith component of jth particle.
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Table 3. The CPSO-IWA parameters.

Parameter Value
Swarm size (S) 20
Maximum number of iteration cycles (N,,) 20
Maximum inertia weight (Wy,,4x) 0.9
Minimum inertia weight (W,,in) 0.4
Social rate (c,) 2
Cognitive rate (c,) 2

There are different strategies to set
inertia weight such as fixed inertia
weight,  fuzzy  adaptive, linearly
decreasing, linearly increasing, non-
linear, chaotic, etc [20]. In this study, the
inertia weight is linearly decreased from
Whax = 0.9 to wp,;, = 0.4. The swarm
size can be determined according to
complexity of problems so that there is a
suggestion to choose swarm size
between 20 and 50 in the most studies
[21, 22].

Moreover, it is assumed that more
efficient results can be obtained by
selection of a larger swarm size for
higher dimensional problems [23]. On
the other hand, increase in swarm size
affects positively the performance of the
algorithm, but a larger swarm size
requires more iterations so that more
computational load and cost occur. The
values ¢; =2 and ¢, =2 used in this
study are widely accepted settings used
in most of problems in literature [20].
Swarm topologies vary in literature and
prominent topologies are shown in
Figure 7 [24]. Global best topology is
employed in this study. The integral of
the square of the error (ISE) is used as an
objective function.

2= S @R TAN

(@) (b) (@ (d) ()
Figure 7. Swarm topologies (a) Global best, (b)
Ring, (c) Wheel, (d) Pyramid, (e) Von Neumann

The all controller parameters optimized
by  particle swarm  optimization
algorithm are tabulated in Table 4.

Table 4. The parameters of all optimized
controllers.

PSO-PID
Kp K| Kp
3.1254 0.2406 0.084
PSO-FLC
Emax (=Emin) | DEmax (=DEmin) | DUpax (=DUmin)
0.98 2.96 4.02
PSO-FTPIC
Emax (“Emin) | DEmax (=DEmin) | Kpmax | Kimax
e(k) (adaptive) | 0.1 x e(k) (adaptive) | 3.6736 | 0.3332

3. Simulation Results

The steam generator system is simulated
by using three control strategies for
comparison and validation purposes.
Fuel rate and water level as a reference
variations in time are shown in Figures 8
and 9, respectively. The fuel rate rises up
from 0.27 pu to 1 pu at t = 1500s. Next,
after 1500s, it falls to 0.27pu (Figure 8).
The water level is zero level between 0Os
and 1500s and then it has 1 inch value at
the time interval t=[1500,3000].
Finally, at time t = 3000s, it decreases to
0 inch (Figure 9).

u)

Fuel (pi

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (second)

Figure 8. Steam generator fuel rate variation
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Water level (inches)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (second)

Figure 9. Steam generator water level

reference

The controlled system output (water
level]) related to the controller
techniques are shown in Figures 10 and
11. The maximum overshoots, settling
times for 10%band, rise and peak times
and peak values are given in Table 5. The
effectiveness of controller scenarios is
also tested by the performance indices
(ISE, IAE and ITAE) and tabulated in
Table 6.

The water level overshoots of the PSO-
PID, the PSO-FLC and the PSO-FTPIC are
87%, 177% and 113%, respectively. The
PSO-PID controller has better
performance than the others in
overshoots, settling times, peak values
and times. As for the rise times of the
water level output, the PSO-FLC was
found to be 0.70 s, as the PSO-FTPIC and
the PSO-PID were found to be 0.86 and
0.88 s, respectively.

The PSO-PID has exhibited lower ISE, IAE
and ITAE values compared with the PSO-
FLC and PSO-FTPIC methods as given in
Table 6, that the PSO-PID control
strategy performs much better than the
PSO-FLC and PSO-FTPIC strategies.

PSO-FTPIC

Water level (inches)
°

o 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (second)
Figure 10. Steam generator water level with
all controllers

PSO-FTPIC

!

Water level (inches)

085 J

08 . . l
1500 2000 2500 3000
Time (second)

Figure 11. Zoomed view of water level output
with all controllers for 20% band

Table 5. System performances for the controllers

PSO-PID | PSO-FLC | PSO-FTPIC
Overshoot (%) 87 177 113
Settling time for 10% band (s) 787 795 1236
Rise time (s) 0.88 0.70 0.86
Peak value (inches) 1.89 2.70 2.14
Peak time (s) 225 336 799

Table 6. System controller performance indexes comparison.

Controller Type ISE IAE ITAE

PSO-PID 13.02 58.06 119019
PSO-FLC 164.82 | 564.86 | 1188874
PSO-FTPIC 16.44 75.63 162752
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4, Conclusion

Performance analysis and comparison of
PSO optimized control algorithms used
to control water level in a steam
generator are studied in this paper. A
PSO based PID controller (PSO-PID), a
PSO based fuzzy logic controller (PSO-
FLC) and a PSO based fuzzy tuned PI
control (PSO-FTPIC) are proposed in this
work and applied to control a steam
generator system having multiple input-
multiple output (MIMO) characteristics.
The digital simulation results show that
the PSO-PID control strategy performed
better than the other control strategies.
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