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Abstract: In this paper, different controller techniques based on 
particle swarm optimization (PSO) algorithm are proposed to 
control the water level of a steam generator with multiple input-
multiple output (MIMO) characteristics. The techniques employed 
are classical proportional+integral+derivative (PID) control, fuzzy 
logic control (FLC) and fuzzy tuned proportional-integral control 
(FTPIC). Gains of PID controller and parameters of FLC (the core 
and the boundaries of triangular membership functions in input 
and output spaces) are optimized by the PSO. Validations of the 
proposed PSO based PID control (PSO-PID), PSO based fuzzy logic 
control (PSO-FLC) and PSO based fuzzy tuned PI control (PSO-
FTPIC) techniques are done with numerical simulation in using 
MATLAB. The simulation results show that the PSO-PID provides 
better performance for controlling the water level of a steam 
generator compared to the others. 
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Özet: Bu çalışmada çok giriş-çok çıkış (ÇGÇÇ) özelliğine sahip 
buhar generatörünün su seviyesi denetimi için parçacık sürü 
optimizasyonu (PSO) algoritmasına dayanan farklı kontrol 
teknikleri önerilmektedir. Bu teknikler, klasik oransal-integral-
türevsel (PID) denetim, bulanık mantık denetim (BMD) ve bulanık 
ayarlı oransal-integral denetimdir. PID denetleyicilerin kazançları 
ve BMD’nin parametreleri (giriş ve çıkıştaki üçgen üyelik 
fonksiyonların merkezleri ve sınırları) PSO tarafından en uygun 
hale getirilmektedir. Önerilen PSO temelli PID denetim (PSO-PID), 
PSO temelli bulanık mantık denetim (PSO-BMD) ve PSO temelli 
bulanık ayarlı PI denetim (PSO-BAPI) tekniklerinin gerçeklemesi, 
MATLAB kullanılarak sayısal benzetim ile doğrulanmaktadır. 
Benzetim sonuçları, buhar generatörünün su seviyesi denetim için 
PSO-PID tekniğini diğerlerine göre daha iyi performans 
sergilediğini göstermektedir.  
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1. Introduction 
Steam generation system is a 
complicated industrial process with 
disturbance, uncertainty and 
nonlinearity [1]. The steam system is a 
part of process of generating electric 
power or heating building. Accurate 
modelling and controlling of the steam 
generation system are vital and 
important scopes to increase the 
efficiency and performance in the power 
plants, especially while fuel costs keep 
rising [2]. There are many studies about 
modeling and control issues for the 
steam system in the literature [1].  
 
The system model was designed in terms 
of experiments, nonlinear distributed 
parameter equations, artificial 
intelligence, neural network, neurofuzzy, 
stochastic fuzzy, etc [3, 4]. In the steam 
generation systems, main control 
objectives are correct air to fuel ratio, 
water level in the drum and steam 
pressure to ensure reliable, stable and 
efficient operation in any circumstances 
such as sudden load changes and 
disturbances.  
 
There are studies about control of a 
steam generation system in the literature 
and each control method has both its 
pros and cons and superiority to other 
controllers depending on application 
aspects and cases. Model predictive 
control based on nonlinear, distributed 
and state-space approaches applied in a 
steam generation [5]. Pole placement 
control was employed in high order 
steam generation model and a cascade 
control topology with predictive aspect 
was used for system variables. In 
addition to these, multistage approach 
with PI controller, sliding mode control, 
predictive control, H2/H∞ control, 
combination PID controller and fuzzy 
logic control and also PID-controller with 
parameter optimization procedure were 
implemented [3, 6-10]. 
 

Demands on controllers are to ensure 
fast response, less or zero overshoot, 
zero steady-state error, high stability 
margin, robustness and provide an 
increase in productivity by improving 
quality, and reducing maintenance 
requirements [11]. For instance, PID 
controller is preferred in the most of 
process control applications since it 
works efficiently in various areas of 
industry and FLC utilizes quantitative 
and qualitative information, to trade off 
potentially conflicting objectives, to 
provide a flexible control structure, and 
to deal with nonlinear input/output 
relationships.  
 
In this paper, the PID and FLC techniques 
are employed to control the water level 
of a steam generator. Parameters of 
classical (PI and PID) intelligent (FLC) 
controllers are optimized by PSO since 
the PSO algorithm can produce a higher 
quality solution with short computing 
time, accuracy, less memory size, 
robustness against nonlinearities, 
simplicity and flexibility than the other 
stochastic methods. This paper presents 
a PSO based PID controller (PSO-PID), 
PSO based fuzzy logic controller (PSO-
FLC) and PSO based fuzzy tuned PI 
control (PSO-FTPIC) techniques to 
control the water level of a steam 
generator. 
 
2.  System Structure 
2.1. Steam generator model 
The main system structure is based on 
the steam generator at Abbott Power 
Plant in Champaign, IL shown in Figure 1. 
The system has multiple input-multiple 
output (MIMO) characteristics consisting 
of four inputs (fuel, air, water flow, and 
steam demand) and four outputs 
(pressure, oxygen, steam flow and level 
in the drum) and also there are a dual 
fuel (oil/gas) fired unit for heating and 
generating electric power [12, 13]. 
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In the steam generation system, as fuel 
(𝑢𝑢1) is burned with air to generate heat, 
the water evaporates by heat creating 
steam. The heated steam is extracted 
from the upper part of the drum where 
water and steam are enclosed. Steam can 
be used in a turbine for heating buildings 
or to drive the generator for electricity 
production. 
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Figure 1. Basic steam generator model 
 
The multivariable system model 
consisting of essential features of the 
actual boiler dynamics, including 

nonlinearities, nonminimum phase 
behavior, and instabilities can be 
described by following equations: 
 
The parameters used in (1) to (8) are 
given in Table 1. The variables 𝑛𝑛𝑖𝑖  are 
colored noise sequences generated by 
first-order models driven by zero mean, 
unit variance white noise. 
 
Table 1. Parameters of the nonlinear 
equations of steam generator model. 
𝑐𝑐11 = −0.00478 

𝑐𝑐12 = 0.280 

𝑐𝑐13 = 0.01348 

𝑐𝑐14 = 0.02493 

𝑐𝑐21 = 0.1540357 

𝑐𝑐22 = 103.5462 

𝑐𝑐23 = 107.4835 

𝑐𝑐24 = 1.95150 

𝑐𝑐25 = 29.04 

𝑐𝑐26 = 1.824 

𝑐𝑐31 = 0.00533176 

𝑐𝑐32 = 0.0251950 

𝑐𝑐33 = 0.7317058 

𝑐𝑐41 = 0.04 

𝑐𝑐42 = 0.0299886 

𝑐𝑐43 = 0.018088 

𝑐𝑐51 = 14.214 

𝑐𝑐61 = 1.00 

𝑐𝑐81 = 0.85663 

𝑐𝑐82 = −0.18128 

𝑐𝑐70 = −0.1048569 

𝑐𝑐71 = 0.15479 

𝑐𝑐72 = 0.4954961 

𝑐𝑐73 = −0.20797 

𝑐𝑐74 = 1.2720 

𝑐𝑐75 = −324212.7805 

𝑐𝑐76 = −99556.24778 

𝑐𝑐77 = 0.0011850 

𝑐𝑐78 = −1704.50476 

𝑐𝑐79 = −103.7351 

𝜏𝜏1 = 2, 𝜏𝜏2 = 2, 𝜏𝜏3 = 3, 𝜏𝜏4 = 3, 𝜏𝜏5 = 4, 𝜏𝜏6 = 10, 𝜏𝜏7 = 2  

 
 

  �̇�𝑥1(𝑡𝑡) = 𝑐𝑐11𝑥𝑥4(𝑡𝑡)𝑥𝑥1
9 8⁄ (𝑡𝑡) + 𝑐𝑐12𝑢𝑢1(𝑡𝑡 − 𝜏𝜏1) − 𝑐𝑐13𝑢𝑢3(𝑡𝑡 − 𝜏𝜏3) + 𝑐𝑐14 (1) 

�̇�𝑥2(𝑡𝑡) = −𝑐𝑐21𝑥𝑥2 +
𝑐𝑐22𝑢𝑢2(𝑡𝑡 − 𝜏𝜏2) − 𝑐𝑐23𝑢𝑢1(𝑡𝑡 − 𝜏𝜏1) − 𝑐𝑐24𝑢𝑢1(𝑡𝑡 − 𝜏𝜏1)𝑥𝑥2(𝑡𝑡)

𝑐𝑐25𝑢𝑢2(𝑡𝑡 − 𝜏𝜏2) + 𝑐𝑐26𝑢𝑢1(𝑡𝑡 − 𝜏𝜏1)  (2) 

�̇�𝑥3(𝑡𝑡) = 𝑐𝑐31𝑥𝑥1(𝑡𝑡) − 𝑐𝑐32𝑥𝑥4(𝑡𝑡)𝑥𝑥1(𝑡𝑡) − 𝑐𝑐33𝑢𝑢3(𝑡𝑡 − 𝜏𝜏3) (3) 

�̇�𝑥4(𝑡𝑡) = −𝑐𝑐41𝑥𝑥4(𝑡𝑡) + 𝑐𝑐42𝑢𝑢1(𝑡𝑡 − 𝜏𝜏1) + 𝑐𝑐43 + 𝑢𝑢4(𝑡𝑡) + 𝑛𝑛5 (4) 

𝑦𝑦1(𝑡𝑡) = 𝑐𝑐51𝑥𝑥1(𝑡𝑡 − 𝜏𝜏4) + 𝑛𝑛1(𝑡𝑡) (5) 

𝑦𝑦2(𝑡𝑡) = 𝑐𝑐61𝑥𝑥2(𝑡𝑡 − 𝜏𝜏5) + 𝑛𝑛2(𝑡𝑡) (6) 

𝑦𝑦3(𝑡𝑡) = 𝑐𝑐70𝑥𝑥1(𝑡𝑡 − 𝜏𝜏6) + 𝑐𝑐71𝑥𝑥3(𝑡𝑡 − 𝜏𝜏6) + 𝑐𝑐72𝑥𝑥4(𝑡𝑡 − 𝜏𝜏6) + 𝑐𝑐73𝑢𝑢3(𝑡𝑡 − 𝜏𝜏3 − 𝜏𝜏6) 

                +𝑐𝑐74𝑢𝑢1(𝑡𝑡 − 𝜏𝜏1 − 𝜏𝜏6) +
[𝑐𝑐75𝑥𝑥1(𝑡𝑡 − 𝜏𝜏6) + 𝑐𝑐76][1 − 𝑐𝑐77𝑥𝑥3(𝑡𝑡 − 𝜏𝜏6)]

𝑥𝑥3(𝑡𝑡 − 𝜏𝜏6)[𝑥𝑥1(𝑡𝑡 − 𝜏𝜏6) + 𝑐𝑐78]  

               +𝑐𝑐79 + 𝑛𝑛3(𝑡𝑡) 

(7) 

𝑦𝑦4(𝑡𝑡) = [𝑐𝑐81𝑥𝑥4(𝑡𝑡 − 𝜏𝜏7) + 𝑐𝑐82]𝑥𝑥1(𝑡𝑡 − 𝜏𝜏7) + 𝑛𝑛4(𝑡𝑡) (8) 

where 𝑥𝑥1 is drum pressure state (𝑘𝑘𝑘𝑘𝑘𝑘/𝑐𝑐𝑐𝑐2); 𝑦𝑦1 is measured drum pressure (𝑝𝑝𝑝𝑝𝑝𝑝); 𝑦𝑦2 and 𝑥𝑥2 are 
measured excess oxygen level and its state, respectively (%); 𝑥𝑥3 is system fluid’s density 
(𝑘𝑘𝑘𝑘/𝑐𝑐3); 𝑦𝑦3 is drum water level (𝑝𝑝𝑛𝑛.); 𝑦𝑦4 is steam flow rate (𝑘𝑘𝑘𝑘/𝑝𝑝); 𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3 are fuel, air, and 
feed water flow inputs, which take values between 0 and 1; 𝑥𝑥4  is exogenous variable related to 
the steam demand.  
 
The linearized model can be defined by  
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�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢                              𝑦𝑦 = 𝐶𝐶𝑥𝑥 + 𝐷𝐷𝑢𝑢 
where 

𝐴𝐴 = �
−0.005509 0

0 −0.2062
0 −0.1588
0 0

−0.01216 0
0 0

0 −0.5672
0 −0.040

�  𝐵𝐵 = �
0.2800 0
−9.375 7.658

−0.01348 0
0 0

0 0
0.02999 0

0.7317 0
0 0.040

� (9) 

𝐶𝐶 = �
14.21 0

0 1.0
0 0
0 0

0.3221 0
0.4133 0

0.1434 11.16
0 19.28

�                   𝐷𝐷 = �
0 0
0 0

0 0
0 0

1.272 0
0 0

−0.2080 0
0 0

� (10) 

 
2.2. Control model 
A steam generation plant can be worked 
properly under control requirements are 
provided. These requirements can be 
defined as maintaining of steam 
pressure, water in the drum and mixture 
of fuel and air in the camber at desired 
levels and standards. Overheating of 
drum components or flooding of steam 
lines can be prevented by the water level 
control in the drum.  
 
In this paper, the control structure is 
designed to manage the water level in 
the steam generation plant. The system 
control is tested by applying three 
different types of controller structures. 
First a classical PID control, then a 
classical fuzzy logic control (FLC) and 
then a fuzzy tuned PI control (FTPIC) is 
applied. The performances of these 
controllers are compared for better 
utilization. 
 
The parameters of the PID controller (KP, 
KI and KD) are optimized by PSO to 
improve the response of the controller in 
this study. The general block diagram of 
system with PSO based PID controller 
(PSO-PID) is shown in Figure 2. 
 

 
Figure 2. Structure of PSO based PID 
controller (PSO-PID) 

The FLC consists of fuzzification, rule 
base and defuzzification parts. All 
membership functions for both input and 
output spaces are triangular types since 
triangle-shaped fuzzy membership 
functions are modeled easily due to their 
linearity and they require less time and 
memory in control algorithms [14].  
 
The FLC has two inputs named as error 
(e) and error deviation (de) and one 
output (du). Five triangular type 
membership functions called positive big 
(PB), positive small (PS), zero (ZZ), 
negative small (NS), and negative big 
(NB) are used in input and output spaces 
of the FLC. The membership functions for 
two inputs (e and de) and an output (du) 
are shown in Figure 3. Classical particle 
swarm optimization with inertia 
weighting approach (CPSO-IWA) is used 
to optimize limits of the membership 
functions. 
 

NB NS ZZ PSPB
1

0
0.0196

NB NS ZZ PSPB
1

0

NB NS ZZ PSPB
1

0

e(k)

de(k)

du(k)

0.98-0.98 0.49-0.49

2.960-2.96 -1.48 1.48

4.02-4.02 3.0151.0452-1.206  
Figure 3. The membership functions of the 
PSO-FLC 
 
These membership functions are 
employed to convert the input signals (e 
and de) to fuzzy subsets in the 
fuzzification stage. The fuzzified values of 
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the inputs are applied in the rule table 
given in Table 2 to get the fuzzy number. 
 
Table 2. Fuzzy logic rules decision table for 
FLC. 

 
de 

NB NS ZZ PS PB 

NB NB NB NS NS ZZ 

NS NB NS NS ZZ PS 

ZZ NS NS ZZ PS PS 

PS NS ZZ PS PS PB 

PB ZZ PS PS PB PB 

There are no generally accepted methods 
or standards for a rule table design [15]. 

Therefore, techniques based on the 
direct knowledge from experts and the 
knowledge from numerical data are 
preferred in literature [15, 16]. In this 
paper, a symmetrical rule table 
constituted by system response 
approach given in [17] is used. The 
resultant united fuzzy subsets are 
converted to the crisp values at 
defuzzification stage. The general block 
diagram of system with PSO based fuzzy 
logic controller (PSO-FLC) is shown in 
Figure 4. 

 

 
Figure 4. Structure of PSO based fuzzy logic controller (PSO-FLC) 

 
Third controller type is the PSO based 
fuzzy tuned PI control (PSO-FTPIC). The 
classical PI controller gains (𝐾𝐾𝑃𝑃  and 𝐾𝐾𝐼𝐼) 
are simultaneously tuned by the FLC 
within  determined limits (𝐾𝐾𝑃𝑃(𝑚𝑚𝑖𝑖𝑚𝑚), 
𝐾𝐾𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚), 𝐾𝐾𝐼𝐼(𝑚𝑚𝑖𝑖𝑚𝑚), 𝐾𝐾𝐼𝐼(𝑚𝑚𝑚𝑚𝑚𝑚)) as the system 
operates. The limits of PI controller 
gains are settled by PSO algorithm. The 
membership functions of inputs (e and 
de) and an output (du) for the controller 
gains are shown in Figure 5.  
 

NB NS ZZ PSPB
1

0
0

NB NS ZZ PSPB
1

0

S M B VVBVB
1

0

e(k)

de(k)

KP(k)

e-e 0.5e-0.5e

0.1e0-0.1e -0.05e 0.05e

3.67360.7347 3.30622.20411.4194

NB NS ZZ PSPB
1

0
0

NB NS ZZ PSPB
1

0

S M B VVBVB
1

0

e(k)

de(k)

KI(k)

e-e 0.5e-0.5e

0.1e0-0.1e -0.05e 0.05e

0.33320.2665 0.31650.29980.2832

Figure 5. The membership functions of the 
PSO-FTPIC 

 
The fuzzy subsets very very big (VVB), 
very big (VB), big (B), medium (M) and 

small (S) are used for the output space 
of the FLC. The related rule table is 
same as in PSO-FLC algorithm given in 
Table 2. The general block diagram of 
system with PSO-FTPIC is shown in 
Figure 6. 
 
2.3. Performance indices 
A measurement of control system 
performance is important to improve 
the system responses. A quantitative 
measure in terms of performance 
indices can be realized and used to 
compare and evaluate the system's 
performances. The index must be 
minimized to develop the system 
performance, such as minimizing the 
steady state error, rise time, maximum 
overshoot and settling time.  
 
Performance indices are very useful to 
analyze and design control systems. The 
most common performance indices are 
the integral of the square of the error 
(ISE), integral of absolute magnitude of 
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the error (IAE) and integral of time 
multiplied by absolute error (ITAE) 

defined as: 

Performances of control strategies are 
observed in systems with different 
orders and characteristics. To illustrate 
the effectiveness of the techniques, 

simulation models are developed in 
Matlab/Simulink/Simpower Software 
Environment.  
 

 

 
Figure 6. Structure of PSO based fuzzy tuned PI control (PSO-FTPIC) 

 
2.4. Particle swarm optimization 
Particle swarm optimization (PSO) is one 
of computational intelligence-based 
techniques, which can be used to figure 
out the approximate solutions to 
engineering optimization problems such 
that success rate of PSO based on the 
social behavior of bird flocking and fish 
schooling is not majorly affected by 
problem features such as size and 
nonlinearity level [18].  
 

In this paper, the CPSO-IWA is used to 
optimize the parameters of controllers. 
In the CPSO-IWA, the swarm consists of 
particles, each of which based on 
components such that the velocity of the 
related component can be defined as 
given in Equations (12) and (13) for the 
𝑝𝑝th component of 𝑗𝑗th particle [19]. The 
CPSO-IWA initialization parameters are 
given in Table 3.  
 

 

𝑣𝑣𝑗𝑗,𝑖𝑖(𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖) = (𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − (
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚

𝑁𝑁𝑚𝑚
) × 𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖) × 𝑣𝑣𝑗𝑗,𝑖𝑖(𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖 − 1)

+ 𝑐𝑐1𝑅𝑅1�𝑃𝑃𝑗𝑗,𝑖𝑖(𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖 − 1) − 𝑥𝑥𝑗𝑗,𝑖𝑖(𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖 − 1)� + 𝑐𝑐2𝑅𝑅2[𝑃𝑃𝑗𝑗∗(𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖 − 1)
− 𝑥𝑥𝑗𝑗,𝑖𝑖(𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖 − 1)] 

(12) 

𝑥𝑥𝑗𝑗,𝑖𝑖(𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖) = 𝑥𝑥𝑗𝑗,𝑖𝑖(𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖 − 1) +  𝑣𝑣𝑗𝑗,𝑖𝑖(𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖) (13) 
where 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚 are maximum and minimum inertia weights, 𝑁𝑁𝑚𝑚 is maximum number of 
iteration cycles, 𝑣𝑣𝑗𝑗,𝑖𝑖  velocity, 𝑐𝑐1 and 𝑐𝑐2 are social and cognitive rate constants, 𝑅𝑅1 and 𝑅𝑅2 are 
uniformly distributed random numbers in [0,1], 𝑃𝑃𝑗𝑗,𝑖𝑖  is local best position, 𝑃𝑃𝑗𝑗∗ is global best 
position and 𝑥𝑥𝑗𝑗,𝑖𝑖  is position of 𝑝𝑝th component of 𝑗𝑗th particle. 

𝐼𝐼𝐼𝐼𝐼𝐼 = � 𝑖𝑖2(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇

0
,        𝐼𝐼𝐴𝐴𝐼𝐼 = � |𝑖𝑖(𝑡𝑡)|𝑑𝑑𝑡𝑡

𝑇𝑇

0
,     𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 = � 𝑡𝑡|𝑖𝑖(𝑡𝑡)|𝑑𝑑𝑡𝑡

𝑇𝑇

0
 (11) 

where  𝑖𝑖(𝑡𝑡) is the error signal in the time domain.  
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Table 3. The CPSO-IWA parameters. 
Parameter Value 
Swarm size (𝐼𝐼) 20 
Maximum number of iteration cycles (𝑁𝑁𝑚𝑚) 20 
Maximum inertia weight (𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚) 0.9 
Minimum inertia weight (𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚) 0.4 
Social rate (𝑐𝑐1) 2 
Cognitive rate (𝑐𝑐2) 2 

There are different strategies to set 
inertia weight such as fixed inertia 
weight, fuzzy adaptive, linearly 
decreasing, linearly increasing, non-
linear, chaotic, etc [20]. In this study, the 
inertia weight is linearly decreased from 
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 0.9 to 𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚 = 0.4. The swarm 
size can be determined according to 
complexity of problems so that there is a 
suggestion to choose swarm size 
between 20 and 50 in the most studies 
[21, 22]. 
 
Moreover, it is assumed that more 
efficient results can be obtained by 
selection of a larger swarm size for 
higher dimensional problems [23]. On 
the other hand, increase in swarm size 
affects positively the performance of the 
algorithm, but a larger swarm size 
requires more iterations so that more 
computational load and cost occur. The 
values 𝑐𝑐1 = 2 and 𝑐𝑐2 = 2  used in this 
study are widely accepted settings used 
in most of problems in literature [20]. 
Swarm topologies vary in literature and 
prominent topologies are shown in 
Figure 7 [24]. Global best topology is 
employed in this study. The integral of 
the square of the error (ISE) is used as an 
objective function.  
 

      (a)                  (b)                 (c)                 (d)                    (e) 
Figure 7. Swarm topologies (a) Global best, (b) 
Ring, (c) Wheel, (d) Pyramid, (e) Von Neumann 
 
The all controller parameters optimized 
by particle swarm optimization 
algorithm are tabulated in Table 4. 
 

Table 4. The parameters of all optimized 
controllers. 

PSO-PID 

𝐊𝐊𝐏𝐏 𝐊𝐊𝐈𝐈 𝐊𝐊𝐃𝐃 

3.1254 0.2406 0.084 

PSO-FLC 

𝐄𝐄𝐦𝐦𝐦𝐦𝐦𝐦 (−𝐄𝐄𝐦𝐦𝐦𝐦𝐦𝐦 ) 𝐃𝐃𝐄𝐄𝐦𝐦𝐦𝐦𝐦𝐦 (−𝐃𝐃𝐄𝐄𝐦𝐦𝐦𝐦𝐦𝐦 ) 𝐃𝐃𝐃𝐃𝐦𝐦𝐦𝐦𝐦𝐦 (−𝐃𝐃𝐃𝐃𝐦𝐦𝐦𝐦𝐦𝐦 ) 

0.98 2.96 4.02 

PSO-FTPIC 

𝐄𝐄𝐦𝐦𝐦𝐦𝐦𝐦 (−𝐄𝐄𝐦𝐦𝐦𝐦𝐦𝐦 ) 𝐃𝐃𝐄𝐄𝐦𝐦𝐦𝐦𝐦𝐦 (−𝐃𝐃𝐄𝐄𝐦𝐦𝐦𝐦𝐦𝐦 ) 𝐊𝐊𝐏𝐏𝐦𝐦𝐦𝐦𝐦𝐦 𝐊𝐊𝐈𝐈𝐦𝐦𝐦𝐦𝐦𝐦 

e(k) (adaptive) 0.1 × e(k) (adaptive) 3.6736 0.3332 

 
3. Simulation Results 
The steam generator system is simulated 
by using three control strategies for 
comparison and validation purposes. 
Fuel rate and water level as a reference 
variations in time are shown in Figures 8 
and 9, respectively. The fuel rate rises up 
from 0.27 pu to 1 pu at t = 1500s. Next, 
after 1500s, it falls to 0.27pu (Figure 8). 
The water level is zero level between 0s 
and 1500s and then it has 1 inch value at 
the time interval t = [1500, 3000]. 
Finally, at time  t = 3000s, it decreases to 
0 inch (Figure 9). 

 

 
Figure 8. Steam generator fuel rate variation 
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Figure 9. Steam generator water level 
reference 

 
The controlled system output (water 
level) related to the controller 
techniques are shown in Figures 10 and 
11. The maximum overshoots, settling 
times for 10%band, rise and peak times 
and peak values are given in Table 5. The 
effectiveness of controller scenarios is 
also tested by the performance indices 
(ISE, IAE and ITAE) and tabulated in 
Table 6.  
 
The water level overshoots of the PSO-
PID, the PSO-FLC and the PSO-FTPIC are 
87%, 177% and 113%, respectively. The 
PSO-PID controller has better 
performance than the others in 
overshoots, settling times, peak values 
and times. As for the rise times of the 
water level output, the PSO-FLC was 
found to be 0.70 s, as the PSO-FTPIC and 
the PSO-PID were found to be 0.86 and 
0.88 s, respectively.  
 

The PSO-PID has exhibited lower ISE, IAE 
and ITAE values compared with the PSO-
FLC and PSO-FTPIC methods as given in 
Table 6, that  the PSO-PID control 
strategy performs much better than the 
PSO-FLC and PSO-FTPIC strategies.  
 

 
Figure 10. Steam generator water level with 
all controllers 
 

 
Figure 11. Zoomed view of water level output 
with all controllers for 20% band 
 

Table 5. System performances for the controllers 
 PSO-PID PSO-FLC PSO-FTPIC 
Overshoot (%) 87 177 113 
Settling time for 10% band (s) 787 795 1236 
Rise time (s) 0.88 0.70 0.86 
Peak value (inches) 1.89 2.70 2.14 
Peak time (s) 225 336 799 

 
Table 6. System controller performance indexes comparison. 

Controller Type ISE IAE ITAE 
PSO-PID 13.02 58.06 119019 
PSO-FLC 164.82 564.86 1188874 
PSO-FTPIC 16.44 75.63 162752 
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4. Conclusion 
Performance analysis and comparison of 
PSO optimized control algorithms used 
to control water level in a steam 
generator are studied in this paper.  A 
PSO based PID controller (PSO-PID), a 
PSO based fuzzy logic controller (PSO-
FLC) and a PSO based fuzzy tuned PI 
control (PSO-FTPIC) are proposed in this 
work and applied to control a steam 
generator system having multiple input-
multiple output (MIMO) characteristics. 
The digital simulation results show that 
the PSO-PID control strategy performed 
better than the other control strategies. 
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